HW 3

Math 261

Please see the course syllabus for details on how to turn in your homework assignments.

1. (5 pts.) True or False
(a) Let $h(x, y)$ be a continuous function. Then for any poiny $\left(x_{0}, y_{0}\right)$ in the domain of h, the limit of h as (x, y) approach the point $\left(x_{0}, y_{0}\right)$ exists.
(b) Let $h(x, y)=x / y$. The limit of h as (x, y) approach the point $(1,1)$ exists.
(c) Let $h(x, y)=x / y$. The limit of h as (x, y) approach the point $(0,0)$ exists.
(d) Let $h(x, y)=\left\{\begin{array}{ll}3 & (x, y)=(0,0) \\ 1 & (x, y) \neq(0,0)\end{array}\right.$. The limit of h as (x, y) approach the point $(0,0)$ doesn't exist.
(e) Let $h(x, y)=\left\{\begin{array}{ll}3 & (x, y)=(0,0) \\ 1 & (x, y) \neq(0,0)\end{array}\right.$. The limit of h as (x, y) approach the point $(0,0)$ is equal to 3 .
2. (3 pts.) If $f(x, y, z)=\sqrt{x^{3}+\sin (y)-y \ln (z)}$, find $f\left(2, \frac{\pi}{2}, 1\right)$. Perform elementary simplifications.
3. (3 pts.) Sketch the domain of $g(x, y)=\ln (1-2 x-2 y)$.
4. (3 pts.) Let $h(x, y, z)=3 x^{2} z+z \cos (\pi y-\pi x)+3 e^{z}$. Determine $\lim _{(x, y, z) \rightarrow(1,2,0)} h(x, y, z)$.
5. (3 pts.) The function $k(x, y)=\frac{7 x^{8} y}{-2 x^{9}+9 y^{9}}$ has no limit as $(x, y) \rightarrow(0,0)$.

Show this by computing the limit of the function along the two following paths:
(a) $t \mapsto(t, 0)$. This notation indicates the path $(x(t), y(t))=(t, 0)$, or equivalently, the path given by $y=0$.
(b) $t \mapsto(t, t)$. This notation indicates the path $(x(t), y(t))=(t, t)$, or equivalently, the path given by $y=x$.
Note (and hint): the nice thing about the parametric notation for the paths $t \mapsto$ $(f(t), g(t))$ is that it suggests what you should do to compute the limit along the path: plug in the function $f(t)$ for x, the function $g(t)$ for y, and then take the limit as $t \rightarrow 0$.
6. (3 pts.) Compute $\frac{\partial h}{\partial x}$ for the function in $\# 4$.

