Math 155 Final Exam Fall 2012

1. (14 points) Evaluate the following definite and indefinite integrals. If necessary, use substitution. Show all of your work.

(a)
$$\int \frac{5x^4 + 2x^2}{x^3} + \pi \, dx = \int \left(\frac{5x^4}{x^3} + \frac{2x^2}{x^3} + \pi\right) dx = \int \left(5x + 2x^{-1} + \pi\right) dx$$
$$= \frac{5}{2}x^2 + 2\ln|x| + \pi x + C$$

(b)
$$\int t^3 \sin(t^4 + 7) dt = \int \frac{1}{4} \sin(\omega) d\omega = -\frac{1}{4} \cos(\omega) + C = -\frac{1}{4} \cos(\xi^4 + 7) + C$$

 $\omega \approx \xi^4 + 7$
 $d\omega = 4\xi^3 d\xi; = \frac{1}{4} d\omega = \xi^3 d\xi$

(c)
$$\int_{0}^{1} \frac{3}{(2x+1)^{3}} dx = \int_{0}^{3} \frac{3}{2} \frac{1}{w^{3}} d\omega = \frac{3}{2} \frac{w^{-2}}{(-2)} \Big|_{0}^{3} = -\frac{3}{4} \frac{1}{w^{2}} \Big|_{0}^{3} = -\frac{3}{4} \left(\frac{1}{4} - \frac{1}{4}\right)^{3}$$

$$\omega \stackrel{\text{lef}}{=} 2 dx; \frac{1}{2} d\omega \cdot dx$$

$$\omega \stackrel{\text{lef}}{=} 2 dx; \frac{1}{2} d\omega \cdot dx$$

$$= -\frac{3}{4} \left(-\frac{8}{4}\right) - \frac{2}{3}$$

(d) Use integration by parts to evaluate
$$\int 5xe^{4x}dx$$
.

Let $u = 5x$, $dv = e^{4x}dx$
 $du = 5dx$, $v = \frac{1}{4}e^{4x}$

$$\int 5xe^{4x}dx = uv - \int vdu = 5x(\frac{1}{4}e^{4x}) - \int \frac{1}{4}e^{4x}(5dx)$$

$$= \frac{5}{4}xe^{4x} - \frac{5}{4}(\frac{1}{4}e^{4x}) + C$$

$$= \frac{5}{4}xe^{4x} - \frac{5}{16}e^{4x} + C$$

2. (14 points) Consider the discrete-time dynamical system

$$N_{t+1} = 2N_t(1 - N_t) - hN_t$$

describing a population of shrimp being harvested at rate $h \geq 0$.

(a) Find the nonzero equilibrium population N^* as a function of h. For what values of h is there a positive equilibrium?

$$N^{k} = 2N^{k}(1-N^{k}) - hN^{k};$$

$$N^{k} = 2N^{k} - 2N^{k2} - hN^{k}$$

$$0 = N^{k} - 2N^{k2} - hN^{k}$$

$$= N^{k}(1-h-2N^{k})$$

$$= N^{k} = 0;$$

$$1-h - 2N^{k} = 0;$$

$$N^{k} = \frac{1-h}{2}$$

$$N^{k} = \frac{1-h}{2}$$
 is >0 if $h < 1$ (0 < h < 1)

(b) The equilibrium harvest is given by $P(h) = hN^*$, where N^* is the equilibrium you found in part (a). Find the value of h that maximizes P(h). Use the first or second derivative test to justify that this value of h gives a local maximum.

$$P(h) = hN^{k} = h\left(\frac{1-h}{2}\right) = \frac{1}{2}(h-h^{2})$$
 $P'(h) = \frac{1}{2} - h$
 $P'(h) = \frac{1}{2} - h \stackrel{\text{def}}{=} 0 \Rightarrow h = \frac{1}{2}$.

