- 1. (20 pts) Answer the following questions:
 - (a) Evaluate $\lim_{b_t \to 10} b_{t+1}$ if $b_{t+1} = 0.75b_t$.

$$\lim_{b_{4}\to 10} 0.75b_{t} = 0.75(10) = 7.5$$

(b) Let $b_{t+1} = 0.75b_t$. If $b_0 = 340$, write the solution to this discrete time dynamical

(c) Evaluate $\lim_{t\to 10} m_t$ if $m_t = 260(0.6)^t$.

$$\lim_{t\to 10} 260(0.6)^{t} = 260(0.6)^{0} = 1.5721$$

(d) Rewrite $m_t = 260(0.6)^t$ as an exponential function with base e.

$$0.6 = e^{\ln 0.6}$$

$$0.6^{t} = (e^{\ln 0.6})^{t} = e^{t \ln 0.6}$$

$$0.6^{t} = (e^{\ln 0.6})^{t} = 260e^{t \ln 0.6}$$

$$0.6^{t} = 260(0.6)^{t} = 260e^{t \ln 0.6}$$

(e) Find the half-life of $m_t = 260(0.6)^t$.

Find the half-life of
$$m_t = 260(0.6)^t$$
.

$$\frac{1}{2} = \frac{1}{2} = \frac{1}{2} = 0.4 \text{ th}$$

$$\frac{1}{2} = 0.4 \text{ th}$$

$$\frac{1}{$$

2. (14 points) Let $f(t) = 6 + 3\cos(t - \pi/4)$.

(a) Fill in the following values of f(t):

iii. Period =
$$2\pi$$

(b) Find the domain of f(t).

(c) Find the range of f(t).

(d) Evaluate $\lim_{t\to\pi/4} f(t)$

3. (16 points) Answer the following questions:

(a) Let $b = 3s^2 - 8$ for $s \ge 0$. Find the inverse function of b.

$$b = 35^2 - 8$$

 $b + 8 = 35^2$

$$\frac{b+8}{3} = S^2 \qquad S = \sqrt{\frac{b+8}{3}}$$

(b) Let
$$q = 3r + 2$$
 and let $r = \frac{q-2}{3}$.

i. Compose
$$q$$
 with r .

ii. Compose
$$r$$
 with q .

$$g_0 r = 3(\frac{9^{-2}}{3}) + 2 = g^{-2+2} = g$$

16+8 = 151=5 since 5≥0

iii. What can you conclude about the relationship between q and r?

- 4. (22 points) Answer the following questions:
 - (a) Consider a population of crickets being cultured for feeding Nimata, the pet Tarantula. The per capita reproduction for the crickets is 11. Each month a new generation of crickets is produced. After reproduction, 6 crickets are removed to feed Nimata. Write an updating function to model this discrete time dynamical system.

(b) Consider the following updating function: $x_{t+1} = 0.1x_t^2 - 0.2x_t + 1.6$ for $x_t \ge 0$. Find the equilibria.

$$x^* = 0.1 \times^2 - 0.2 \times^4 + 1.6$$

$$0 = 0.1 \times^{2} - 1.2 \times^4 + 1.6$$
Use quadratic formula
or calculator:

x = 10.472

(c) Cobweb the following graph to answer the questions below.

- i. Identify the equilibria on the graph and classify them as stable or unstable.
- ii. What is the long term behavior if $x_0 < \chi$?

long term behavior:

Xt > stable equilibrium

or Xt decreases, then levels out (at 1.528)

5. (12 points) Let V_{t+1} represent the voltage of the AV node in the Heart Model.

$$V_{t+1} = \begin{cases} e^{-\alpha \tau} V_t + u & \text{if } e^{-\alpha \tau} V_t \le V_c \\ e^{-\alpha \tau} V_t & \text{if } e^{-\alpha \tau} V_t > V_c \end{cases}$$

(a) Let $e^{-\alpha\tau} = .5$, u = 10 and $V_c = 22$. If $V_0 = 24$, will the heart beat? Why?

OR

$$V_0 = 24 < \frac{V_c}{5} = \frac{22}{.5} = 44$$
 so heart beats

(b) Classify each cobweb diagram as representing a healthy heart, a heart with Wenkebach, 2:1 Block, 3:1 Block, or neither.

wenke bach

3:1 block

- 6. (16 points) Suppose the distance that Sonic the Hedgehog has rolled is given by the function $y(t) = 4t^2 3t + 1$ where y is in meters and t is in seconds.
 - (a) Compute Sonic's average speed (average rate of change) between time t and time $t + \Delta t$.

$$\frac{y(t+\Delta t)-y(t)}{\Delta t} = \frac{4(t+\Delta t)^2-3(t+\Delta t)+1-(4t^2-3t+1)}{\Delta t}$$

$$= \frac{8t\Delta t + 4\Delta t^2 - 3\Delta t}{\Delta t} = \frac{\Delta t \left(8t + 4\Delta t - 3\right)}{\Delta t}$$

(b) Using the result of Part 1, compute Sonic's velocity (instantaneous rate of change) as a function of t.

(c) What is Sonic's velocity at time t=2?

$$\gamma'(2) = 8(2) - 3 = 13$$