
Imaging in Random Media

Liliana Borcea

Mathematics

University of Michigan

borcea@umich.edu

Collaborators:

Josselin Garnier, Ecole Polytechnique

Ilker Kocyigit, Dartmouth University

George Papanicolaou, Stanford University

Chrysoula Tsogka, University of Crete

Support: AFOSR, NSF, ONR.

1



PART I: Formulation of the problem

• Wave equation (sound waves).

• Setup for imaging with sensor arrays.

• Model of the medium. What can we estimate?
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Inverse problem for the wave equation

• Sound wave: acoustic pressure p(t, ~x) and particle velocity
~u(t, ~x) in medium with mass density %(~x) and bulk modulus K(~x)

%(~x)∂t~u(t, ~x) +∇p(t, ~x) = ~F(t, ~x)

∂tp(t, ~x) +K(~x)∇ · ~u(t, ~x) = 0, t ∈ R, ~x ∈ R3

• Work with 2nd order form:

∂2
t p(t, ~x)−K(~x)∇ ·

[
1

%(~x)
∇p(t, ~x)

]
= −K(~x)∇ ·

[
1

%(~x)
~F(t, ~x)

]

Model medium by wave speed c(~x) =
√
K(~x)
%(~x) and the impedance

ζ(~x) = c(~x)%(~x).

• In the case of a constant mass density (often assumed) we get
the usual wave equation:
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Inverse problem for the wave equation

[
1

c2(~x)

∂2

∂t2
−∆

]
p(t, ~x) = F (t, ~x), t ∈ R, ~x ∈ R3,

p(t, ~x) ≡ 0, t� 0.

• Source term F = −∇ · ~F is determined by the exerted force
~F(t, ~x) and is compactly supported in t and ~x.

• The wave propagates in the whole space  using causality and

finite wave speed we can impose outgoing conditions.

Inverse problem: One or more known or unknown sources emit

waves which are measured at sensors. Can we determine the

medium and/or the source from these measurements?
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Sensor arrays

• Sensors located in a compact set A on some measuring surface.

• To form images we sum the measurements at these sensors

(after some other operations). If the sensor separation in small,

these sums are approximated by integrals over the set A.

Sensors behave like a collective entity the array with aperture A.

• Depending on the application we may have a passive array, an

active array or a synthetic array.
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Passive array imaging

Passive array data: vector {p(t, ~xr)}r=1,...,N for t ∈ (0, T ] is

collected by N receiver sensors

• The goal here is to localize the source of waves, which is far

from the array. We need to know c(~x) to do a good job!

• There are other imaging modalities with passive arrays, for

imaging heterogeneous media, using controlled or noise sources.
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Active array imaging

Active array data: response matrix {p(t, ~xr, ~xs)} for t ∈ (0, T ]

and r = 1, . . . , N and s = 1, . . . Ns ≤ N .

We control excitations & seek to estimate the medium.

Synthetic arrays: One source/receiver sensor that moves (Syn-

thetic Aperture Radar (SAR)) or a small active array that moves.
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Probing signals

• Source term is F (t, ~x) = δ(~x − ~xs)f(t) or a superposition of
such functions.

• The signal f(t) may be the same for all the sources if we control
the illumination, or it may vary from source to source.

• Often, it is a pulse f(t) = e−iωotBϕ(Bt) with envelope ϕ

display of Real[f(t)]
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It oscillates at central frequency ωo and is supported at t ∼ 1/B,
where B = bandwidth

f̂(ω) =
∫
R
dt f(t)eiωt = ϕ̂

(
ω − ωo
B

)
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Why a pulse?

Length scale relations are important:

• Central wavelength λo = 2πco
ωo

, for co reference wave speed.

• Distance (range) L between array and imaging scene.

• Linear size a of array aperture (may be synthetic).

• Distance co/B traveled by waves over pulse duration.

In most applications: L & a� co/B � λo

 high frequency (small wavelength) regime.

As a rule, the smaller λo and co/B are, the better the imaging

(under some conditions). The ratio a/L also plays a role.
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Chirped signals and pulse compression

• Antennas have limited instantaneous power: |f(t)|2 ≤ Pmax.

For a signal of duration T , the emitted energy is ≤ TPmax.

• The received energy is a fraction of this (partial reflection, ge-

ometrical spreading). This energy should be large to distinguish

from noise  Use more antennas or increase duration T .

• Chirped (linear frequency modulated) signal

f(t) = e−iωot+iγt2ϕ

(
t

T

)

Let us calculate f̂(ω) for the case
√
γ T � 1:

f̂(ω) =
∫
R
dt ei(ω−ωo)t+iγt2ϕ

(
t

T

)
=
∫
R

dw

2π
ϕ̂(w)

∫
R
eiγt

2+i(ω−ωo)t−iw t
T
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Chirped signals and pulse compression

• Rewrite the phase:

γt2 + (ω − ωo)t− w
t

T
=
[√
γ

(
t+

ω − ωo
2γ

)
−

w

2
√
γT

]2
+
w(ω − ωo)

2γT
−

(ω − ωo)2

4γ
−

w2

4γT2

and use
∫
R
dt e

i
[√
γ
(
t+ω−ωo

2γ

)
− w

2
√
γT

]2
=
√
iπ/γ

• We get for
√
γ T � 1,

f̂(ω) =

√
iπ

γ
e
−i(ω−ωo)2

4γ

∫
R

dw

2π
ϕ̂(w)e

iw(ω−ωo)
2γT −i w2

4γT2

≈
√
iπ

γ
e
−i(ω−ωo)2

4γ ϕ

(
ωo − ω

2γT

)
 B = γT.

• Note that T � 1√
γ =

√
T
B  T � 1/B. Long signal can be

compressed to get a pulse of duration ∼ 1/B.
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Chirped signals and pulse compression∗

• Pulse compression realized by convolving the echoes with f(−t) :

fc(t) = f(t) ? f(−t) =
∫
R

dω

2π
|f̂(ω)|2e−iωt ≈

T

2B

∫
R
dω

∣∣∣∣ϕ(ωo − ω2B

)∣∣∣∣2e−iωt
Example: if ϕ(s) = 1[−1/2,1/2](s) we get

fc(t) = Te−iωotsinc(Bt)

• We have transformed the signal with duration T � 1/B to a
pulse oscillating at frequency ωo and support t ∼ 1/B.

∗For compression of noise signals: ”Passive Imaging with Ambient Noise” by
J. Garnier and G. Papanicolaou, Cambridge University Press, 2016.



Model of the medium: What scatters?

• Consider a simple case of a medium with planar interface:

c(~x) =

{
c−, z < 0
c+, z > 0,

ζ(~x) =

{
ζ−, z < 0
ζ+, z > 0,

~x = (x, z).

