Percentages, Interest, Geometric Growth
Percentages- help us compare
Translate to/from decimal: $x \%=\frac{x}{100}$
Example: 50% is the same as 0.5
Example: Compare grade scores:
200 Worksheet points, out of 225 possible,
75 quiz points out of 80.
Which is better, worksheet scores or quiz scores?
$200 / 225=0.8889$ or 88.89%
$75 / 80=0.9375$ or $93 / 75 \%$

Markups and Markdowns (percentages)

- To increase a number C by $x \%$, multiply C by

$$
1+x / 100
$$

- To decrease a number C by $x \%$, multiply C by

$$
1-x / 100
$$

A retailer buys an item for 5 dollars.
Retailer marks item up 80%.
Find the customer cost:
$5(1+.8)=5(1.8)=9$
Cost to customer: $\$ 9$

Example:

You purchase an item that is originally $\$ 22$. It was marked down 30%, but you bought it on Tuesday for an additional 10% off. What was your price?
$22(1-.3)(1-.1)=22(.7)(.9)=13.86$

Simple Interest

Only the original money generates interest
Principal- the original money invested/borrowed
APR- annual interest rate
Example: invest $\$ 1000$ at 5\%APR
Principal is $\$ 1000$
make 5% of $\$ 1000$ each year, or $\$ 50$
Simple Interest Formula: $F=P(1+r t)$
F - future value of the money
P - principal
r - rate written as a decimal
t - length of time in years
How much money would you have if you invested $\$ 2,000$ at a rate of 4% for 25 years using simple interest?
$F=2000(1+0.04 \cdot 25)=4000$

Compounding Interest

Compound interest- both the prinicpal AND the interest earn interest

Deposit $\$ 1000$ in retirement account at 6% annual interest. How much money in the account after 25 years?

$$
\begin{aligned}
& \text { Year } 0=1000 \\
& \text { Year } 1=(1.06) 1000=1060 \\
& \text { Year } 2=(1.06)(1.06) 1000=(1.06)^{2}(1000)=1123.60 \\
& \text { Year } 3=(1.06)\left(1000(1.06)^{2}\right)=(1.06)^{3}(1000)=1191.02 \\
& \text { Year } 4=(1.06)\left(1000(1.06)^{3}\right)=(1.06)^{4}(1000)=1262.48
\end{aligned}
$$

Recursive formula: multiply by 1.06 each time
$F_{N}=F_{N-1}(1.06)$
Would have to step through to get to year 25.

Find Explicit formula:
notice that the exponent matches year number
$F=1000(1.06)^{t}$
$F=1000(1.06)^{25}=4291.87$

Annual Compounding Formula
$F=P(1+r)^{t}$

Monthly Compounding:
Same example, but calculate the interest every month.

Annual interest is 6\%
Monthly interest is $0.06 / 12$
$r=1+0.06 / 12$
$F=1000(1+0.06 / 12)^{t \cdot 12}$
$F=1000(1+0.06 / 12)^{25 \cdot 12}=4464.97$
General Compounding Formula
$F=P\left(1+\frac{r}{n}\right)^{n t}$
Continuous Compounding Formula
$F=P e^{r t}$
Note- need a scientific or better calculator to do these computations. This formula can also be used to model population growth/decay.

Annual Yield- percentage of profit that the investment generates in a one year period

Example: invest $\$ 1000$ at 6% APR for 1 year, get
\$1061.68. What is the annual yield?
Net increase: $1061.68-1000=61.68$
Percent increase: 61.68/1000 $=0.06168$
So Annual Yield is 6.168\%

Geometric Sequences-
Start with initial term P and multiply by the same constant to get the next number.
$P, c P, c^{2} P, c^{3} P, \ldots$
Example:
$5,10,20,40,80,160,320, \ldots$
What is c ? We are multiplying by 2 each time Geometric Sequence Formulas

- $G_{N}=c G_{N-1} ; \quad G_{0}=P$ (recursive)
- $G_{N}=c^{N} P$ (explicit)

What if we added the terms together?
Geometric Sum Formula
$P+c P+c^{2} P+\cdots+c^{N-1} P=P\left(\frac{c^{N}-1}{c-1}\right)$.
Example:
Rude Dogg Promotions charges $\$ 300$ for the first month and then increases their fees by 1.2% each additional month. How much would it cost to hire this company to promote your band for one year?
$300+300(1.012)+300(1.012)^{2}+\cdots+300(1.012)^{11}$
Use the Geometric Sum Formula:
$P=\quad$ and $c=$
$\operatorname{sum}=P\left(\frac{c^{N}-1}{c-1}\right)$
Cost $=300\left(\frac{1.012^{12}-1}{1.012-1}\right)=3847.37$

