
The Fundamental Group

Renzo’s math 472

This worksheet is designed to accompany our lectures on the fundamental
group, collecting relevant definitions and main ideas.

1 Homotopy

Intuition: Homotopy formalizes the notion of "wiggling". Homotopy
is a way to compare two functions f,g from the same space
X to the same space Y. You imagine a "movie" that takes you
continuosly from f (at time 0) to g (at time 1).

homotopy of functions: Let f, g : X → Y be continuous functions. Then
f ∼ g (read f is homotopic to g) if there is a continuous function

H : X × I → Y

such that
H(x, 0) = f(x), H(x, 1) = g(x).

H is called a homotopy between f and g.

homotopy relative to a subspace: Let A ⊂ X and f, g : X → Y be
continuous functions such that for any a ∈ A, f(a) = g(a). Then
f ∼A g (read f is homotopic to g relative to A) if there is a continuous
function

H : X × I → Y

such that
H(x, 0) = f(x), H(x, 1) = g(x)

and
H(a, t) = f(a) = g(a)

for all a ∈ A, t ∈ I.

homotopy equivalence of spaces: Two topological spaces X and Y are
homotopy equivalent if there exist functions f : X → Y and g : Y → X
such that g ◦ f ∼ IdX and f ◦ g ∼ IdY .

contractible spaces: Any space which is homotopy equivalent to a point
is called contractible.
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1.1 Homotopy of based loops

Intuition: We use the notion of homotopy relative to a subspace
to define the concept of homotopy of loops. Remembering that
for us a loop is a continuous function γ : I → X , we define two
loops to be homotopic if they are homotopic functions relative
to the subspace 0, 1. Let us repeat this more formally.

Let γ1, γ2 be two continuous functions from the closed unit interval to
some topological space X such that γ1(0) = γ1(1) = γ2(0) = γ2(1) = x.
Then we say that γ1 ∼ γ2 (read: γ1 is homotopic to γ2 as based loops) if
there is a continuous function H : I × I → X such that:

H(s, 0) = γ1(s), H(s, 1) = γ2(s)

and
H(0, t) = H(1, t) = x.

1.2 Strong deformation retractions

Intuition: The most common appearance of homotopic equivalent
spaces will be through deformation retractions. Intuitivelty Y is
a strong deformation retraction of X if Y can be "put" inside
X and then X can be "continuously sucked into" Y... now let us
say just this in mathematese...

A topological space Y is a strong deformation retraction of X if there
are two continuous functions

i : Y → X,

r : X → Y

such that
r ◦ i = 1IY

i ◦ r ∼ 1IX

Note in particular that if Y is a strong deformation retraction of X then
X and Y are homotopy equivalent spaces!

2 Category theory

Intuition: OK, this is where fancy mathematics begins...everytime
you took a math class, you have been studying a set of math-
ematical objects (e.g. groups, vector spaces, topological spaces)
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and their relevant functions (group homomorphisms, linear maps,
continuous functions). The way to relate two mathematical the-
ories is to relate the objects (e.g. to any topological space
assign a group) and the functions (e.g. to any continuous func-
tion assign a group homomorphism) in such a way that composition
of functions is respected in such an assignment. This a concep-
tually rich and systematic way to get a sophisticated topological
invariant. Here are a couple more formal definitions, if you care
for them :)

A category C is the datum of:

1. a set of objects, usually denoted Ob(C).

2. for each pair of objects X,Y ∈ Ob(C), a set of morphisms, usually
denoted Hom(X,Y ).

3. the notion of composition of morphisms, i.e. for every triple of objects
X,Y, Z a function Hom(X,Y )×Hom(Y,Z)→ Hom(X,Z).

Further we require composition of morphisms to be associative and that for
each object X we have a distinguished morphism IdX ∈ Hom(X,X) which
is neutral with respect to composition.

A (covariant) functor is a morphism of categories. In other words, given
two categories C1 and C2 a functor F : C1 → C2 is the datum of:

1. a function F : Ob(C1)→ Ob(C2).

2. for any pair of objectsX,Y a function F : Hom(X,Y )→ Hom(F(X),F(Y )).

with the natural requirements that identity and compositions are respected,
i.e.:

1.
F(IdX) = IdF(X)

2.
F(g ◦ f) = F(g) ◦ F(f).

3 The fundamental group

The fundamental group is a functor

Π1 : PT → G

from the category of pointed topological spaces to the category of groups.
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Note that the category of pointed topological spaces is just a slight variant
of our familiar category of topological spaces. Objects are pairs (X,x0),
where X is a topological space, and x0 ∈ X is a point of X. Morphisms
between (X,x0) and (Y, y0) are continuous functions f : X → Y such that
f(x0) = y0.

