Solutions to homework 1

Question 1: prove that a function $f: X \longrightarrow Y$ is continuous (calculus style) if and only if the preimage of any open set in Y is open in X.

Proof:

First, assume that f is a continuous function, as in calculus; let U be an open set in Y, we want to prove that $f^{-1}(U)$ is open in X.

If p is a point in $f^{-1}(U)$, we must show there is a little open ball around p that is all contained in $f^{-1}(U)$.

But $f(p) \in U$ which is an open set, so there exists a ball B of radius r centered at $f(p)$ and all contained in U.

Continuity calculus style tells us that provided that we take a small enough radius, there is a ball C around p such that $f(C)$ is contained in B, and hence in U. Which means that C is all contained in $f^{-1}(U)$. So we are done with one side of the proof.

Now assume that for any open set in Y, its preimage via f is open. We want to show that f is a continuous function. Let p be a point in $X, f(p)$ the corresponding image in Y.

To show that f is continuous at p we must show that, given a ball B of radius ε around $f(p)$, there exists a ball C whose image is entirely contained in B.

But B in particular is an open set. Therefore $f^{-1}(B)$ is open. Therefore p is an interior point for $f^{-1}(B)$: there is a little ball C centered at p contained in $f^{-1}(B)$.

This implies that $f(C)$ is contained in B, which is what we needed to show.

Question 2: prove that a function $f: X \longrightarrow Y$ is continuous (calculus style) if and only if the preimage of any closed set in Y is closed in X.

Proof: We want to exploit the previous exercise, and the fact that the complement of an open set is closed.

Assume f is continuous.
Let K be any closed set in Y.
Then $Y \backslash K$ is open.
Then $f^{-1}(Y \backslash K)$ is open by exercise 1 .
But $f^{-1}(Y \backslash K)=X \backslash f^{-1}(K)$.
Hence $f^{-1}(K)$ is closed.

Now assume the preimage of any closed set is closed.
Let U be any open set in Y.
$Y \backslash U$ is closed.
Hence $f^{-1}(Y \backslash U)=X \backslash f^{-1}(U)$ is closed.
Which implies that $f^{-1}(U)$ is open. Hence the preimage of any open set is open, and f is continuous by exercise 1 .

