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Solutsony

1. (16 pts) The women’s Olympic record for the 1500 m race in 1972 was 4

min. 1.4 s and in 1988 was 3 min. 53.9 s.

a) Convert these times to seconds and find the equation of the line in slope-

intercept form connecting these points.
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b) Graph the line.
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c) If things continue at this rate, when would the women finish in exactly no

time?
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2. (12 pts) A population of bacteria doubles every hour, but 1.0 x 106 individ-
uals are removed after reproduction to be converted into valuable biological

by-products.

a) Write a discrete-time dynamical system to describe the population.
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b) Find the equilibrium solution.
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c) Graph the updating function and cobweb from an initial population of

by = 2.0 x 108,
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3. (10 pts) Suppose the size of a population of bacteria at time t is given by
b(t) = 1.5t + 6 where ¢ is measured in hours.

a) Find the average rate of change of the population between times ¢ and
t + At. Justify your answer.
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b) Suppose t = 2 and At = 0.1. Find the equation of the secant line in
slope-intercept form between times ¢ and t + At.
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4. (12 pts) The amount of C** left ¢t years after the death of an organism is
given by
Q(f) e Q06—0.000122t
where Qg is the amount left at the time of death.
a) When will one tenth of the original amount of C** be left in the remains?

= oot o v <
QL e 0“. death = ociélﬂo& oot

Re = owLou At a3

\A)“—Q-N“ \.g‘\“ O\L‘{:\) = EL'OF Q D?

- 0.000122t _ |n D.\
Or\ QO“-_ QO e b"

—D,00011%%
ol = € //ﬁ

-0.000\12%

—0.0001T2

k= 13B873.6483
lf\ 0.1 = )

b) If 2.5 x 1078 grams are present after 10,000 hours, how much C'* was
originally present in the organism?
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5. (14 pts) An organism is breathing a chemical that modifies the depth of its
breaths. Suppose the discrete-time dynamical system for the concentration
¢t of the chemical in the lung is
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a) Find the equilibria. Show all of your work to receive credit. No points
will be given for answers only.
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b) Draw a cobweb diagram starting from the initial concentration ¢y = .4.
What is the long-term concentration of the chemical in the lung?
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6. (12pts) Accurately graph the updating function
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b) Is the function continuous? Why or why not? _
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c) Find Ll/ima Vi1, if it exists.
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7. (14 pts) a) Find the average rate of change of the function f(z) = 622 + 3

as a function of Az.
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b) Find the limit in your answer to part b as Az — 0.
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¢) What is the instantaneous rate of change of this function at z = 17
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8. (10 pts) Find the following limits, if they exist. Show all of your work and
justify your answers.
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