HW 2

Math 261

Please see the course syllabus for details on how to turn in your homework assignments.

1. (5 pts.) True or False
(a) A line and a plane in \mathbb{R}^{3} always intersect in a point.
(b) A line and a plane in \mathbb{R}^{3} intersect in at most one point.
(c) A plane P in \mathbb{R}^{3} and a line in \mathbb{R}^{3} not completely contained in P intersect in at most one point.
(d) $\mathbf{r}_{\mathbf{1}}(t)=\langle t, 2 t, 3 t\rangle$ and $\mathbf{r}_{\mathbf{2}}(t)=\langle 1-t, 2-2 t, 3-3 t\rangle$ are two parameterizations of the same line.
(e) $\mathbf{r}_{\mathbf{1}}(t)=\langle t, 0,0\rangle$ and $\mathbf{r}_{\mathbf{2}}(t)=\langle 0,0, t\rangle$ are two parameterizations of the same line.
2. (3 pts .) Determine the equation of the plane that passes through points $(0,1,0)$, $(-1,0,1)$, and $(0,-2,1)$. Please give your answer in the form

$$
\square x+\square y+\square z=1
$$

3. (3 pts.) Fill in the blanks of the following parameterization of a line through the points $P_{1}=(1,1,0)$ and $P_{2}=(0,3,1)$:

$$
\left\{\begin{array}{l}
x=-1+t \\
y=\square+\square t \\
z=\square+\square t
\end{array}\right.
$$

4. (3 pts.) The line given by the parameterization

$$
\left\{\begin{array}{l}
x=1+t \\
y=3 t \\
z=2-2 t
\end{array}\right.
$$

and the plane given by $x+2 y+z=8$ intersect in a point. Find that point.
5. (3 pts.) Compute the derivative $\mathbf{r}^{\prime}(t)$ of vector function $\mathbf{r}(t)=\left\langle e^{t}, 3 t^{2}-2 t+5, \sin (t)\right\rangle$.
6. (3 pts.) Suppose a particle moves according to the position function $\mathbf{r}(t)=\left\langle t^{3}, t^{2}, 4 t+1\right\rangle$. Determine the acceleration $\mathbf{a}(2)$ of the particle at $t=2$.