3.1 The function on objects

Given a pointed topological space (X,x0), the fundamental group Π1(X,x0)
is constructed as follows.

elements the elements are equivalence classes of loops based at x0. A loop
based at x0 is a continuous function α : I → X such that α(0) =
α(1) = x0. Two loops α and β are considered equivalent if they are
homotopic relative to their endpoints.

operation the operation of composition is just concatenation of loops. In
other words:

α ? β(t) :=

{
α(2t) 0 ≤ t ≤ 1/2

β(2t− 1) 1/2 ≤ t ≤ 1.

Problem 1. Check that we have indeed defined a group. You must prove the
operation is well defined, associative. That there is an identity element, and
that each element has an inverse.

All of these statements can be proven by pictures. Learn to describe a
homotopy of loops in terms of a diagram on a square. For example, suppose
that we want to prove that the constant loop εx0 is the identity element in
the fundamental group. We then need to show

α ∼ εx0 ? α ∼ α ? εx0

A homotopy between the two above loops is a function H : I × I → X, that
can be represented by the following diagram:

We read the diagram as follows. The vertical left hand side of the square
is the loop εx0 ?α. The vertical right hand side of the square is α. The square
is a homotopy between the two loops. Everywhere you see red is mapped
to x0. The top white trapeze realizes a continuous morphing of “walking
around α twice as fast" into “walking around α at regular speed". In this
case I have even written down the function in term of s and t. This is a
little confusing, since you should think of both t and s as time. The time
t is the time along which you walk along the loop. The time s is the time
along which you deform your way of walking around the loop.
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X

α(2t-1)

α(t)

0

X0

X0

α(st +(1-s)(2t-1))

3.2 The function on morphisms

Now, given a continuous function f : (X,x0)→ (Y, y0) such that f(x0) = y0,
we can define a corresponding group homomorphism:

Π1(f) : Π1(X,x0)→ Π1(Y, y0)

[α] 7→ [f ◦ α]

Problem 2. Check that indeed Π1(f) is a group homomorphism.

Problem 3. Check that Π1 is indeed a functor between the two above cate-
gories.

4 Some observations about the Fundamental Group

In this section we find some interesting properties of the fundamental group.
We already know that the fact that Π1 is a functor guarantees that it is a
topological invariant. In fact, we show that is a homotopy invariant. I.e. in
two spaces are homotopy equivalent, them they have isomorphic fundamental
group.

Problem 4. Let f, g : (X,x0)→ (Y, y0) be two functions that are homotopic
relative to x0. Then show that

Π1(f) = Π1(g)

As a consequence, show that if (X,x0) and (Y, y0) are homotopy equivalent
relative to the basepoints (figure out what this means!), then

Π1(X,x0) ∼= Π1(Y, y0)

What is the fundamental group of a contractible space?
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Finally we observe that if a space is path connected, then the choice of
the special point is somewhat irrelevant.

Problem 5. Show that if X is path connected, then for any two points x0
and x1 ∈ X we have

Π1(X,x0) ∼= Π1(X,x1)

This is why one often forgets about the base points and just talks about “the
fundamental group of X". However note the subtlety that there is not a
unique (or a canonical) isomorphism. You at some point are making a choice.
Can you see when?

5 Computing the Fundamental Group

Intuition: OK, so we have decided we really like the fundamental
group, because it is a cool topological invariant...but can we
actually compute any fundamental group, other the fundamental
group of a point, which is more or less by definition the trivial
group? We have two tools to do so: one is to use the fact
that the fundamental group of two homotopy equivalent spaces
is the same; the other is a theorem that tells us how to
construct a presentation for the fundamental group of a space
if you "chop it down" to simpler pieces of which you do know
everything about.

5.1 Homotopy Equivalence

If X and Y are (path connected) homotopy equivalent spaces, then

Π1(X,x0) ∼= Π1(Y, y0)

As a consequence, for every n:

Π1(R
n) ∼= Π1(D

n) ∼= Π1(pt.) = {e}

Or, for example

Π1(cylinder) ∼= Π1(annulus) ∼= Π1(R
2 \ pt) ∼= Π1(S

1)

Or, because a segment is contractible, the fundamental group of a space
X with some "hair" attached is just the same as the fundamental group of
X itself.

Problem 6. Make sense of the previous sentence. Draw a picture.
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5.2 Seifert-Van Kampen theorem

Theorem 1. Let X be a path-connected topological space. Let X1 and X2

be two open sets such that:

• X1 ∪X2 = X;

• X1 ∩X2 is non-empty and path connected;

• Π1(X1) =< α1, . . . , αn|r1, . . . , rp >;

• Π1(X2) =< β1, . . . , βm|s1, . . . , sq >;

• Π1(X1 ∩X2) =< γ1, . . . , γl|we don’t care >.