• Incoming plane wave propagating along z  problem is 1−D

∂t p(t, z) + ζ(z)c(z)∂z u(t, z) = 0

ζ(z)

c(z)
∂t u(t, z) + ∂z p(t, z) = 0

• In each half space we can write the solution as:

p±(t, ~x) = ζ
1
2
±

[
A±

(
t−

z

c±

)
−B±

(
t+

z

c±

)]

u±(t, ~x) = ζ
−1

2
±

[
A±

(
t−

z

c±

)
+B±

(
t+

z

c±

)]
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Model of the medium: What scatters?

• At z = 0 the pressure and velocity must be continuous:

ζ
1
2
−

[
A−(t)−B−(t)

]
= ζ

1
2
+

[
A+(t)−B+(t)

]
ζ
−1

2
−

[
A−(t) +B−(t)

]
= ζ

−1
2

+

[
A+(t) +B+(t)

]

• For wave coming from z < 0, we know A−. Wave must be
outgoing at z > 0 so B+ = 0:

B−(t) = RA−(t), R =
ζ− − ζ+

ζ− + ζ+

= reflection coefficient

A+(t) =
ζ

1
2
+

ζ
1
2
−

(1 +R)A−(t) = transmission

• Reflection is due to change in impedance∗. If mass density is
constant this is due to change in velocity.

∗Beylkin, Burridge, Linearized inverse scattering problems in acoustics and
elasticity, Wave Motion, 12(1990), pp.15-52. 14



Model of the medium

• There is separation of scales in this problem:

1

c2(~x)
=

1

c2o(~x)
[1 + ρ(~x) + µ(~x)]

co(~x) = smooth, determines kinematics of waves (travel times).

In many applications this is known and constant. In seismic

inversion co(~x) is not known and must be estimated.

ρ(~x) = rough part, is the reflectivity that we wish to determine

in active array imaging. This causes the reflections of the waves

that are captured at the array.

µ(x) models small variations at small scale (clutter), that may

have a cumulative scattering effect on the wave.
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Numerical simulations (Tsogka) of active array data
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• Travel time τr,s = |~xs−~y|+|~xr−~y|
co

for reflector at ~y = (y, y3) and

sensors at ~xr = (xr,0)  arrivals form hyperbola

c2o
y2

3

(
τr,s −

|~xs − ~y|
co

)2
−
|xr − y|2

y2
3

= 1

• Fuctuations of c(~x) cause echoes that mask useful signal from
the reflector that we wish to find.
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What can we estimate?

• Smooth co(x) (velocity analysis):

This is difficult because the signals are oscillatory and a small

perturbation of co causes a large change in the wave (travel time

error exceeds small period of oscillation).

Full wave inversion approaches (data fitting in least squares

sense) are computationally intensive and suffer from lack of con-

vexity (if low frequencies are present in the data things improve).

Travel time tomography (many applied papers, theory of Uhlmann,

Stefanov, Vasy). Differential semblance optimization (Symes).

We will let co = known constant.

• Reflectivity ρ (imaging problem).

• Clutter cannot be estimated.
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Random medium

Because clutter µ(~x) cannot be estimated  uncertainty.

Stochastic model: the clutter is a realization of a random medium
(a set of possible media described statistically).

• The random model incorporates what we know (or can esti-
mate) such as: length scale of fluctuations (correlation length),
typical amplitude of fluctuations (standard deviation), autocor-
relation of the fluctuations.

• Mapping from statistical distribution of µ(~x) to statistical dis-
tribution of p(t, ~x) is highly nonlinear and difficult to determine.

• Computational (UQ) approaches are unlikely to succeed as
we have a high dimensional parametrization. We need scaling
regimes and asymptotic stochastic theory.

• Pursuit of statistically stable results (which depend only on
statistics of the random medium, not the particular realization).
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PART II: Basic imaging

• Array data model.

• Formulation of the inverse problem based on data fitting.

• Basic resolution results.

• Dealing with noise.

• Random medium effects.
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Passive array data model

• Using Green’s theorem, we can write the pressure wave as

p(t, ~x) =
∫ t

0
ds
∫
R3
d~y F (s, ~y)G(t− s, ~x, ~y),

where G(t, ~x, ~y) is the causal Green’s function satisfying

[
1

c2(~x)

∂2

∂t2
−∆

]
G(t, ~x, ~y) = δ(~x− ~y)δ(t), t > 0, ~x ∈ R3

G(t, ~x, ~y) = 0, t < 0.

• F and G are causal  extend the s interval to R so we have a

time convolution  work in frequency domain

p(t, ~x) =
∫
R

dt

2π
p̂(ω, ~x)e−iωt, p̂(ω, ~x) =

∫
R3
d~y F̂ (ω, ~y)Ĝ(ω, ~x, ~y).
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Passive array data model

• The wave propagation between the point ~y in the support of
the source and ~x is via the Green’s function[

ω2

c2(~x)
+ ∆

]
Ĝ(ω, ~x, ~y) = −δ(~x− ~y),

1

c2(~x)
=

1 + µ(~x)

c2o
,

that satisfies radiation conditions as |~x− ~y| → ∞.

• The array measures D(t, ~xr) = p(t, ~xr) +N (t, ~xr), for t ∈ (0, T )
and ~xr ∈ A, where N is noise.

• Mapping from source F to wave p(t, ~xr) is linear but unknown
because of µ. We replace it by

F →
∫
R

dω

2π
e−iωt

∫
R3
d~y F̂ (ω, ~y)Ĝo(ω, ~y, ~xr),

where Ĝo(ω, ~y, ~xr) = eik(ω)|~xr−~y|
4π|~xr−~y| and k(ω) = ω

co
is the wavenumber.
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Passive array data model

• Simplifying assumption: F̂ (ω, ~y) = f̂(ω)ρ(~y) with known f̂(ω).

• The forward map is

[Mρ](t, ~xr) =
∫
R

dω

2π
f̂(ω)

∫
R3
d~y ρ(~y)

eik(ω)|~xr−~y|−iωt

4π|~xr − ~y|

• The source imaging problem can be formulated as

min ‖Mρ−D‖2
2

=
∫
R
dt

N∑
r=1

|[Mρ](t, ~xr)−D(t, ~xr)|2

with some penalty on L2 or L1 norm of ρ, for regularization.

Note: data D(t, ~xr) are random because of noise and because of

the medium. How can we get a robust estimate of ρ?
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Active array data model

• The sound wave due to a source at ~xs ∈ A is

p(t, ~x, ~xs) =
∫
R

dt

2π
e−iωtp̂(ω, ~x, ~xs),

[
k2(ω)

(
1 + µ(~x)

)
+ ∆

]
p̂(ω, ~x, ~xs) = −k2(ω)ρ(~x)p̂(ω, ~x, ~xs)

−f̂(ω)δ(~x− ~xs)

• Array data: D(t, ~xr, ~xs) = p(t, ~xr, ~xs)+N (t, ~xr, ~xs), for t ∈ (0, T )
and ~xr, ~xs ∈ A, where N is noise.

