HW 2

Math 261, F19

Please see the course syllabus for details on how to turn in your homework assignments. This one is due at the beginning of your class on Friday, September 13.

1. (5 pts.) True or FalSe
(a) A line and a plane in \mathbb{R}^{3} always intersect in a point.
(b) A line and a plane in \mathbb{R}^{3} intersect in at most one point.
(c) A plane P in \mathbb{R}^{3} and a line in \mathbb{R}^{3} not completely contained in P intersect in at most one point.
(d) $\mathbf{r}_{\mathbf{1}}(t)=\langle t, 2 t, 3 t\rangle$ and $\mathbf{r}_{\mathbf{2}}(t)=\langle 1-t, 2-2 t, 3-3 t\rangle$ are two parameterizations of the same line.
(e) $\mathbf{r}_{\mathbf{1}}(t)=\langle t, 0,0\rangle$ and $\mathbf{r}_{\mathbf{2}}(t)=\langle 0,0, t\rangle$ are two parameterizations of the same line.
2. (3 pts .) Determine the equation of the plane that passes through points $(0,1,0)$, $(-1,0,1)$, and $(0,-2,1)$. Please give your answer in the form

$$
\square x+\square y+\square z=1
$$

3. (3 pts.) Fill in the blanks of the following parameterization of a line through the points $P_{1}=(1,1,0)$ and $P_{2}=(0,3,1)$:

$$
\left\{\begin{array}{l}
x=-1+t \\
y=\square+\square t \\
z=\square+\square t
\end{array}\right.
$$

4. (3 pts.) The line given by the parameterization

$$
\left\{\begin{array}{l}
x=1+t \\
y=3 t \\
z=2-2 t
\end{array}\right.
$$

and the plane given by $x+2 y+z=8$ intersect in a point. Find that point.
5. (3 pts.) Compute the derivative $\mathbf{r}^{\prime}(t)$ of vector function $\mathbf{r}(t)=\left\langle e^{t}, 3 t^{2}-2 t+5, \sin (t)\right\rangle$.
6. (3 pts.) Suppose a particle moves according to the position function $\mathbf{r}(t)=\left\langle t^{3}, t^{2}, 4 t+1\right\rangle$. Determine the acceleration $\mathbf{a}(2)$ of the particle at $t=2$.

