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L. (14 points) Evaluate the following definite and indefinite mtegra]s If necessary, use
substitution. Show all of your work.

(a) /53: ;—322: S( »s,'. ”r) dx ¢ gl(si e 27t ) dy

.E.xi + Unlx] +TR+C

(b) /’/;3 sin(t! +7)dt = g%‘h’l\(h’\ dwd

- .
g Cos() +C = =L oog(e¥+3) 4
Wi i3 o - <

dw s deddE; 2dw -4l

3
8 (| w |? 3
@ [ e § 7 Twrde %—-—“i,\ §w |73
W e : ut\h's‘ | \ b
. . , . WNEY = -3(-%\_]
oz 24} ddws Ak 4 4)

(d) Use integration by parts to evaluate [ 5ze®dz.
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2. (14 points) Consider the discrete-time dynamical system
Nt+1 = 2Nt(1 - Nj) - th
describing a population of shrimp being harvested at rate h > 0,

(a) Find the nonzero equilibrium population N* as a function of h. For what values of A is
there a positive equlhbnum?
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(b) The equilibrium harvest is given by P(h) = hN*, where N* is the equilibrium you found
in part (a). Find the value of A that maximizes P(h). Use the first or second derivative
test to justify that this value of h gives a local maximum.
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(¢) Use the Stability Test/Criterion to determine if the equilibrium you found in (a) is stable
fh=4  Nyys PN UNY-WNy = (N -3t = P0) . £ o - -0,

Nz L to shable 1§ |0y <)
\i@ (LM {ah t\(l—kl‘ \Q W - g{l-k)} ALY REWE <\ f
—\4 hel
(k’o Se %“\UU\A ,
chel )




3. (15 points) Consider the function f(z) = —z* 4+ 3z?% + 9z on the interval [-3.5,4].
(a) Calculate f/(z), and use this to find all the critical points of f(z).
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(b) Calculate f”(z), and use this to find regions where f(z) is concave up or concave down.
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(c) For each critical point, determine if f(z) has a local maximum or a local minimum there.
Justify your answer using the first derivative test.
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(d) Use the information found above to sketch a graph of the function f(z) on the interval
[-3.5,4]. Indicate where any local maxima, local minima, global maxima, or global
minima occur.
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4. (14 points) Let P(t) be the amount (in moles) of a chemical being formed in a reaction
Suppose that the rate at which the chemical is being formed is given by
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(b) If P(0) = 5, what is P(t)? (Solve the initial-value problem for P(t)).
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(c) Find the average rate at which product is being formed (that is, the average value of
‘fi—lt) = Zg%i—E)) between times t = 0 and ¢ = 2.
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(d) Use a definite integral to find the total change in the amount of product between times
t=1and {=25.
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5. (14 points) Suppose that a cell is absorbing a certain drug from its environment. At time
t = 0, there is 10 mol of the drug in the cell, and the drug enters the cell at a rate of 1+sin(¢?)
mol/min.

(a) Let c(t) represent the amount (mol) of drug in the cell at time ¢ (in minutes). Write a
pure-time differential equation and an initial condition for the situation described above,
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(b) Apply Euler’'s Method with At = 0.5 to estimate the amount of drug in the cell at time
t = 1.5. Show your work clearly using a table.

(Recall the formula cpext = Courrent + %At, or é(t+ At) = é(t) + () At.)
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6. (14 points)

(a) A flying big brown bat slows down a bit to catch a fly, and then increases its speed again
as it flies on. Denoting the position (in meters) of the bat at time ¢ (in seconds) by P(¢),
suppose that the bat’s velocity is given by

dP ¢

dt T 1t

Estimate the total change in P(t) between times ¢ = 0 and ¢t = 2 using a right-hand
Riemann Sum with At = 0.5. Draw your rectangles or step functions on the graph

below.
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(b) The density of a very thin rod varies according to p(z) = 11—0:1:e25”2 in grams/cm, where

marks a location along the rod and = = 0 at one end of the rod. What is the total mass
of the rod if it is 2 cm long?
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7. (15 points)
(a) A population of green, slimy algae obeys the discrete-time dynamical system
i1 = 1.8at.

(1) Write down the solution of this discrete-time dynamical system if ag = 500.
(i1) If ap = 500, at what time does the population reach size 10007
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b) Use a tangent-line approximation of the function f(z) = +/z to approximate v/3.9. Give
g
your answer to 3 decimal places.
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(c) Suppose that the population k(t) of green kingfishers (measured in thousands) satisfies
the differential equation

dk
= = 3.1k(2:2 - k).

i) Find all equilibria of the differential equation.
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ii) Write down an initial condition for which the population will increase with time.
K0)=_1.62 € (0,2.8)
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