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1 Introduction

The basic models

We will discuss in these lecture notes some evolution problems that involve weak random
perturbations of very basic deterministic dynamics. For particles, such problems may take
the form of an ODE

dX(t)

dt
= ū(t,X(t)) + εv(t,X(t), X(0) = x, (1.1)

with a deterministic background velocity field ū(t, x) and a random fluctuation v(t, x), or a
stochastic differential equation

dX(t) = ū(t,X(t))dt+ εdBt, X(0) = x. (1.2)

Here, Bt is a standard d-dimensional Brownian motion. In both cases, ε � 1 is a small pa-
rameter measuring the strength of the fluctuations relative to the background. Such problems
are known as passive scalar problems as they are, respectively, related to linear PDEs

∂φ

∂t
+ (ū(t, x) + εv(t, x)) · ∇φ = 0, (1.3)

and
∂φ

∂t
+ ū(t, x) · ∇φ =

ε2

2
∆φ. (1.4)

The word ”passive” is used since the flow field in (1.3) and (1.4) does not depend on the
”scalar” φ(t, x) – unlike, say, in the two-dimensional Euler or Navier-Stokes equations that
are known as ”active” scalar problems.
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A close relative of the ”random velocity” model (1.1) is the stochastic acceleration problem
that describes the evolution of a particle driven by a random force:

dX(t)

dt
= K(t),

dK(t)

dt
= εF (t,X(t)), X(0) = x, K(0) = k. (1.5)

Here, X(t) is the particle position, K(t) is its momentum, and F (t, x) is a random force field.
The mass of the particle is set to be equal to one.

As far as PDE are concerned, we will discuss just two examples: the random Schrödinger
equation

i
∂φ

∂t
+

1

2
∆φ− εV (t, x)φ = 0, (1.6)

and, if time permits, the random heat equation

∂u

∂t
=

1

2
∆u+ εV (t, x)u, (1.7)

both with a weak random potential. Once again, both in (1.6) and (1.7) we assume that V (t, x)
is a random potential field. As a side note, we will not address in these notes the construction
of random fields. Note that one can think of (1.6) and (1.7) as infinite-dimensional versions
of the particle dynamics in (1.1), with the first term in the right side of (1.6) or (1.7) being
the equivalent of an infinite-dimensional mean drift, and the second the weak fluctuation.

A reader may either accept that such objects exist, consult the basic probability textbooks,
or just think of the discrete case when a random field is simply a collection of random variables
at each lattice point.

A simple example of a diffusive limit

As the random fluctuations are weak in all of these problems, the evolution is expected to
follow for a long time the deterministic background dynamics, which is

dX(t)

dt
= ū(t,X(t)), X(0) = x, (1.8)

for both (1.1) and (1.2), the homogeneous Schrödinger equation

i
∂φ

∂t
+

1

2
∆φ = 0, (1.9)

for (1.6), and the standard heat equation

∂u

∂t
=

1

2
∆u (1.10)

for (1.7). However, after a sufficiently long time the effect of the fluctuations will build up,
and we will no longer be able to neglect them, even in the leading order. To understand
when this should happen, let us consider maybe the simplest such situation: we take the
background flow in (1.1) to be ū(t, x) = 0 and the random fluctuation is uniform in space. In
other words, we look at

dX(t)

dt
= εV (t), X(0) = 0, (1.11)
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so that

X(t) = ε

∫ t

0

V (s)ds. (1.12)

We need to make some assumptions on V (t): we assume that it is a statistically homoge-
neous in time random field. Intuitively, it means that the statistics of V (t) is “the same at
all times” – which is a reasonable model for “unknown complex environments”. On a more
formal level, this condition holds if given any collection of times t1, t2, . . . , tN , and a shift h,
the joint law of the random variables V (t1 +h), V (t2 +h), . . . , V (tN +h) does not depend on h.
This means, in particular, that the expected value V̄ = E[V (t)] is independent of t, and that
the two-point correlation matrix Rij(t, s) = E[Vi(t)Vj(s)] depends only on the difference t−s.
Accordingly, we define

Rij(t) = E[Vi(0)Vj(t)],

and the power-spectrum matrix as the Fourier transform of the two-point correlation matrix

R̂ij(ω) =

∫
e−itωRij(t)dt.