Then

Π1(X) =< α1, . . . , αn, β1, . . . , βm|r1, . . . , rp, s1, . . . , sq, ω1, . . . , ωl >,

where the relations wi are obtained from the generators of Π1(X1 ∩X2)
as follows: for each γ, you can write the corresponding loop as a word in α’s
(say γ = wα) and a word in β’s (say γ = wβ). Then

ω = wα(wβ)−1

Using this theorem, and the fact that the fundamental group of the circle
is Z, you can easily deduce:

1.
Π1(S

2) ∼= {e};

2.
Π1(8) ∼= F2: the free group on 2 generators;

3.
Π1(T ) ∼=< a, b|abāb̄ >∼= Z× Z;

4.
Π1(P

2) ∼=< a, b|a2 >∼= Z/2Z;

Problem 7. Compute a presentation for the fundamental group of:

1. The Klein bottle;

2. an arbitrary connected sum of tori;

3. an arbitrary connected sum of projective planes.
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6 The fundamental group of the circle

Intuition: We sketch a proof of the computation of the fun-
damental group of the circle. This is on the one hand a very
intuitive and easy to believe result. On the other hand it is
reasonably sophisticated to prove. Here goes the statement.

Theorem 2.
Π1(S

1) ∼= Z

6.1 The Infinite Rotini

The key player in the proof of this statement is the infinite rotini, i.e. the
continuous function:

R : R→ S1

defined by

R(y) = e2πiy.

Note: the following are elementary yet crucial properties of R.

1. R is surjective.

2. For any x ∈ S1, the preimage R−1(x) = {. . . , yn, . . .} is a countable
set, naturally (but not canonically!) in bijection with Z.

3. For every preimage yn there is an open set Uyn = (yn − 1/2, yn + 1/2)
such that

R|Un
: Un → R(Un)

is a homeomorphism.

Sidenote: R is an example of a covering map. Every time we have a function
f : X → Y with properties 1. and 3. we say that f is a covering map or that
Y is a covering space of X. This is the beginning of a beautiful story... that
will be left for another time.

6.2 Lifting

Given a function f : X → S1 a lifting of f is a function f̃ : X → R such
that:

f = R ◦ f̃ .

What is crucial to us is that if X is either an interval or a square, then:

1. A lifting always exists.
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2. Once you specify the image of just one point for f̃ , then the lifting is
unique.

The proof of this statement is an excellent exercise for you to think about.
You have to exploit property 3. to lift locally (locally R is a homeo and hence
it has an inverse function!). Then you use compactness of the interval and
of the square to show that you can lift globally.

6.3 A silly but useful way to think of Z

Denote by Γ the group defined as follows:

set homotopy equivalence classes (relative to the enpoints) of paths starting
at 0 and ending at some integer.

operation composing two paths γ1 and γ2 is defined as follows: go along
γ1 twice as fast. Say that the endpoint of γ1 is n. Then translate γ2
by n and go along that path twice as fast. Here is in math notation:

γ1 ? γ2(t) :=

{
γ1(2t) 0 ≤ t ≤ 1

2
γ2(2t− 1) + γ1(1) 1

2 ≤ t ≤ 1

Since R is contractible, it is easy to see that there is only one equivalence
class of paths for any given integer endpoint. Upon ε more thought it should
be reasonably evident that the operation we defined corresponds to additions
of integers. Therefore our mystery group Γ is just a funny way of talking
about (Z,+).

6.4 A natural isomorphism

Now we have natural ways to go from Γ to Π1(S
1) and back:

Projection Given a path γ ∈ Γ, R ◦ γ is a loop in S1.

Lifting Given a loop α ∈ Π1(S
1), the (unique) lifting (̃α) of α starting at 0

is a path in Γ.

The major issue here is to show that the map Lifting is well defined
(or if you want, that Projection is injective). But this is a consequence of
the fact that continuos maps from squares lift as well! Homotopies of paths
are in particular maps from a square, and therefore if two loops downstairs
are homotopic, so are their lifts, and this in particular implies that their
endpoints agree.

The final thing to check is that Lifting and Projection are group homo-
morphisms and that they are inverses of each others. And that’s another
good exercise for you!
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6.5 A generalization

There is a nice generalization of this theorem that goes as follows.

Theorem 3. Let X be a contractible space and G be a finite group acting
on X in such a way that the quotient map

X → X/G

is a covering map. Then
Π1(X) ∼= G

Note that in particular this applies to some of our old friends:

1. P2 = S2/Z2.

2. T = R2/(Z× Z)
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