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1. (14 points) Suppose that the population m; of macaws satisfies the discrete-time dynamical
system

Mmep1 = 3(1 — mt)mt — hmt,

where h > 0 is a positive parameter, and m; is measured in hundreds of macaws.

(a) Find all equilibria. For what values of h is there more than one equilibrium that makes
biological sense?
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(b) For each equilibriuin, use the Stability Theorem/Criterion to determine the values of

h for which that equilibrium is stable. Show clearly how you are using the Stability
Theorem/Criterion.
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2. (14 points) (a) Consider the function f(z) = z*—42?+2. i) Find all critical points of f(z). ii)
Determine the global maximum and global minimum of f(z) on the interval [—1,3]. Justify
your answer and show your work clearly for full credit.
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(b) Suppose that the production P of starch in a plant depends on time ¢ in the following

manner:
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grams per day.

Find the positive critical point of the function P(t), and use either the first or second derivative
test to determine if there is either a local maximum or local minimum at that point. Show
your work clearly for full credit.
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3. (15 points) Evaluate the following definite and indefinite integrals. If necessary, use
substitution. Show all of your work.
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(d) Use integration by parts to evaluate f 52e3% dz.
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4. (14 points) Suppose that a bacterium is absorbing plutonium from its environment. At time
t = 0, there is 0.1 mol of plutonium in the bacterium, and plutonium enters the bacterium at

1_mol -
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(a) Let p(t) represent the amount (mol) of plutonium in the bacterium at time ¢ (hours).
Write a pure-time differential equation and an initial condition for the situation described

above.
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(b) Apply Euler’s Method with At = 0.25 to estimate the amount of plutonium in the
bacterium at time ¢ = 0.75. Show your work clearly using a table. Give your answer to
three decimal places.

(Recall the formula ppext = Peurrent + LAL, or p(t + At) = p(t) + p/(E)AL).
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. (14 points) After a rainstorm, the growth rate of a bean stalk increases for a while, but
" eventually the growth rate decreases again as the ground dries. up Suppose that the rate of
change of the height of the beanstalk is given by

ﬁ. --te
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where time ¢ is measured in hours and H (t) is the helght (in cm) of the beanstalk ¢ hours
after the rainstorm.

(a) Estimate the total change in H(t) between times ¢ = 0 and ¢ = 2 using a right-hand
Rlemann Sum with At = 0.5. Draw your rectangles or step. funct;lons on the graph of
below Give your answer to three decimal places
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(b) Find the average value of the function f(t) = ¢sin (t? + x) on the interval [0, /7.
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6. (15 points)

(a) A parrot starts with a concentration of medicine in his bloodstream equal to 10
milligrams per liter (mg/L). Each day, the parrot uses up 45% of the medicine in his
bloodstream. However, at the end of each day the vet gives him enough medication
to increase the concentration of medicine in the bloodstream by 5 mg/L. Let M; =
concentration of medicine on day ¢, and write down a discrete-time dynamical system,
together with an initial condition, that describes this situation.
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(b) Let H(t) = the height (in meters) of a tree at time ¢ (in years). Suppose that the tree

grows at a rate ‘fftl 10322) meters per year.

i. Use a definite integral to determine the total change in the height of the tree between
times £ =2 and ¢t = 12.
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ii. Determine H(t) if H(0) = 1. (That is, find a solution to the differential equation
(fi]t{ = 2t) with initial condition H (0) =1.)
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7. (14 points)
(a) A population of striped goldfish obeys the discrete-time dynamical system

gt+1 = 1.3g;.
(i) Write down the solution to this discrete-time dynamical system if gg = 325.
(i) If go = 325, at what time will the population reach size 10007
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(b) The density p of a very thin rod (measured in grams/cm) varies according to
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where 2 marks a location along the rod, and = = 0 at one end of the rod. What is the
total mass of the rod if it is 4 cm long? Give units in your answer.
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(c) Suppose that a population b(t) of honey badgers satisfies the differential équation

db
- = 1.3b(4 - b).
1. Find all equilibria of the differential equation.
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ii. Write down an initial condition for which the population will increase in time (at
least initially).
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