• Mapping between ρ and p(t, ~xr, ~xs) is nonlinear. Most imaging
is based on linearization assumption

p̂(ω, ~xr, ~xs) = f̂(ω)Ĝ(ω, ~xr, ~xs) + p̂sc(ω, ~xr, ~xs)

with Born (single scattering) approximation of scattered wave

p̂sc(ω, ~xr, ~xs) ≈ k2(ω)f̂(ω)
∫
R3
d~y Ĝ(ω, ~xr, ~y)ρ(~y)Ĝ(ω, ~xs, ~y)
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Active array simulations (Tsogka)
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• The multiply scattered echoes are visible in the homogeneous
medium but are weaker than the primaries.

• The multiple scattering effects in the medium are much stronger
than those from the 3 small reflectors.
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Active array data model

• By time windowing, data are determined by

p̂sc(t, ~xr, ~xs) ≈
∫
R

dω

2π
e−iωtk2(ω)f̂(ω)

∫
R3
d~y Ĝ(ω, ~xr, ~y)ρ(~y)Ĝ(ω, ~xs, ~y)

• We don’t know Ĝ in the random medium. Define forward map:

[Mρ](t, ~xr, ~xs) =
∫
R

dω

2π
k2(ω)f̂(ω)

∫
R3
d~y ρ(~y)

eik(ω)(|~xr−~y|+|~y−~xs|)−iωt

(4π)2|~xr − ~y||~xs − ~y|

• The imaging problem can be formulated as

min ‖D −Mρ‖2
2

=
∫
R
dt

N∑
r,s=1

|[Mρ](t, ~xr, ~xs)−D(t, ~xr, ~xs)|2

with some penalty on L2 or L1 norm of ρ, for regularization.
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The least squares solution

• The least squares minimizer satisfies the normal equations[
M?Mρ

]
(~y) = real

[
M?D

]
(~y)

where ~y varies in the imaging region.

• Here M? is the adjoint of the forward map given by

[
M?D

]
(~y) =

∫
R

dω

2π
f̂(ω)

N∑
r=1

D̂(ω, ~xr)Ĝo(ω, ~y, ~xr)

for the passive array case and

[
M?D

]
(~y) =

∫
R

dω

2π
f̂(ω)

N∑
r,s=1

D̂(ω, ~xr, ~xs)Ĝo(ω, ~y, ~xr)Ĝo(ω, ~y, ~xs)

for the active array case.
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The adjoint and reverse time migration

• The adjoint operator

[
M?D

]
(~y) =

∫
R

dω

2π
f̂(ω)

N∑
r=1

D̂(ω, ~xr)Ĝo(ω, ~y, ~xr)

• The reverse time migration operator

[TD ] (~y) =
∫
R

dω

2π

N∑
r=1

D̂(ω, ~xr)Ĝo(ω, ~y, ~xr)

=
∫
R
dtD(−(0− t), ~xr)Go(t, ~y, ~xr)

Data is conjugated and time reversed. It is propagated in the
reference medium to point ~y and result is evaluated at time 0.

• Adjoint has extra f̂(ω) which is good for pulse compression.
Data D̂ ≈ f̂ Ĝ are matched filtered to f̂ Ĝo  peaks at ~y ∈ suppρ

• Similar interpretation for active array imaging.
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The normal operator

• The least squares solution satisfies: [M?Mρ] (~y) = real [M?D ] (~y).

• The normal operator M?M in the case of passive array is:

[
M?Mρ

]
(~y) =

∫
R3
d~y′ρ(~y′)K(~y, ~y′)

with kernel given by

K(~y, ~y′) =
∫
R

dω

2π
|f̂(ω)|2

N∑
r=1

Ĝo(ω, ~xr, ~y′)Ĝo(ω, ~y, ~xr)

≈
N

(4π)2|A|

∫
R

dω

2π
|f̂(ω)|2

∫
A
d~x

eik(ω)(|~x−~y|−|~x−~y′|)

|~x− ~y||~x− ~y′|

• If the kernel where close to δ(~y− ~y′), we could estimate ρ using
the adjoint operator.
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Analysis of kernel of normal operator

A

~u3
~e1

~e2
~y′

~e3~u2

~u1

~0

L

• Range direction ~e3 points from the center of the array to ~y′

• A is square of side length a with normal at angle θ from ~e3

∀~x ∈ A, ~x = as1~e1 + as2(cos θ~e2 + sin θ~e3)

• The search point is ~y = ~y′+
3∑

j=1

ξj~ej and we let ~y′ = L~e3
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Analysis of kernel of normal operator

• The kernel is

K(~y, ~y′) ≈
N

(4π)2

∫
R

dω

2π
|f̂(ω)|2

∫∫ 1
2

−1
2

ds1ds2

eik(ω)(|~x−~y|−|~x−~y′|)

|~x− ~y||~x− ~y′|

where f̂(ω) = ϕ̂

(
ω−ωo
B

)
and

|~x− ~y′| =
√

(as1)2 + (as2 cos θ)2 + (L− as2 sin θ)2

|~x− ~y| =
√

(as1 − ξ1)2 + (as2 cos θ − ξ2)2 + (L+ ξ3 − as2 sin θ)2

• To analyze K(~y, ~y′) and understand image resolution we need

scaling assumptions.
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Analysis of normal operator: Scaling assumptions

Typically: ωo � B and L� a� |ξ1,2,3| � λo:

• Geometrical spreading factors: 1
|~x−~y||~x−~y′| ≈

1
L2

• Phase is:

k(ω)
(
|~x− ~y| − |~x− ~y′|

)
≈ k(ω)

[
ξ3 − s1

aξ1

L
− s2

aξ2 cos θ

L

−
ξ3

[
(as1)2 + (as2 cos θ)2

]
2L2

+ . . .

]
for k(ω) = ωo

co
+ ω−ωo

co
= ko +O(B/co)

• Kernel becomes

K(~y, ~y′) ≈
N

(4πL)2

∫
R

dω

2π

∣∣∣∣ϕ̂(ω − ωoB

)∣∣∣∣2eik(ω)ξ3 U
(
koaξ1

L
,
koa2ξ3

L2

)

×U
(
koa cos θξ2

L
,
ko(a cos θ)2ξ3

L2

)
where U(α, γ) =

∫ 1
2

−1
2
ds exp(−iαs− iγs2/2) = Fresnel integral.
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Analysis of normal operator: Focusing resolution

• If we set ξ2,3 = 0, kernel is proportional to

U
(
koaξ1

L
,0
)

= sinc
(
koaξ1

2L

)
= sinc

(
πaξ1

λoL

)
and is large for |ξ1| . λoL/a.