The stationarity condition can be relaxed to local stationarity – so that the random medium
characteristics can vary on a macroscopic or mesoscopic scale but we will not discuss this
direction here.

Going back to the particle trajectory (1.12), we see that its average position is

X̄(t) = E[X(t)] = εV̄ t,

where V̄ = E[V (t)] is the mean velocity, which does not depend on t because of the stationarity
assumption. Therefore, if V̄ 6= 0, then the particle moves by a distance O(1) after times of
the order t ∼ ε−1, which is by no means a surprising result. However, if V̄ 6= 0, we would
simply introduce Y (t) = X(t)− V̄ t, and Y (t) would satisfy an ODE with a mean-zero drift.
Thus, one would still need to face the mean-zero flow situation.

If V̄ = 0, then the average position is X̄(t) = 0 for all t > 0, which tells us nothing about
the typical size of X(t). The way to find out if the particle performs a non-trivial motion is
to look at its variance:

〈Xi(t)Xj(t)〉 = ε2

∫ t

0

ds1

∫ t

0

ds2E(Vi(s1)Vj(s2)) = ε2

∫ t

0

ds1

∫ t

0

ds2Rij(s1 − s2)

= ε2

∫ t

0

ds1

∫ s1

0

ds2Rij(s1 − s2) + ε2

∫ t

0

ds1

∫ t

s1

ds2Rij(s1 − s2)

= ε2

∫ t

0

ds1

∫ s1

0

ds2Rij(s2) + ε2

∫ t

0

ds1

∫ t−s1

0

ds2Rij(−s2) (1.13)

= ε2

∫ t

0

(t− s2)[Rij(s2) +Rij(−s2)]ds2 = ε2[Dijt+O(1)], as t→ +∞,

with the diffusivity matrix

Dij =

∫ ∞
−∞

Rij(s)ds = R̂ij(0). (1.14)
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Bochner’s theorem says that the matrix R̂ij(ω) is nonnegative-definite for all ω ∈ R. This is
because for any rapidly decaying vector-valued function f(x) we have (here and throughout
we adopt the convention that repeated indices are summed)∫

R̂ij(ω)f̂i(ω)f̂j(ω)dω =

∫
Rij(x)(fi ? fj)(x)dx =

∫
Rij(x)fi(x− y)fj(y)dxdy

=

∫
Rij(x− y)fi(x)fj(y)dxdy =

∑
i,j

∫
E[Vi(x)fi(x)Vj(y)fj(y)]dxdy

= E
(∑

i

∫
Vi(x)fi(x)dx

)2

≥ 0.

(1.15)

This fact is often used to show that the effective parameters in a macroscopic approximation
of the microscopic dynamics are positive. In particular, in the present case, the matrix Dij

given by (1.14) is non-negative definite, as any respectable diffusion matrix better be.
Expression (1.13) tells us (at least) two things: first, we should expect a non-trivial be-

havior for the particle at times of the order t ∼ ε−2, and, second, that the particle behavior at
this time scale should be a Brownian motion BD(t) with the correlation matrix Dij. Strictly
speaking, we have only computed that its variance agrees with that of BD(t) but it is not
difficult to make this rigorous.

Theorem 1.1 Let V (t) be a stationary in time Rd-valued random process with mean zero
and correlation function

E(Vi(s)Vj(t)) = Rij(t− s).