(c) Use the Stability Test/Criterion to determine if the equilibrium you found in (a) is stable if $h = \frac{1}{2}$. $N_{t+1} = 2N_t (l-N_t) - NN_t = (2-N)N_t - 2N_t^2 = f(N_t)$. $f'(N_t) = 2-N-4N_t$ is stable is | f(1=h) | < 1 「中にか」= 12-h-4(点) = 12-h-2(1-h) = 1h1, which is <1 if

$$= \sum_{i=1}^{n} N^{i} = \frac{1-h}{2} \text{ is stable } i \text{ } f$$

$$0 = h < 1$$

- 3. (15 points) Consider the function $f(x) = -x^3 + 3x^2 + 9x$ on the interval [-3.5, 4].
 - (a) Calculate f'(x), and use this to find all the critical points of f(x).

$$g'(x) = -3x^{2} + 6x + 9$$
 $= 0$
 $= 7$ $x^{2} - 2x - 3 = 0$
 $(x+1)(x-3) = 0 = 7$ critical points:
 $x=-1$
 $x=3$

(b) Calculate f''(x), and use this to find regions where f(x) is concave up or concave down.

ate
$$f''(x)$$
, and use this to find regions where $f(x)$ is concave up or concave down.

$$f''(x) = -6x + 6$$

$$-6x + 6$$

$$f''(x) = -6$$

$$f'$$

(c) For each critical point, determine if f(x) has a local maximum or a local minimum there. Justify your answer using the first derivative test.

火モー!

(d) Use the information found above to sketch a graph of the function f(x) on the interval [-3.5, 4]. Indicate where any local maxima, local minima, global maxima, or global minima occur.

4. (14 points) Let P(t) be the amount (in moles) of a chemical being formed in a reaction. Suppose that the rate at which the chemical is being formed is given by

$$\frac{dP}{dt} = \frac{2t}{t^2 + 5}$$
 moles/sec.

(a) What is
$$\lim_{t\to\infty}\frac{dP}{dt}$$
? $\lim_{t\to\infty}\frac{2t}{t^2+5}=\lim_{t\to\infty}\frac{2t}{t^2}=\lim_{t\to\infty}\frac{2}{t}=0$.

(b) If P(0) = 5, what is P(t)? (Solve the initial-value problem for P(t)).

$$P(t) = \int \frac{dP}{dt} dt = \int \frac{2t}{t^2 + 5} dt = \int \frac{1}{W} dw = |w|w| + C$$

$$w = \frac{1}{2} + \frac{1}{2}$$

(c) Find the average rate at which product is being formed (that is, the average value of $\frac{dP}{dt} = \frac{2t}{t^2+5}$) between times t=0 and t=2.

Average rate of change =
$$\frac{1}{2-0} \int_{0}^{2} \frac{2t}{t^{2}+5} dt = \frac{1}{2} \cdot \ln|t^{2}+5||^{2}$$

From Partlo

= $\frac{1}{2} \ln(9) - \frac{1}{2} \ln(5)$

= $\frac{1}{2} \ln(\frac{9}{5}) = 0.2938$

(d) Use a definite integral to find the total change in the amount of product between times t = 1 and t = 5.

$$\Delta P \text{ behaven} = \int_{1}^{5} \frac{dP}{dt} dt = \int_{1}^{5} \frac{2t}{t^{2}+5} dt = \ln \left(t^{2}+5 \right) \Big|_{1}^{5}$$

$$= \ln \left(5^{2}+5 \right) - \ln \left(1+5 \right) = \ln \left(\frac{30}{6} \right) = \ln \left(5 \right)$$

$$= 1 \cdot \left(\frac{30}{6} \right) = \ln \left(\frac{30}{6} \right) = \ln \left(\frac{30}{6} \right)$$

$$= 1 \cdot \left(\frac{30}{6} \right) = \ln \left(\frac{$$

- 5. (14 points) Suppose that a cell is absorbing a certain drug from its environment. At time t=0, there is 10 mol of the drug in the cell, and the drug enters the cell at a rate of $1+\sin(t^2)$ mol/min.
 - (a) Let c(t) represent the amount (mol) of drug in the cell at time t (in minutes). Write a pure-time differential equation and an initial condition for the situation described above.

$$\frac{dc}{dt} = 1 + sin(t^2)$$

$$C(0) = 10$$

(b) Apply Euler's Method with $\Delta t = 0.5$ to estimate the amount of drug in the cell at time t = 1.5. Show your work clearly using a table.

