HW 4

Math 261

Please see the course syllabus for details on how to turn in your homework assignments.

1. (5 pts.) True or False
(a) Let $x=3, y=4, z=5 t$, and $f(x, y, z)$ be a function from \mathbb{R}^{3} to \mathbb{R}. Then $\frac{\partial f}{\partial t}=\frac{\partial f}{\partial z}$.
(b) Let $x=3, y=4, z=5 t$, and $f(x, y, z)$ be a function from \mathbb{R}^{3} to \mathbb{R}. Then $\frac{\partial f}{\partial t}=5 \frac{\partial f}{\partial z}$.
(c) Let $x=3, y=4, z=5 t$, and $f(x, y, z)$ be a function from \mathbb{R}^{3} to \mathbb{R}. Then $\frac{\partial f}{\partial t}=1 / 5 \frac{\partial f}{\partial z}$.
(d) Let $h(x, y)$ be a function from \mathbb{R}^{2} to \mathbb{R} and P a point in the domain of h. It is possible that the directional derivative of h at P is equal to 1 for every direction vector.
(e) Let $h(x, y)$ be a function from \mathbb{R}^{2} to \mathbb{R} and P a point in the domain of h. It is possible that the directional derivative of h at P is equal to 0 for every direction vector.
2. (3 pts.) Suppose function $f(x, y)$ depends on variables x and y, which are themselves functions of variables α, β, and γ (i.e., $x=x(\alpha, \beta, \gamma)$ and $y=y(\alpha, \beta, \gamma))$. Fill in the blanks for the chain rule to compute $\frac{\partial f}{\partial \beta}$:

$$
\frac{\partial f}{\partial \beta}=\frac{\partial \square}{\partial \square} \frac{\partial \square}{\partial \square}+\frac{\partial \square}{\partial \square} \frac{\partial \square}{\partial \square}
$$

3. (3 pts.) Let

$$
\begin{gathered}
g(u, v)=u^{2}+v^{3}, \\
u(t)=\cos (t), \\
v(t)=\ln (t) .
\end{gathered}
$$

Compute $\frac{d g}{d t}$. (Please use only the variable t in your response, but do not bother multiplying everything out.)
4. (3 pts.) Suppose z is a function of x and y and that $x^{2} z^{2}+y \sin (z)=1$. Find $\frac{\partial z}{\partial x}$.
5. (3 pts.) Find the derivative of $f(x, y)=x y-y^{2}$ at point $(1,2)$ in the direction of $\mathbf{v}=\langle 3,4\rangle$. Please simplify your answer to a number. (Notice that \mathbf{v} is not a unit vector!)
6. (3 pts.) Find a direction vector \mathbf{v} such that the derivative of $f(x, y)=x y-y^{2}$ at point $(1,2)$ in the direction of \mathbf{v} is equal to 0 .

