| > | with(plots):with(DEtools):with(LinearAlgebra): |
Warning, the name changecoords has been redefined
Stability of Linear systems
| > | M:=Matrix([[1,1],[-1,1]]); |
| > | C:=Matrix([[a,0],[0,b]]); |
| > | A:=M.C.M^(-1); |
| > | de1:=diff(x(t),t)=(1/2)*(a+b)*x(t)+1/2*(-a+b)*y(t); |
| > | de2:=diff(y(t),t)=(1/2)*(-a+b)*x(t)+(1/2)*(a+b)*y(t); |
| > | a:=1;b:=2; |
| > | dfieldplot([de1,de2],[x(t),y(t)],t=0..1,x=-3..3,y=-3..3,arrows=MEDIUM); |
![[Plot]](images/lecture10_8.gif)
| > | a:=1;b:=1; |
| > | dfieldplot([de1,de2],[x(t),y(t)],t=0..1,x=-3..3,y=-3..3,arrows=MEDIUM); |
![[Plot]](images/lecture10_11.gif)
| > | a:=0;b:=1; |
| > | dfieldplot([de1,de2],[x(t),y(t)],t=0..1,x=-3..3,y=-3..3,arrows=MEDIUM); |
![[Plot]](images/lecture10_14.gif)
| > | a:=-1;b:=1; |
| > | dfieldplot([de1,de2],[x(t),y(t)],t=0..1,x=-3..3,y=-3..3,arrows=MEDIUM); |
![[Plot]](images/lecture10_17.gif)
| > | a:=-1;b:=-1; |
| > | dfieldplot([de1,de2],[x(t),y(t)],t=0..1,x=-3..3,y=-3..3,arrows=MEDIUM); |
![[Plot]](images/lecture10_20.gif)
| > | a:='a';b:='b'; |
| > | A:=Matrix([[a,b],[-b,a]]); |
| > | Eigenvalues(A); |
| > | de1:=diff(x(t),t)=a*x(t)+b*y(t); |
| > | de2:=diff(y(t),t)=-b*x(t)+a*y(t); |
| > | a:=0;b:=1; |
| > | dfieldplot([de1,de2],[x(t),y(t)],t=0..1,x=-3..3,y=-3..3,arrows=MEDIUM); |
![[Plot]](images/lecture10_29.gif)
| > | a:=1;b:=1; |
| > | dfieldplot([de1,de2],[x(t),y(t)],t=0..1,x=-3..3,y=-3..3,arrows=MEDIUM); |
![[Plot]](images/lecture10_32.gif)
| > | a:=-1;b:=1; |
| > | dfieldplot([de1,de2],[x(t),y(t)],t=0..1,x=-3..3,y=-3..3,arrows=MEDIUM); |
![[Plot]](images/lecture10_35.gif)
| > | a:=0;b:=-1; |
| > | dfieldplot([de1,de2],[x(t),y(t)],t=0..1,x=-3..3,y=-3..3,arrows=MEDIUM); |
![[Plot]](images/lecture10_38.gif)
| > |
Pendulum
| > | de1:=diff(x(t),t)=y(t); |
| > | de2:=diff(y(t),t)=-9*sin(x(t))-1/5*y(t); |
| > | dfieldplot([de1,de2],[x(t),y(t)],t=0..1,x=-10..10,y=-10..10,arrows=MEDIUM); |
![[Plot]](images/lecture10_41.gif)
| > | DEplot([de1,de2],[x(t),y(t)],t=0..10,[[x(0)=-3,y(0)=0]],x=-10..10,y=-10..10,arrows=MEDIUM,linecolor=blue,stepsize=0.005); |
![[Plot]](images/lecture10_42.gif)
| > | DEplot([de1,de2],[x(t),y(t)],t=0..10,[[x(0)=-3.5,y(0)=0],[x(0)=3,y(0)=0]],x=-10..10,y=-10..10,arrows=MEDIUM,linecolor=blue,stepsize=0.005); |
![[Plot]](images/lecture10_43.gif)
| > | DEplot([de1,de2],[x(t),y(t)],t=0..10,[[x(0)=-10,y(0)=6]],x=-10..10,y=-10..10,arrows=MEDIUM,linecolor=blue,stepsize=0.005); |
![[Plot]](images/lecture10_44.gif)
| > |
3-dimensional critial points
| > | s:=Matrix([[x*(1-x/4-y)],[y*(-1+x-2*z)],[z*(-1+2*y)]]); |
| > | solve({s[1,1]=0,s[2,1]=0,s[3,1]=0}); |
| > | J:=seq([diff(s[i,1],x),diff(s[i,1],y),diff(s[i,1],z)],i=1..3); |
| > | J:=Matrix([J]); |
| > | subs({x=0,y=0,z=0},J); |
| > | Eigenvalues(subs({x=4,y=0,z=0},J)); |
| > | Eigenvalues(subs({x=3/4,y=1,z=0},J)); |
| > | evalf(Eigenvalues(subs({x=2,y=1/2,z=1/2},J))); |
| > |
-