(Recall the formula $c_{\text{next}} = c_{\text{current}} + \frac{dc}{dt} \Delta t$, or $\hat{c}(t + \Delta t) = \hat{c}(t) + c'(t) \Delta t$.)

tecan the formula $c_{\text{next}} = c_{\text{current}} + \frac{1}{dt}\Delta t$, of $c(t + \Delta t) = c(t) + c(t)\Delta t$.)			
t	Centrent	$\frac{dc}{dt} = 1 + sin(t^2)$	c next = coursent + 0.5 (1+sin(62))
0	10	ı	10+6.5.1 = 10.5
0.5	16.5	1.2474	10.5 + 0.5 (1.2474) = 11.1237
l	11.1237	1.84 15	11.1237 + 0.5(1.9415) = 12.04445
1.5	12.04445		

6. (14 points)

(a) A flying big brown bat slows down a bit to catch a fly, and then increases its speed again as it flies on. Denoting the position (in meters) of the bat at time t (in seconds) by P(t), suppose that the bat's velocity is given by

$$\frac{dP}{dt} = 1 - \frac{t^2}{1 + t^4}.$$

Estimate the total change in P(t) between times t=0 and t=2 using a right-hand Riemann Sum with $\Delta t=0.5$. Draw your rectangles or step functions on the graph below.

(b) The density of a very thin rod varies according to $\rho(x) = \frac{1}{10}xe^{2x^2}$ in grams/cm, where x marks a location along the rod and x = 0 at one end of the rod. What is the total mass of the rod if it is 2 cm long?

total mais =
$$\int_{0}^{2} g(x) dx = \int_{0}^{2} \frac{1}{10} \times e^{2x^{2}} dx = \int_{0}^{\omega(z)=8} \frac{1}{10} \cdot \frac{1}{4} e^{\omega} d\omega$$

= $\frac{1}{40} e^{\omega/8} = \frac{1}{40} (e^{8} - e^{0}) = 74.5 \text{ grams}$

1.3291

7. (15 points)

(a) A population of green, slimy algae obeys the discrete-time dynamical system

$$a_{t+1} = 1.8a_t$$
.

- (i) Write down the solution of this discrete-time dynamical system if $a_0 = 500$.
- (ii) If $a_0 = 500$, at what time does the population reach size 1000?

(i)
$$a_t = 500 \cdot 1.8^t$$

(ii) $1000 \stackrel{\text{set}}{=} 500 \cdot 1.8^t$
 $2 = 1.8^t$
 $1n(z) = t_1 ln(1.8)$
 $t = \frac{ln(z)}{ln(1.8)} = 1.179$

(b) Use a tangent-line approximation of the function $f(x) = \sqrt{x}$ to approximate $\sqrt{3.9}$. Give your answer to 3 decimal places.

tongent - like apprehination
$$\hat{F}(k)$$
 to $\hat{F}(k)$: \sqrt{k} at $k=4$:
$$\hat{F}(k) - \hat{F}(4) = \hat{F}'(4)(k-4); \qquad (\hat{F}'(k) = \frac{1}{2} \times^{-1/2})$$

$$\hat{F}(k) - 2 = \frac{1}{2} (4)^{-1/2} (k-4) = \frac{1}{2} \cdot \frac{1}{2} (k-4);$$

$$\hat{F}(k) = \frac{1}{4} (k-4) + 2$$
Approximation of $\sqrt{3.9} = \hat{F}(3.9) = \frac{1}{4} (3.9-4) + 2 = -0.025 + 2$

$$= 1.975$$

(c) Suppose that the population k(t) of green kingfishers (measured in thousands) satisfies the differential equation

$$\frac{dk}{dt} = 3.1k(2.2 - k).$$

i) Find all equilibria of the differential equation.

O
$$\frac{2k}{4k}$$
 = 3.1k(2.2-k) =) $k=0$, or $k=2.2$

ii) Write down an initial condition for which the population will increase with time.

$$k(0) = 1.69 \in (0, 2.2)$$
.

8 any ke(0) such that $0 < k(0) < 2.2$

8 Omks.