Assume that the functions Rij(t) are of the Schwartz class. Then the process

Yε(t) = ε

∫ t/ε2

0

V (s)ds

converges in law to Y (t) = BD(t). Here, BD(t) is the d-dimensional Brownian motion with
the diffusion matrix

Dij =

∫ ∞
−∞

Rij(s)ds. (1.16)

That is, we have the following result: if X(t) solves (1.11) with a mean-zero statistically
time homogeneous random field V (t) then the process Xε(t) = X(t/ε2) converges, as t→ +∞,
to a Brownian motion with the covariance matrix Dij. The main observation here is that
“mean-zero randomness of size ε has a non-trivial effect on the time scales of the order ε−2”
– something that any probabilist knows very well from the classical central limit theorem,
going at least as far back as de Moivre and 1733.

It is instructive to observe that the diffusivity matrix Dij is positive-definite (otherwise,
the above claim would make no sense). This is a consequence of Bochner’s theorem that
asserts that for any statistically time homogeneous process V (t) ∈ Rn the power-spectrum
matrix R̂ij(ω) is nonnegative-definite for each ω ∈ R.

In lieu of a full proof of Theorem 1.1 – we will prove a more general version later on, we
simply explain how to see this when V (t) is a Gaussian field, meaning that for any collection
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of times t1, t2, . . . tN , the random variables V (t1), V (t2), . . . , V (tN) are jointly Gaussian. Let
us look at the advection equation

∂φ

∂t
+ εV (t) · ∇φ = 0, φ(0, x) = f(x), (1.17)

and rescale the space and time variables: set

φε(t, x) = φ
( t
ε2
, x
)
, (1.18)

so that (1.17) becomes

∂φε

∂t
+

1

ε
V
( t
ε2

)
· ∇φε = 0, φ(0, x) = f(x), (1.19)

The solution can be written explicitly in terms of the Fourier transform:

φε(t, x) =

∫
Rd

exp
{
− iε

∫ t/ε2

0

ξ · V (s)ds
}
f̂(ξ)

dξ

(2π)d
. (1.20)

We use here the normalization

f̂(ξ) =

∫
Rd
e−ξ·xf(x)dx, f(x) =

∫
Rd
eiξ·xf̂(ξ)

dξ

(2π)d
. (1.21)

As V (t) is a Gaussian vector-valued process, the random variable

Iε(t) = ε

∫ t/ε2

0

(ξ · V (s))ds

is also Gaussian with the variance

E(Iε(t))
2 = ε2

d∑
i,j=1

ξiξj

∫ t/ε2

0

∫ t/ε2

0

E(Vi(s1)Vj(s2))ds1ds2

= ε2

d∑
i,j=1

ξiξj

∫ t/ε2

0

∫ t/ε2

0

Rij(s1 − s2)ds1ds2 =
1

2
Dijξiξjt+O(ε2), as ε→ 0,

(1.22)
as follows from the computation in (1.13). Using this in (1.20) gives

E[φε(t, x)]→ φ̄(t, x) =

∫
Rd

exp
[
− 1

2
Dijξiξjt

]
f̂(ξ)

dξ

(2π)d
, as ε→ 0. (1.23)

Note that φ̄(t, x) is the solution of the diffusion equation

∂φ̄

∂t
=

1

2
∇ · (D∇φ̄), φ̄(0, x) = f(x). (1.24)

The convergence of φε(t, x) to φ̄(t, x) for any sufficiently regular function f(x) means ex-
actly that the process Xε(t) converges weakly to the Brownian motion with the diffusivity
matrix Dij.
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Of course, in order for the above discussion to make sense, the diffusivity matrix Dij

needs to be finite – otherwise, obviously, the conclusion can not hold. This imposes a decay
condition on the two-point correlation matrix Dij. What happens if it is violated, that
is, if the matrix Dij is infinite? This tells us that by the times of the order t ∼ ε−2 the
particle is “already at infinity”, hence something non-trivial happens before the “classical’
times scale t ∼ ε−2 – this has very interesting implications beyond the scope of these notes.