• If we set ξ1,3 = 0, kernel is proportional to

U
(
koa cos θξ2

L
,0
)

= sinc
(
πa cos θξ2

λoL

)
and is large for |ξ2| . λoL/(a cos θ).

• If we set ξ1,2 = 0, kernel is proportional to∫
R

dω

2π
ei(ω−ωo)ξ3/co

∣∣∣∣ϕ̂(ω − ωoB

)∣∣∣∣2U(0,
koa2ξ3

L2

)
U
(

0,
ko(a cos θ)2ξ3

L2

)

and is large for |ξ3| . min
{
co
B ,

λoL2

a2

}
.
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Migration imaging

• The kernel of the normal operator is approximately an identity
in the sense that it almost does not move the singularities of ρ.
It is expensive to compute in practice and it is not invertible.

• In the normal equations [M?Mρ] (~y) = real [M?D ] (~y) we re-
place it by the identity operator.

• Matched field imaging function for passive arrays:

I(~y) = real
[
M?D

]
(~y) = real

∫
R

dω

2π
f̂(ω)

N∑
r=1

D̂(ω, ~xr)
eik(ω)|~xr−~y|

4π|~xr − ~y|

• Kirchhoff migration imaging∗

IKM(~y) =
∫
R

dω

2π

N∑
r=1

D̂(ω, ~xr)e
−ik(ω)|~xr−~y| =

N∑
r=1

D

(|~xr − ~y|
co

, ~xr

)

and similar for active array.

∗Here we used that 1/|~xr − ~y| ≈ L. 33



Noise vs. clutter effects in migration imaging∗
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Noise is averaged out in migration. Clutter is harder to deal with.

∗Simulations by Chrysoula Tsogka. 34



Born approximation vs. clutter effects ∗
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Multiple scattering in clutter is a bigger issue than the Born
approximation in this case.
∗Simulations by Chrysoula Tsogka. 35



Multiple scattering effects in media with strong reflectors∗

∗Simulations by Alexander Mamonov 36



Connection to Bayesian inversion

• To see why migration deals well with noise, consider a single,
time harmonic point source at ~y.

• The data model is D̂(ω, ~xr) = f̂(ω)Ĝo(ω, ~y, ~xr) + N̂ (ω, ~xr)

• The noise N̂ (ω, ~xr) is complex, i.i.d. Gaussian with mean zero
and variance σ2 i.e., real and imaginary parts are Gaussian, i.i.d.,
with variance σ2/2.

• Define data and noise vectors

d̂(ω) =
(
D̂(ω, ~xr)

)
1≤r≤N

and n̂(ω) =
(
N̂ (ω, ~xr)

)
1≤r≤N

and normalized vector of Green’s functions

ĝ(ω, ~y) =
[ N∑
s=1

|Ĝo(ω, ~xs, ~y)|2
]−1/2(

Ĝo(ω, ~y, ~xr)
)

1≤r≤N
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Connection to Bayesian inversion

• The data model becomes

d̂(ω) = φ̂(ω)ĝ(ω, ~y) + n̂(ω)

with

φ̂(ω) = f̂(ω)
[ N∑
s=1

|Ĝo(ω, ~xs, ~y)|2
]1/2

≈
√
Nf̂(ω)

4πL
.

• Define two random vectors: χ with realizations (~y, σ, φ̂) (the

unknowns) and ∆ with realizations d̂(ω).

• Bayes’ theorem:

pχ
(
(~y, σ, φ̂)|∆ = d̂(ω)

)
=
p∆(d̂|χ = (~y, σ, φ̂))pχ

(
(~y, σ, φ̂))

p∆(d̂)
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Connection to Bayesian inversion

• Since the noise is Gaussian

p∆(d̂|χ = (~y, σ, φ̂)) =
1

(2πσ2)N
exp

[
−
‖d̂(ω)− φ̂(ω)ĝ(ω, ~y)‖2

2σ2

]

• Jeffreys prior (non-informative distribution on parameter space
which is proportional to the square root of the determinant of the
Fisher information matrix) gives prior for the standard deviation
of noise proportional to 1/σ. Uniform distribution for φ̂ and ~y.

• The likelihood function is:

L((~y, σ, φ̂)|∆ = d̂(ω)
)

=
1

σ2N+1
exp

[
−
‖d̂(ω)− φ̂(ω)ĝ(ω, ~y)‖2

2σ2

]

• The maximum likelihood estimate:

(~y?, σ?, φ̂?) = argmaxL((~y, σ, φ̂)|∆ = d̂(ω)
)
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Connection to Bayesian inversion

• The estimate of the noise standard deviation

∂σL = 0 σ? =
‖d̂(ω)− φ̂?(ω)ĝ(ω, ~y?)‖

(2N + 1)1/2

• Estimation of source pulse

∂
φ̂
L = 0 φ̂?(ω) = ĝT (ω, ~y?)d̂(ω)

• Estimate of source location:

~y? = argmin‖d̂(ω)− φ̂?(ω)ĝ(ω, ~y)‖2 = argmax
∣∣∣ĝT (ω, ~y)d̂(ω)

∣∣∣2
Thus, ~y? is the maximizer of the migration imaging function

I(~y) = ĝT (ω, ~y)d̂(ω) =
1√
N

N∑
r=1

D̂(ω, ~xr)e
−ik(ω)|~xr−~y|
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Connection to Bayesian inversion

Conclusion: migration is optimal for additive, Gaussian noise.

• Result extends to signals with some bandwidth, assuming in-

dependent noise. The same analysis applies to active arrays.

Note: We used a strong prior: We assumed a single point source

and that waves propagate in homogeneous medium.

None of this applies to clutter! Effects are not additive noise!

If we had data over many realizations of clutter and averaged

result would not be like in the homogeneous medium!

Average is small  randomization of wave (loss of coherence).
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PART III: Imaging in random media

• Coherent Interferometric Imaging.

• Analysis in a weak scattering regime in open environments.

• Stronger scattering regimes require an in depth study of
waves in random media.

• We only consider coherent imaging (at distances that do not
exceed a transport mean free path). Incoherent imaging is
very different.

• Boundaries introduce additional difficulties, especially if they
are random. Studies in random waveguides: (Alonso, B.,
Garnier, Issa, Solna, Tsogka; Kohler, Papanicolaou).
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CINT imaging with passive arrays

• Coherent interferometric (CINT) imaging:

ICINT(~y) =
N∑

r,r′=1

∫∫
R

dω

2π

dω′

2π
Φ̂

(
ω − ω′

Ω

)
Ψ

(
~xr − ~xr′
X

)

×D̂(ω, ~xr)D̂(ω′, ~xr′)e
−iωτo(~xr,~y)+iω′τo(~xr′,~y)

Φ̂ and Ψ are windows with support Ω and X; τo(~xr, ~y) = |~xr−~y|
co

.

