| > | with(LinearAlgebra): |
54
| > | A:=Matrix([[10,-53],[10,12]]); |
| > | E:=Eigenvectors(A); |
| > | M:=E[2]; |
| > | C:=M^(-1).A.M; |
| > | N:=1/2*Matrix([[1,-I],[1,I]]); |
| > | M2:=M.N; |
| > | C2:=M2^(-1).A.M2; |
| > | C2E:=exp(11*t)*Matrix([[cos(23*t),sin(23*t)],[-sin(23*t),cos(23*t)]]); |
| > | AE:=M2.C2E.M2^(-1); |
| > | AE.Matrix([[23],[23]]); |
| > |
| > |
56
| > | A:=Matrix([[-9,108,-92],[10,-90,79],[12,-124,107]]); |
| > | E:=Eigenvectors(A); |
| > | M:=E[2]; |
| > | N:=Matrix([[1/2,-1/2*I,0],[1/2,1/2*I,0],[0,0,1]]); |
| > | M2:=M.N; |
| > | C:=M2^(-1).A.M2; |
| > | CE:=Matrix([[exp(2*t),0,0],[0,exp(3*t)*cos(4*t),exp(3*t)*sin(4*t)],[0,-exp(3*t)*sin(4*t),exp(3*t)*cos(4*t)]]); |
| > | AE:=M2.CE.M2^(-1); |

![]()
![]()
![]()
![]()
![]()
| > |
| > |
57
| > | A:=Matrix([[-723,280,2744],[-91,40,343],[-182,70,691]]); |
| > | g:=Matrix([[exp(5*t)],[3*t+7],[20]]); |
| > | E:=Eigenvectors(A); |
| > | M:=E[2]; |
| > | C:=M^(-1).A.M; |
| > | h:=M^(-1).g; |
| > | s1:=solve(dsolve(diff(x(t),t)=5*x(t)+h[1,1]),x(t)); |
| > | s2:=solve(dsolve(diff(x(t),t)=5*x(t)+h[2,1]),x(t)); |
| > | s3:=solve(dsolve(diff(x(t),t)=-2*x(t)+h[3,1]),x(t)); |
| > | y:=Matrix([[s1],[subs(_C1=c2,s2)],[subs(_C1=c3,s3)]]); |
| > | M.y; |
| > |
58
| > | A:=Matrix([[1,3,0,0,0,0,-1,0],[0,18,-5,0,6,-25,0,-2],[0,64,-18,0,24,-100,0,-8],[-2,6,0,2,0,-1,-2,0],[0,116,-34,0,43,-170,0,-14],[0,0,0,0,0,2,0,0],[0,45,-13,0,15,-65,1,-5],[0,322,-94,0,114,-470,0,-37]]); |
| > | M:=JordanForm(A,output='Q'); |
| > | J:=M^(-1).A.M; |
| > | Je:=MatrixExponential(J*t); |
| > | Ae:=M.Je.M^(-1); |
![Ae := Matrix([[exp(t), 3*t*exp(t)+3*t^2*exp(t), -t^2*exp(t), 0, 3/2*t^2*exp(t), -5*t^2*exp(t), -t*exp(t), -1/2*t^2*exp(t)], [0, 13*exp(2*t)+4*exp(2*t)*t-12*exp(t), -exp(2*t)*t-4*exp(2*t)+4*exp(t), 0, ...](images/sol54_40.gif)
![]()
![]()
![]()
![]()
![]()
![]()
![]()
![]()
![]()
![]()
![]()
![]()
| > | Ae.Matrix([[1],[0],[1],[0],[0],[0],[0],[0]]); |
| > |