Another toy example: advection equation with a random potential

Let us now consider another extremely simple example where everything can be computed
quite explicitly. One of the ”real” examples is the Schrödinger equation (1.6):

iφt + ∆φ− εV (x)φ = 0, φ(0, x) = φ0(x), (1.25)

with a small time-independent random potential εV (x). The fact that the potential is time-
independent makes this problem rather difficult. Indeed, if we consider the problem without
any background dynamics:

iφt − εV (x)φ = 0, φ(0, x) = φ0(x), (1.26)

then we simply have
φ(t, x) = φ0(x) exp[−iεV (x)t], (1.27)

and there does not seem to be any interesting long time limit, as opposed to the case of
a time-dependent potential V (t), where we would get a limit of a solution to (1.26) using
Theorem 1.1. Thus, any interesting behavior for the solutions of (1.6) may only result from
the interaction between the Laplacian and the random potential in the Schrödinger equation.

To illustrate this point, as a toy model, let us consider a linear advection equation with a
similar perturbation:

∂φ

∂t
+ ū · ∇φ+ iεV (x)φ = 0, φ(0, x) = φ0(x). (1.28)

Here, ū 6= 0 is a constant drift, and V (x) is a spatially homogeneous mean-zero random field:

EV (x) ≡ 0. (1.29)

The two-point correlation function of V (x) depends only on the displacement between x and y:

E(V (x)V (y)) = R(x− y). (1.30)

Recall that this follows from spatial homogeneity of V (x). We assume that the function R(x)
is of the Schwartz class for now. Equation (1.28) is easy to solve explicitly:

φ(t, x) = φ0(x− ūt) exp
(
− iε

∫ t

0

V (x− sū)ds
)
. (1.31)

In order for the integral in the exponential to have a non-trivial effect, we need to wait until
times of the order t ∼ O(ε−2). Hence, we define

φε(t, x) = φ(
t

ε2
, x), (1.32)
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so that

φε(t, x) = φ0(x− t

ε2
ū) exp

(
− iε

∫ t/ε2

0

V (x− sū)ds
)
. (1.33)

The first term is simply the solution of the ”fast” homogeneous problem (1.28) with V = 0,
and need not have any limit unless φ0(x) decays at infinity, while the second factor

ζε(t, x) = exp
(
− iε

∫ t/ε2

0

V (x− sū)ds
)

(1.34)

comes from the ”slow” random dynamics. Its limit can be computed from Theorem 1.1, which
implies that ζε(t, x) converges in law to

ζ̄(t, x) = exp(−i
√
DB(t)). (1.35)

The diffusion coefficient D is

D =

∫ ∞
−∞

R(ūs)ds. (1.36)

Let us formulate this result as a theorem.

Theorem 1.2 Let V (x) be a spatially homogeneous mean-zero random field with a correlation
function R(t) ∈ S(R). Let φ(t, x) be the solution of (1.28), φε(t, x) = φ(t/ε2, x), and φ̄(t, x)
be the solution of (1.28) with V = 0. Then φε(t, x) can be decomposed as

φε(t, x) = φ̄(
t

ε2
, x)ζε(t, x). (1.37)

The function ζε(t, x) converges in law, as ε→ 0 to ζ̄(t, x) given by (1.35).

This example is very simple but it has some of the main features that are much harder
to prove in even slightly more complicated situations. In particular, the dynamics can be
decomposed into a fast deterministic part that does not have a limit but is quite explicit, and
the ”slow” component that converges in law to a stochastic limit. As we have noticed before,
the background dynamics is crucial for the limit theorem here: if ū = 0, the conclusion of
Theorem 1.2 fails. Thus, the long time dynamics of the solutions of (1.28) involves a non-
trivial interaction of the background dynamics and the random fluctuations. Such interactions
can become highly non-trivial as soon as we move away from the most elementary examples.