• In general X = X(ω). If X is constant in bandwidth,

ICINT(~y) =
N∑

r,r′=1

Ψ

(
~xr − ~xr′
X

) ∫
R
dtΩ Φ (tΩ)

×D (τo(~xr, ~y)− t, ~xr)D (τo(~xr′, ~y)− t, ~xr′)

We cross-correlate migrated data over the duration 1/Ω of the

time window Φ and over the nearby sensors in the array.
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CINT imaging with active arrays

• The imaging function is similar except that it also involves

migration from the sources to ~y

ICINT(~y) =
∑

r,r′;s,s′

∫∫
R

dω

2π

dω′

2π
Φ̂

(
ω − ω′

Ω

)
Ψ

(
~xr − ~xr′
X

)
Ψ

(
~xs − ~xs′
X

)

D̂(ω, ~xr, ~xs)D̂(ω′, ~xr′, ~xs′)e
−iω[τo(~xr,~y)+τo(~xs,~y)]+iω′[τo(~xr′,~y)+τo(~xs′,~y)]
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Comparison between migration and CINT images

Left: migration in homogeneous medium. Middle: migration in
clutter. Right: CINT in clutter (optimal X and Ω).

• Why does this work?

• How should we choose Ω and X?
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CINT analysis

• Model of the random medium:

1

c2(~x)
=

1

c2o

[
1 + σµ

(
~x

`

)]

µ(~x) is mean zero, statistically homogeneous, bounded almost

surely, with autocorrelation R(~x− ~x′) = E
{
µ(~x)µ(~x′)

}
satisfying

R(0) = 1 and
∫
Rn+1

d~xR(~x) = O(1)

• The strength of the fluctuations is quantified by σ, and the

correlation length is given by `.

• Assume isotropic fluctuations and take for convenience:

R(~x) = e−|~x|
2/2
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CINT analysis in random medium

• We use a simple random travel time model of the random

medium effect on the data. We derive and justify it using scaling.

Model applies to clear air turbulence and captures only wave

front distortions.

This model is assumed in the adaptive optics methodology.

• For simplicity we focus on the passive array case. The extension

to active arrays involves longer calculations.

• Stronger scattering regimes with delay spread are considered in

references [2,3,7]. Previous numerical results are in such regime.

47



The random travel time model

• The travel time is given by Fermat’s principle

τ(~x, ~y) = min
Γ

∫
Γ

ds

c(~x(s))

where Γ are paths from ~y to ~x, parametrized by the arclength s.

• It fluctuates randomly about τo(~x, ~y) = |~x−~y|
co

the travel time in

the homogeneous background, used for imaging.

Model: Ĝ(ω, ~x, ~y) ≈ eiω[τo(~x,~y)+δτ(~x,~y)]

4π|~x−~y| with

δτ(~x, ~y) =
στo(~x, ~y)

2

∫ 1

0
ds µ

(
(1− s)~y + s~x

`

)
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Derivation of the random travel time model

• For λ � ` � L seek solution of Helmholtz’s eq. as: u = αeiωτ

with excitation modeled as initial condition.

◦ Travel time τ solves eikonal equation |∇τ |2 = 1
c2(~x)

◦ Amplitude α solves transport equation 2∇α · ∇τ + α∆τ = 0

• Since σ � 1 we can expand formally

α = α0 + σα1 + σ2α2 + . . . and τ = τ0 + στ1 + σ2τ2 + . . .

• Matching powers of σ:

|∇τ0| =
1

co
, ∇τ0 · ∇τ1 =

µ(~x)

2c2o
, |∇τ1|

2 + 2∇τ0 · ∇τ2 = 0

2∇α0 · ∇τ0 + α0∆τ0 = 0

2∇α0 · ∇τ1 + 2∇α1 · ∇τ0 + α0∆τ1 + α1∆τ0 = 0
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Plane wave propagating along range x3

• To leading order α0 = 1 (normalized constant) and τ0 =
x3
co

• The first order corrections satisfy

∂x3
τ1 =

µ

2co
and ∂x3

α1 = −
co

2
∆τ1 = −

1

4
∂x3

µ−
co

2
∆⊥τ1

We obtain for ~x = L~e3 that

τ1 =
1

2co

∫ L
0
µ

(
s~e3

`

)
ds

α1 =
1

4
µ(0)−

1

4
µ

(
L~e3

`

)
−

1

4`2

∫ L
0

(L− s)∆⊥µ

(
s~e3

`

)
ds

• τ2 = −
1

8co

∫ L
0
µ2
(s~e3

`

)
ds−

1

8co`2

∫ L
0

∣∣∣∣ ∫ s
0
∇⊥µ

(s′~e3

`

)
ds′
∣∣∣∣2ds
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Gaussian statistics of first order corrections

The first order corrections τ1 and α1 satisfy:

1. τ1 has Gaussian statistics with mean E[τ1] = 0 and variance

E[τ2
1 ] ≈

`L

2c2o

√
π

2
= O

(
τ2

0

`

L

)

2. α1 has Gaussian statistics with mean E[α1] = 0 and variance

E[α2
1
] ≈

2
√

2π

3

(
L

`

)3

These formulas are for the autocorrelation R(~x) = e−|~x|
2/2.

Other expressions of R(~x) give qualitatively similar results.
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Proof

• Begin with

τ1 =
1

2co

∫ L
0
ds µ

(
s~e3

`

)
=

√
`L

2co
T (L)

where we introduced

T (z) =
1√
L`

∫ z
0
ds µ

(
s~e3

`

)

• Note that T (z) satisfies the ODE:

d

dz
T (z) =

1√
L`
µ

(
z~e3

`

)
, T (0) = 0.

• Scaled version, with z = Lz′ and ` = εL,

d

dz′
T (z′) =

1
√
ε
µ

(
z′

ε
~e3

)
, T (0) = 0.
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Proof

• Since E[µ] = 0 we get E[T (L)] = 0.

• For the variance we obtain

E[T2(L)] =
1

`L

∫ L
0

∫ L
0
R0

(
s′ − s
`

)
dsds′

where R0(s′ − s) = E
[
µ(s~e3)µ(s′~e3)

]
= e−

(s−s′)2

2 .

• Changing variables s′ − s = s̃ = `h and using that R0 is even

E[T (L)2] =
2

`L

∫ L
0

∫ L
s̃
R0

(
s̃

`

)
ds ds̃ = 2

∫ L/`
0
R0(h)

(
1− h

`

L

)
dh.

