HW 4
Math 261, F19

Please see the course syllabus for details on how to turn in your homework assignments. This one is due at the beginning of your class on **Friday, October 4**.

1. **(5 pts.) True or False**

 (a) Let \(z = 5t \), and \(f(x, y, z) \) be a function from \(\mathbb{R}^3 \) to \(\mathbb{R} \). Then \(\frac{\partial f}{\partial t} = \frac{\partial f}{\partial z} \).

 (b) Let \(z = 5t \), and \(f(x, y, z) \) be a function from \(\mathbb{R}^3 \) to \(\mathbb{R} \). Then \(\frac{\partial f}{\partial t} = 5 \frac{\partial f}{\partial z} \).

 (c) Let \(z = 5t \), and \(f(x, y, z) \) be a function from \(\mathbb{R}^3 \) to \(\mathbb{R} \). Then \(\frac{\partial f}{\partial t} = \frac{1}{5} \frac{\partial f}{\partial z} \).

 (d) Let \(h(x, y) \) be a function from \(\mathbb{R}^2 \) to \(\mathbb{R} \) and \(P \) a point in the domain of \(h \). It is possible that the directional derivative of \(h \) at \(P \) is equal to 1 for every direction vector.

 (e) Let \(h(x, y) \) be a function from \(\mathbb{R}^2 \) to \(\mathbb{R} \) and \(P \) a point in the domain of \(h \). It is possible that the directional derivative of \(h \) at \(P \) is equal to 0 for every direction vector.

2. **(3 pts.)** Suppose function \(f(x, y) \) depends on variables \(x \) and \(y \), which are themselves functions of variables \(\alpha, \beta, \gamma \) (i.e., \(x = x(\alpha, \beta, \gamma) \) and \(y = y(\alpha, \beta, \gamma) \)). Fill in the blanks for the chain rule to compute \(\frac{\partial f}{\partial \beta} \):

 \[
 \frac{\partial f}{\partial \beta} = \frac{\partial}{\partial \beta} \left(\frac{\partial}{\partial \alpha} + \frac{\partial}{\partial \beta} + \frac{\partial}{\partial \gamma} \right)
 \]

3. **(3 pts.)** Let

 \[
 g(u, v) = u^2 + v^3,
 u(t) = \cos(t),
 v(t) = \ln(t).
 \]

 Compute \(\frac{dg}{dt} \). (Please use only the variable \(t \) in your response, but do not bother multiplying everything out.)

4. **(3 pts.)** Suppose \(z \) is a function of \(x \) and \(y \) and that \(x^2 z^2 + y \sin(z) = 1 \). Find \(\frac{\partial z}{\partial x} \).

5. **(3 pts.)** Find the derivative of \(f(x, y) = xy - y^2 \) at point \((1, 2)\) in the direction of \(\mathbf{v} = \langle 3, 4 \rangle \). Please simplify your answer to a number. (Notice that \(\mathbf{v} \) is not a unit vector!)
6. (3 pts.) Find a direction vector \(\mathbf{v} \) such that the derivative of \(f(x, y) = xy - y^2 \) at point \((1, 2)\) in the direction of \(\mathbf{v} \) is equal to 0.