An example of relaxation enhancement: the Dirichlet eigenvalues

In the previous examples, the background dynamics was very simple. We will stick with this
situation in most of the rest of the notes, but to illustrate some of the other possibilities,
let us now consider the opposite situation: the background dynamics is ”complex” and ask
if the random fluctuations can have a ”stronger than expected” effect. We will consider an
advection-diffusion problem with a time-independent background flow:

∂φ

∂t
+ u(x) · ∇φ =

ε2

2
∆φ, x ∈ Ω, (1.38)
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with the Dirichlet boundary condition:

φ(t, x) = 0 for x ∈ ∂Ω. (1.39)

Recall that the underlying stochastic differential equation (1.2) is

dXε(t) = u(Xε(t))dt+ εdBt, Xε(0) = x, (1.40)

hence randomness is of the strength ε and, according to the previous philosophy, we should
rescale the time t→ t/ε2, setting φε(t, x) = φ(t/ε2, x), which gives an initial boundary value
problem

∂φε

∂t
+

1

ε2
u(x) · ∇φε =

1

2
∆φε, x ∈ Ω,

φε(t, x) = 0 for x ∈ ∂Ω,

φε(0, x) = φ0(x), x ∈ Ω.

(1.41)

Let us assume that u(x) is ”complex” in some intuitive sense. We will discuss this ”complex-
ity” from the probabilistic and PDE points of view. First, from the probabilistic perspective,
recall that the solution of (1.41) has the following probabilistic characterization:

φ(t, x) = φ̃0(Xε(t ∧ τ ;x)). (1.42)

Here, Xε(t;x) is the trajectory generated by the SDE (1.40), τ is the first exit time for Xε(t)
from Ω:

τ = sup[t : X(t;x) ∈ Ω for all 0 ≤ s < t], (1.43)

and t∧ τ = min(t, τ). We have also set φ̃0(x) = φ0(x) for x ∈ Ω and φ̃0(x) = 0 for x ∈ ∂Ω, so
that φ̃0(Xτ ) = 0. With this probabilistic interpretation of the solution in mind, we can take
”complexity” to mean that the background trajectory

dX(t)

dt
= u(X(t)), X(0) = x, (1.44)

comes close to the boundary ∂Ω for any starting point x ∈ Ω. Assuming that the trajecto-
ries Xε(t) and X(t) stay close until such time, and if the distance between Xε(t) and ∂Ω is of
the order ε, then the particle will exit the domain at this moment with a positive probability,
due to the diffusion. This would make φε(t, x) small for t large as we will have t < τ with
a high probability. In order for this philosophy to be plausible, the flow u(x) better have
no sinks where particles can get stuck despite the small diffusion, which is ensured by the
incompressibility condition:

∇ · u(x) = 0, (1.45)

as then the flow map for (1.44) is Lebesgue measure preserving and sinks can not exist. This
heuristics indicates from the probabilistic point of view that if u(x) is ”complex” then the
solutions φε(t, x) to (1.41) should be ”very small” if ε is sufficiently small, that is, if the
advection term in (1.41) is sufficiently strong.

From the PDE point of view, the argument for the decay of the solutions when u(x) is
”complex” is different but also very natural. Let us multiply (1.41) by φε and integrate over Ω:

1

2

d

dt

∫
Ω

|φε(t, x)|2dx+
1

ε2

∫
Ω

φε(u · ∇φε)dx = −1

2

∫
Ω

|∇φε(t, x)|2dx. (1.46)
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Assuming that u is divergence free: it satisfies (1.45) and is also tangential at the boundary,
so that

u · ν = 0 on ∂Ω, (1.47)

the second integral in the left side of (1.46) vanishes:

1

ε2

∫
Ω

φε(u · ∇φε)dx = 0, (1.48)

and (1.46) becomes
1

2

d

dt

∫
Ω

|φε(t, x)|2dx = −1

2

∫
Ω

|∇φε(t, x)|2dx. (1.49)

Thus, the dissipation rate responsible for forcing the solution be small is

D =
1

2

∫
Ω

|∇φε(t, x)|2dx. (1.50)

However, a ”complex” flow would exactly bring nearby the areas where initially φε(0, x) takes
different values, creating large gradients in φε(t, x). This will make the dissipation rate be
large, which, in turn, will lead to the solution being small. Thus, both from the probabilistic
and the PDE points of view, one may expect the solution to (1.41) be small. Next, we will
see how this phenomenon, known as ”relaxation enhancement”, can be quantified.