• Integrand is bounded by integrable Ro(h)  

E[T (L)2]
L/`→∞−→ 2

∫ ∞
0
Ro(s)ds =

√
2π X
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Proof that τ1 is Gaussian

• Gaussianity of τ1 is straightforward if µ is a Gaussian process.

But Gaussianity holds even when µ is not Gaussian:

Central limit theorem for:

d

dz′
T (z′) =

1
√
ε
µ

(
z′

ε
~e3

)
, T (0) = 0.

Recall that z′ = L/z and drop primes for convenience.

Toy model: µ(z~e3) = ν(z) =
∞∑
j=1

νj1[j−1,j](z) with νj indepen-

dent, random variables with mean zero and std deviation σν.

T (z) =
√
ε
∫ z/ε

0
ds ν(s) =

√
ε

bz/εc∑
j=1

νj

+
√
ε
∫ z/ε
bz/εc

ds ν(s).
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Proof that τ1 is Gaussian

• By central limit theorem,

1√
bz/εc

bz/εc∑
j=1

νj → N (0, σ2
ν

)

in distribution. Moreover,
√
ε
√
bz/εc →

√
z

so the first term in T (z) converges in distribution∗ to (σνWz)z≥0,
where Wz is Brownian motion (Gaussian process with mean zero
and covariance E[WzWz′] = min(z, z′).)

• For the second term in T (z) we have

√
ε
∫ z/ε
bz/εc

ds ν(s) =
√
ε

(
z/ε− bz/εc

)
νbz/εc → 0

∗Note that z = 1 at the range of interest and σν can be chosen to match the
variance calculated previously. 55



Proof

• The result extends to fairly general fluctuations: stationary,

mean zero, ergodic in z (mixing).

Diffusion limit theorem: Kohler, Papanicolaou, Varadhan.

• Variance calculation of α1 and proof of Gaussianity is similar.
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The second order travel time correction

• The second order correction τ2 of the travel time

τ2 = −
1

8co

∫ L
0
µ2
(s~e3

`

)
ds−

1

8co`2

∫ L
0

∣∣∣∣ ∫ s
0
∇⊥µ

(s′~e3

`

)
ds′
∣∣∣∣2ds.

• It satisfies:

E[τ2] ≈ −
√

2π

16
τ0

L

`

and

Var(τ2) ≈
π

48
τ2

0

(
L

`

)2
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Validity of the random travel time model

• We can approximate the phase as ωτ ≈ ωτ0 + ωστ1 if

ωσ2τ2 ∼ σ
2L

2

λl
� ωστ1 ∼ σ

√
L`

λ
 σ �

(
`

L

)3/2

and if σ2L2

λ` � 1.

• Can approximate amplitude α ≈ αo because: σα1 ∼ σ
(
L
`

)3/2
� 1

• The travel time fluctuations are visible if

ωστ1 ∼ ωστ0

√
`

L
∼ σ
√
L`

λ
& 1

• Waves generated from point source analyzed similarly with a
more involved derivation of αo.
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Model of Green’s function

Ĝ(ω, ~x, ~y) ≈
eiω[τo(~x,~y)+στ1(~x,~y)]

4π|~x− ~y|
= Ĝo(ω, ~x, ~y)eiωστ1(~x,~y)

Random phase:

ωστ1(~x, ~y) =
σk(ω)|~x− ~y|

2

∫ 1

0
ds µ

(
(1− s)~y + s~x

`

)

is approximately Gaussian with mean 0 and standard deviation

S =
(2π)1/4

2
σk(ω)

√
`|~x− ~y| ∼ σ

√
`L

λ
� 1
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Mean of the Green’s function for large distortion

• The expectation of the random factor of Ĝ is

E
[
eiωστ1(~x,~y)

]
=
∫
R
ds eis

e
− s2

2S2

√
2πS

= e−
ω2S2

2

• This gives

E
[
Ĝ(~x, ~y, ω)

]
≈ Ĝo(~x, ~y, ω)e

−|~x−~y|S(ω)≈ 0

• Scattering mean free path S(ω) = 8√
2πσ2k2(ω)`

� L
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Moments of the Green’s function for large distortion

• Note: E[Ĝ] ≈ 0 but E[|Ĝ|2] = |Ĝo|2 so the wave is randomized.

• The decay of the second moments over location and frequency

offsets describes statistical decorrelation

E
[
Ĝ(~x, ~y, ω)Ĝ(~x′, ~y′, ω′)

]
≈ Ĝo(~x, ~y, ω)Ĝo(~x′, ~y′, ω′)

× e
−
|y3−y′3|
S(ω)

−(ω−ω′)2

2Ω2
d

−|y−y
′|2+(y−y′)·(x−x′)+|x−x′|2

2Xd(ω)2

Decoherence frequency: Ωd = 2co
(2π)1/4σ

√
`L

= ωo

√
S(ωo)

2L � ωo,

Decoherence length: Xd(ω) =
√

3` Ωd
ω � `.

61



PART IV: Analysis of imaging functions

• We analyze both migration and CINT using the random travel

time model with large travel time fluctuations.

• To understand the focusing, we study the mean of the imaging

functions.

• To quantify robustness, we calculate SNR at peaks: (mean

divided by standard deviation).
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Setup for analysis of CINT and migration imaging

Array of Receivers

L
a

D3

D

D

x~ r

y~s

Localized sources

• Array is orthogonal to range direction and centered at origin.

• Paraxial regime (as in analysis of the normal operator):

k(ω)|~x− ~y| ≈ k(ω)y3 + ko

(
|x|2

2L
−
x · y
L

+
|y|2

2L

)
1

4π|~x− ~y|
≈

1

4πL
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Analysis of Kirchhoff migration (KM) with passive arrays

• To study resolution we estimate

E[IKM(~y)] =
a2

N

N∑
r=1

D(τo(~xr, ~y), ~xr) ≈
∫
dω

2π

∫
A
dxE[D̂(ω, ~x)]e−iωτo(~x,~y)

where ~x = (x,0) ∈ A.

• Data D̂(ω, ~x) = f̂(ω)
∫
R
d~y ρ(~y)Ĝ(ω, ~x, ~y) (we neglect noise)

E[IKM(~y)] ≈
∫
R3
d~y′ ρ(~y′)

∫
dω

2π
f̂(ω)

∫
A
dx Ĝo(ω, ~x, ~y

′)e
−iωτo(~x,~y)−|~x−~y

′|
S(ω)

• To compute SNR we need the variance.
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Analysis of Kirchhoff migration (KM) with passive arrays

• Calculation like that of kernel of the normal operator gives:

E[IKM(~y)] ≈
∫
R3
d~y′ ρ(~y′)KKM(~y, ~y′)

with kernel

KKM(~y, ~y′) ≈
e
− L
S(ωo)

4πL

∫
R

dω

2π
f̂(ω)eik(ω)(y′

3
−y3)

× U
(koa(y′

1
− y1)

L
,
koa2

L2
(y′

3
− y3)

)
× U

(koa cos θ(y′
2
− y2)

L
,
ko(a cos θ)2(y′

3
− y3)

L2

)

where U(α, γ) =
∫ 1

2

−1
2

ds exp(−iαs− iγs2/2) = Fresnel integral.

