HW 8

Math 261, F19
Please see the course syllabus for details on how to turn in your homework assignments. This one is due at the beginning of your class on Friday, November 8.

1. (5 pts.) True or False:

(a) Let R denote a plane region, and $(u, v)=(u(x, y), v(x, y))$ be a different set of coordinates for the Cartesian plane. Then for any function $F(u, v)$

$$
\int_{R} F(u, v) d u d v=\int_{R} F(u(x, y), v(x, y)) d x d y
$$

(b) Let R denote a plane region, and $(u, v)=(u(x, y), v(x, y))$ be a different set of coordinates for the Cartesian plane. Then

$$
\int_{R} d u d v=\int_{R}\left|u_{x} v_{y}-u_{y} v_{x}\right| d x d y
$$

(c) Let R denote a square of sidelength 2 defined by the inequalities $|x| \leq 1,|y| \leq 1$, and $(u, v)=(3 y, 2 x)$. Then the area of R is computed as

$$
\int_{-2}^{2} \int_{-3}^{3} d u d v
$$

(d) Let R denote a square of sidelength 2 defined by the inequalities $|x| \leq 1,|y| \leq 1$, and $(u, v)=(3 y, 2 x)$. Then the area of R is computed as

$$
\int_{-2}^{2} \int_{-3}^{3}(1 / 6) d u d v
$$

(e) Let R denote a square of sidelength 2 defined by the inequalities $|x| \leq 1,|y| \leq 1$, and $(u, v)=(3 y, 2 x)$. Then the area of R is computed as

$$
\int_{-1}^{1} \int_{-1}^{1}(1 / 6) d u d v
$$

2. (3 pts.) Using cylindrical coordinates, set up the integral to find the volume of the region enclosed by the vertical cylinder $x^{2}+y^{2}=4$ and the planes $z=0$ and $y+z=4$. Do NOT evaluate the integral; just set it up.
3. (3 pts.$)$ Using spherical coordinates, set up the integral to find the volume of the region enclosed by the vertical cylinder $x^{2}+y^{2}=4$ and the planes $z=0$ and $z=2$. Do NOT evaluate the integral; just set it up.
4. (3 pts.) Use cylindrical coordinates and set up the integral to find the volume of the region enclosed by a circular cone of base radius 1 and height 2. Do NOT evaluate the integral; just set it up. Your set-up should include a description of how the cone is positioned in \mathbb{R}^{3}.
5. (3 pts.) Consider using the substitution $\left\{\begin{array}{l}x=u-v, \\ y=2 u+v\end{array}\right.$ for the integral of $x+y^{2}-2$. What is the integrand in terms of u and v ? (Don't bother with the integral signs, the bounds, or the $d u d v$.)
6. (3 pts.) Using the same substitution as in the previous problem, suppose the (x, y) region over which we wish to integrate includes the boundary line $2 x-y=3$. Convert this line into a (u, v) boundary line.
