| > | with(DEtools):with(plots):with(LinearAlgebra): |
Warning, the name changecoords has been redefined
Linear1
| > | de1:=diff(x1(t),t)=x1(t)+x2(t); |
| > | de2:=diff(x2(t),t)=4*x1(t)+x2(t); |
| > | dfieldplot([de1,de2],[x1(t),x2(t)],t=0..1,x1=-3..3,x2=-3..3,arrows=MEDIUM); |
![[Plot]](images/lecture7_3.gif)
| > | DEplot([de1,de2],[x1(t),x2(t)],t=0..3,[[x1(0)=0.1,x2(0)=0.1],[x1(0)=-2,x2(0)=3],[x1(0)=-1.5,x2(0)=3],[x1(0)=1.3,x2(0)=-2.8]],x1=-3..3,x2=-3..3,arrows=MEDIUM,linecolor=blue);
|
![[Plot]](images/lecture7_4.gif)
| > | A:=Matrix([[1,1],[4,1]]); |
| > | Eigenvectors(A); |
Linear2
| > | de1:=diff(x1(t),t)=3*x1(t)-1*x2(t); |
| > | de2:=diff(x2(t),t)=-2*x1(t)+4*x2(t); |
| > | dfieldplot([de1,de2],[x1(t),x2(t)],t=0..1,x1=-5..5,x2=-5..5,arrows=MEDIUM); |
![[Plot]](images/lecture7_9.gif)
| > | A:=Matrix([[3,-1],[-2,4]]); |
| > | Eigenvectors(A); |
| > | MatrixExponential(A); |
Linear3
| > | de1:=diff(x1(t),t)=-2*x1(t)+0*x2(t); |
| > | de2:=diff(x2(t),t)=1*x1(t)-3*x2(t); |
| > | dfieldplot([de1,de2],[x1(t),x2(t)],t=0..1,x1=-3..3,x2=-3..3,arrows=MEDIUM); |
![[Plot]](images/lecture7_15.gif)
| > | A:=Matrix([[-2,0],[1,-3]]); |
| > | Eigenvectors(A); |
Linear4
| > | de1:=diff(x1(t),t)=1*x1(t)+5*x2(t); |
| > | de2:=diff(x2(t),t)=-1*x1(t)-1*x2(t); |
| > | dfieldplot([de1,de2],[x1(t),x2(t)],t=0..1,x1=-3..3,x2=-3..3,arrows=MEDIUM); |
![[Plot]](images/lecture7_20.gif)
| > | A:=Matrix([[1,5],[-1,-1]]); |
| > | Eigenvectors(A); |
| > | MatrixExponential(A*t); |
| > |
Volterra-Lotka
| > | de1:=diff(F(t),t)=F(t)-1/2*F(t)*R(t); |
| > | de2:=diff(R(t),t)=-3/4*R(t)+1/4*F(t)*R(t); |
| > | dfieldplot([de1,de2],[F(t),R(t)],t=0..1,F=0..7,R=0..5,arrows=MEDIUM); |
![[Plot]](images/lecture7_26.gif)
Eigenvectors and Diagonalization
| > | A:=Matrix([ [ 21, 0, -80 ], [ -8, 1, 32 ], [ 4, 0, -15 ] ]); |
| > | E:=Eigenvectors(A); |
| > | B:=Matrix([[5],[-2],[1]]); |
| > | A.B; |
| > | M:=E[2]; |
| > | E[1]; |
| > | MatrixInverse(M).A.M; |
| > | Di:=Matrix([[1,0,0],[0,1,0],[0,0,5]]); |
| > | M.Di.MatrixInverse(M); |
| > | C:=Matrix([[exp(t),0,0],[0,exp(t),0],[0,0,exp(5*t)]]); |
| > | M.C.MatrixInverse(M); |
| > | MatrixExponential(A*t); |
JordanForm
| > | A:=Matrix([ [ 3, -2, -1 ], [ 0, 5, 1 ], [ 3, -6, -1 ] ]); |
| > | Eigenvectors(A); |
| > | JordanForm(A); |
| > | B:=JordanForm(A,output='Q'); |
| > | J:=MatrixInverse(B).A.B; |
| > | Je:=MatrixExponential(J*t); |
| > | B.Je.MatrixInverse(B); |
| > | MatrixExponential(A*t); |
| > |