• Focusing as in homogeneous medium but very small ∼ e−L/S(ωo)
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Analysis of Kirchhoff migration (KM) with passive arrays

• The variance of the imaging function involves second moments

E[ĜĜ] which do not decay:

SNRKM(~y) =

∣∣E [IKM(~y)
]∣∣

StD [IKM(~y)]
∼ e−L/S(ωo) � 1.

• The migration function is not statistically stable: In practice,

we will see that the location of the peak dances around.

We do not see speckle with the random travel time model. We

need stronger fluctuations for that.
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KM: Illustration with numerical simulations∗

Top: traces in homogeneous medium. Bottom: traces with
wavefront distortions. Left: the recordings over the array of
aperture a = 4`.

∗N = 101, a = 4`, λo = 2cm, ` = 100λo, L = 99`, bandwidth [125,175]kHz.



KM: Illustration with numerical simulations

σ = 4e− 4
mean(KM) 0.68

std(KM) 25.79
SNR(KM) 0.0265
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• The mean is not observable. The image peak dances around.
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Analysis of CINT with passive arrays

The CINT imaging function is

ICINT(~y) =
∫
dω

2π

∫
dω′

2π
Φ̂

(
ω − ω′

Ω

) ∫
A
dx

∫
A
dx′Ψ

(
x− x′

X

)
D̂(ω, ~x)D̂(ω′, ~x′)e−iωτo(~x,~y)+iω′τo(~x

′,~y)

with ~x = (x,0) ∈ A and similar for ~x′.

• Simplify: single point source at ~y? = (0, L)

• To obtain nicer expressions, we assume Gaussian windows

Φ(t) = e−t
2/2  Φ̂(h) =

√
2πe−h

2/2

Ψ
(
r
)

= e−|r|
2/2

and Gaussian pulse: f(t) = e−iωote−
B2t2

2  f̂(ω) =
√

2π
B e

−(ω−ωo)2

2B2
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CINT as smoothed Wigner transform

With the center and difference variables x̄ = x+x′
2 , x̃ = x − x′,

ω̄ = ω+ω′
2 and ω̃ = ω−ω′ we get by evaluating Gaussian integrals:∗

The CINT function is given by Wigner transform

W (ω̄, x̄;κ, T ) =
∫
R2
dx̃
∫
R
dω̃ eiκ·x̃−iω̃T D̂

(
ω̄ +

ω̃

2
,
(
x̄+

x̃

2
,0
))

× D̂
(
ω̄ −

ω̃

2
,
(
x̄−

x̃

2
,0
))

smoothed over all its arguments

ICINT(~y) =
ΩX2

(2π)4

∫
A
dx̄

∫
R
dω̄

∫
R2
dκ

∫ ∞
−∞

dT W (ω̄, x̄;κ, T )

Φ [Ω(T − τ((x̄,0), ~y))] Ψ̂

[
X

(
κ− ko

(y − x)

L

)]

∗For small enough bandwidth so that X = X(ωo). See reference [1]. 70



The Wigner transform

• Using random travel time model and Gaussian pulse,

W (ω̄, x̄;κ, T ) ≈
e
−(ω−ωo)2

B2

8πB2L2

∫
R2
dx̃ eix̃·κ+iω̄[τ̃(x̄,x̃)+δτ̃(x̄,x̃)]

∫
R
dω̃ e

− ω̃2

4B2+iω̃[τ̄(x̄,x̃)+δτ̄(x̄,x̃)−T ]
.

where δτ(x) = στ1(~x, ~y?) for ~x = (x,0) ∈ A and

δτ̃(x̄, x̃) = δτ (x̄+ x̃/2)− δτ (x̄− x̃/2)

δτ̄(x̄, x̃) =
1

2
[δτ (x̄+ x̃/2) + δτ (x̄− x̃/2)]

τ̃(x̄, x̃) = τo((x̄+ x̃/2,0), ~y?)− τo((x̄− x̃/2,0), ~y?)

τ̄(x̄, x̃) =
1

2
[τo((x̄+ x̃/2,0), ~y?) + τo((x̄− x̃/2,0), ~y?)] .

• We would like to expand in x̃ but we need to restrict it first.
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The Wigner transform

• Smoothing
∫
Rn
dκ W (ω̄, x̄;κ, T )e

−X
2

2

∣∣∣κ−ko(y−x̄)
L

∣∣∣2
restricts x̃ :

∫
R2
dκ e

iκ·x̃−X
2

2

∣∣∣κ−ko(y−x̄)
L

∣∣∣2
=

2π

X2
e
− |x̃|

2

2X2+iko
x̃·(y−x̄)

L

• This allows expansion in x̃. Integrating in x̃ and ω̃  

∫
R2
dκ W (ω̄, x̄;κ, T )e

−X
2

2

∣∣∣κ−ωoco (y−x̄)
L

∣∣∣2 ≈ π3/2e
−(ω̄−ωo)2

B2

BL2

e
−1

2

(
koX
L

)2
|y+coL∇xδτ(x)|2−B2[τo((x̄,0),~y?)+δτ(x̄)−T ]2

Note: This is random, with peak dancing around in y and T .
To stabilize it, we integrate in CINT over x̄ and T . The integral
over ω̄ not so important, because there is no coda in the model.
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The mean of CINT

Straightforward integration and use of moment formulas give

E[ICINT(~y)] ≈
a4

8πL2

(
a2

X2
d

+
a2

X2

)−1
Ω/B√

2 + 2(Ω/Ωd)
2 + (Ω/B)2

×e
− B2

2[1+2(B/Ωd)2+2(B/Ω)2]

(
y3−L
co

)2
−

X2
d
X2

2(X2
d

+X2)

(
ko
|y|
L

)2

Range resolution is |y3 − L| .
co
B

[
1 + 2(B/Ωd)

2 + 2(B/Ω)2
]1

2

◦ If we choose Ω � Ωd, it will make no difference in the focus

but the SNR will be lower (smoothing of W (ω, x;κ, T ) in T is by

integration over window ∼ 1/Ω).

◦ If we choose Ω� Ωd we get too much blur |y3 − L| .
co
Ω.
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The mean of CINT

Cross-range resolution is worse than for E(IKM)

|y| .
λoL

a

√√√√ a2

X2
d

+
a2

X2

◦ If we choose X � Xd it plays no role in resolution and SNR is

low, because we do not smooth enough over vector κ.

◦ If we choose X � Xd we smooth too much and blur.

