HW 4 Math 261

Please see the course syllabus for details on how to turn in your homework assignments.

- 1. (5 pts.) True or False
 - (a) Let x = 3, y = 4, z = 5t, and f(x, y, z) be a function from \mathbb{R}^3 to \mathbb{R} . Then $\frac{\partial f}{\partial t} = \frac{\partial f}{\partial z}$.
 - (b) Let x = 3, y = 4, z = 5t, and f(x, y, z) be a function from \mathbb{R}^3 to \mathbb{R} . Then $\frac{\partial f}{\partial t} = 5 \frac{\partial f}{\partial z}$.
 - (c) Let x = 3, y = 4, z = 5t, and f(x, y, z) be a function from \mathbb{R}^3 to \mathbb{R} . Then $\frac{\partial f}{\partial t} = 1/5 \frac{\partial f}{\partial z}$.
 - (d) Let h(x, y) be a function from \mathbb{R}^2 to \mathbb{R} and P a point in the domain of h. It is possible that the directional derivative of h at P is equal to 1 for every direction vector.
 - (e) Let h(x, y) be a function from \mathbb{R}^2 to \mathbb{R} and P a point in the domain of h. It is possible that the directional derivative of h at P is equal to 0 for every direction vector.
- 2. (3 pts.) Suppose function f(x, y) depends on variables x and y, which are themselves functions of variables α , β , and γ (i.e., $x = x(\alpha, \beta, \gamma)$ and $y = y(\alpha, \beta, \gamma)$). Fill in the blanks for the chain rule to compute $\frac{\partial f}{\partial \beta}$:

$$\frac{\partial f}{\partial \beta} = \frac{\partial \Box}{\partial \Box} \frac{\partial \Box}{\partial \Box} + \frac{\partial \Box}{\partial \Box} \frac{\partial \Box}{\partial \Box}$$

3. (3 pts.) Let

$$g(u, v) = u^{2} + v^{3},$$
$$u(t) = \cos(t),$$
$$v(t) = \ln(t).$$

Compute $\frac{dg}{dt}$. (Please use only the variable t in your response, but do not bother multiplying everything out.)

4. (3 pts.) Suppose z is a function of x and y and that $x^2 z^2 + y \sin(z) = 1$. Find $\frac{\partial z}{\partial x}$.

- 5. (3 pts.) Find the derivative of $f(x, y) = xy y^2$ at point (1, 2) in the direction of $\mathbf{v} = \langle 3, 4 \rangle$. Please simplify your answer to a number. (Notice that \mathbf{v} is not a unit vector!)
- 6. (3 pts.) Find a direction vector \mathbf{v} such that the derivative of $f(x, y) = xy y^2$ at point (1,2) in the direction of \mathbf{v} is equal to 0.