Optimal choices are X = Xd and Ω = Ωd.
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The SNR of CINT

• The SNR follows after a straightforward but long calculation∗

SNRCINT(~y?) =

∣∣E [ICINT(~y?)
]∣∣

StD [ICINT(~y?)]
≈

√
2
(

1 + 1
(Ω/Ωd)2 + 1

2(B/Ωd)2

)
CA,`

where

C2
A,` =

π

2a4

∫
A
dx

∫
A
dx′

 erf
(|x−x′|√

2`

)
(|x− x′|/`)


2

= O

(
`2

a2

)

◦ As random medium effect grows i.e., Ωd = ωo
√
S

2L → 0, SNR
becomes independent of Ωd if Ω ∼ Ωd.

◦ The aperture plays a role in the SNR which is large for a & `.

◦ Bandwidth doesn’t play a role in this regime. It is very impor-
tant in stronger regimes, with significant delay spread.

∗The calculation assumes Ω . Ωd and X . Xd. See reference [1]. 75



CINT: Illustration with numerical simulations

σ = 4e− 4 σ = 1e− 3
mean(CINT) 0.0019 6.5e-4

std(CINT) 9.87e-4 6.16e-4
SNR(CINT) 1.92 1.06
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Illustration of stability of CINT and instability of KM
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CINT improvements

• Deblur the CINT images using optimization. See reference

[5]. Sparsity enhancing optimization can give sharp images but

the kernel must be known via prior calibration and the sources

cannot be closer than the CINT resolution.

• Use data processing for partial removal of random media ef-

fects. See reference [7] and other works by Aubry, Derode.

• A slightly changed version of CINT shows that we can get

some more info (reference [6]).
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CINT like imaging

• Assume decoherence length constant in the bandwidth. Recall:

ICINT(~y) =
N∑

r,r′=1

Ψ

(
~xr − ~xr′
X

)
C
(
τ̄(~xr, ~x

′
r, ~y), τ̃(~xr, ~x

′
r, ~y), ~xr, ~x

′
r

)
with cross-correlations

C(t̄, t̃, ~xt, ~x
′
r) =

∫
R
dtΩ Φ (tΩ)D

(
t̄− t̃/2− t, ~xr

)
D
(
t̄+ t̃/2− t, ~xr′

)

and

τ̄(~xr, ~x
′
r, ~y) =

1

2

[
τo(~xr, ~y) + τo(~x

′
r, ~y)

]
τ̃(~xr, ~x

′
r, ~y) = τo(~xr, ~y)− τo(~x′r, ~y)

• We analyzed this for one point source. If we have Ns sources,

ICINT(~y) =
Ns∑

s,s′=1

ρ(~ys)ρ(~ys′)K
CINT(~y, ~ys, ~ys′)
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CINT like imaging

• Consider instead:

I(~y, ~y′) =
N∑

r,r′=1

Ψ
(|~xr − ~xr′|

X

)
C(τ̄(~xr, ~xr′, ~y, ~y

′), τ̃(~xr, ~xr′, ~y, ~y
′), ~xr, ~xr′)

with

τ̄(~xr, ~x
′
r, ~y, ~y

′) =
1

2

[
τo(~xr, ~y) + τo(~x

′
r, ~y
′)
]

τ̃(~xr, ~x
′
r, ~y, ~y

′) = τo(~xr, ~y)− τo(~x′r, ~y′)

• This gives

I(~y) =
Ns∑

s,s′=1

ρ(~ys)ρ(~ys′)K(~y, ~y′, ~ys, ~ys′)

• Continuum aperture approximation and Gaussian apodization:
exp

[
− |~x|2

2(a/6)2

]
for ~x ∈ A.

80



CINT like kernel

• Let ~y = (y, y3) and similar for ~y′. Introduce

ȳ =
y + y′

2
, ỹ = y − y′, ȳ3 =

y3 + y′
3

2
, ỹ3 = y3 − y

′
3
.

• Let ~ys = (ys, ys,3) and define ȳss′, ỹss′, ȳss′,3 and ỹss′,3.

• With 1
Ω2
e

= 1
Ω2 + 1

Ω2
d

+ 1
4B2; 1

X2
e

= 1
X2 + 1

X2
d

+ 1
4(a/6)2; γ, γ1 = O(1):

|K(~y, ~y′, ~ys,~ys′)| ∼ exp

−|ỹss′|22γX2
d

−
|ỹss′,3 − ỹ3|2

2(co/B)2
−
|ỹss′ − ỹ|2

2[γ1L/(koa)]2

−
|ȳss′ − ȳ|2

2[L/(koXe)]2
−

(|(ȳss′, ȳss′,3)| − |(ȳ, ȳ3)|)2

2(co/Ωe)2

 ,
• Excellent resolution for offsets and CINT resolution for centers.
Only nearby sources interact.
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CINT with shape recognition

Step 1: Calculate ICINT(~y) = I(~y, ~y) to identify the peaks. This

can be done on coarse mesh, according to CINT resolution.

Step 2: Choose one peak, centered at ~zo and calculate I(~zo, ~y)

for ~y in the support of the peak on mesh with pixel size λoL/a

in cross-range and co/B in range.

Step 3: Identify the peaks of I(~zo, ~y). These are points ~zj
satisfying

~zj − ~zo ∈ {~ys − ~ys′ : s, s′ = 1, . . . , Ns}

Step 4: Search algorithm for identifying the source locations,

relative to ~zo. See reference [6].

82



CINT with shape recognition
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Top: CINT image, KM image, I(~zo, ~y). Bottom: Set of edges
~zj − ~zo corresponding to peaks of I(~zo, ~y). Final reconstruction.
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CINT with shape recognition
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CINT with shape recognition

• This idea should apply to active array data. Extended targets

often appear as a bunch of bright spots (corner diffractors) so

the approach can be used for shape recognition.

• But multiple scattering between these can play a role and may

lead to spurious peaks!
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Summary

We discussed the main steps involved in the imaging process:

1. Modeling:

(a) Definition of forward map. What we invert for?

(b) Modeling of uncertainty with random medium.

(c) Determination of important scales.

2. Asymptotics:

(a) Separation of scales is important in both homogeneous

and random media.

(b) Limit theorems.

3. Imaging methodologies and resolution analysis.
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Summary

• Random media are a serious impediment to imaging.

• If scattering is not too strong i.e., wave has some residual

coherence, then CINT methodology is useful.

• CINT can be combined with optimization to get improved

imaging. The last imaging method uses a slight modification of

CINT that proves useful.

• What if scattering is stronger?

- Process the data to remove clutter effects as much as possible.

- Use different measurement setups.

- Clever ideas based on cross-correlations: ghost imaging, imag-

ing using passive arrays placed near the region of interest.
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