The eigenvalues of the Laplacian

Before we explain how the relaxation enhancement can be formulated and proved, let us first
recall some very basic facts about the principal Dirichlet eigenvalues for the Laplacian on
a bounded domain [20]. For any smooth bounded domain Ω, there exists an eigenvalue λ1

(called the principal eigenvalue) that corresponds to a positive eigenfunction φ1 > 0 in Ω:

−∆φ1 = λ1φ1, x ∈ Ω, (1.51)

φ1 = 0 on ∂Ω.

Moreover, λ1 is the smallest of all eigenvalues of the Dirichlet Laplacian on Ω, λ1 is a simple
eigenvalue and all other eigenfunctions of the Laplacian change sign in Ω. For example, if Ω
is an interval (0, 1), the eigenvalues of the operator Lu = −u′′ with the Dirichlet boundary
conditions u(0) = u(1) = 0 are λn = n2π2, and the corresponding eigenfunctions are

un(x) = sin(nπx).

In this case, the principal eigenvalue is λ1 = π2.
In general, the principal Dirichlet eigenvalue of the Laplacian is given by the variational

formula:

λ1 = inf
ψ∈H1

0(Ω)

‖ψ‖2=1

∫
Ω

|∇ψ|2dx. (1.52)
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The principal eigenvalue determines the long time decay of solutions of the parabolic initial
value problem in the following way. Consider the initial value problem

ψt = ∆ψ, t > 0, x ∈ Ω, (1.53)

ψ(t, x) = 0 on ∂Ω,

ψ(0, x) = g(x).

As φ1(x) > 0 in Ω, and, as follows from the Hopf lemma, ∂φ1/∂ν < 0 on ∂Ω, we can find
a constant C > 0 so that |ψ(t = 1, x)| ≤ Cφ1(x) – we can not quite have such estimate
at t = 0 since the initial condition g(x) may not satisfy the Dirichlet boundary conditions.
The maximum principle implies that

ψ(t, x) ≤ Ce−λ1(t−1)φ1(x), (1.54)

for t > 1, and, similarly,
−ψ(t, x) ≤ Ce−λ1(t−1)φ1(x), (1.55)

so that
|ψ(t, x)| ≤ Ce−λ1(t−1)φ1(x), t ≥ 1. (1.56)

Therefore, all solutions of the Cauchy problem decay at the exponential rate determined by λ1

as t→ +∞.

The Dirichlet eigenvalues with a drift

Let us now consider the Dirichlet principal eigenvalue problem in a smooth bounded domain Ω,
for a diffusion with a strong incompressible flow:

−∆φ+
1

ε2
u · ∇φ = λ1(ε)φ, φ(x) > 0 in Ω, (1.57)

φ = 0 on ∂Ω.

We have dropped the factor 1/2 in front of the Laplacian, switching from the ”probabilistic
Laplacian” (with 1/2) to the ”analyst Laplacian” (without 1/2).

The operator in (1.57) is not self-adjoint (so that its eigenvalues are not necessarily real),
and its eigenvalues do not obey an integral variational principle such as (1.52). Nevertheless,
the Krein-Rutman theory for positive operators (see Chapter VIII of [16]) implies that it has
a unique eigenvalue λ1(ε) that corresponds to a positive eigenfunction φ1(x). This eigenvalue
is real and simple, has the smallest real part of all eigenvalues, and is called the principal
eigenvalue. As for the Laplacian, the maximum principle implies that the principal eigenvalue
determines the long time decay of the solutions of the corresponding Cauchy problem:

ψt +
1

ε2
u · ∇ψ = ∆ψ, t > 0, x ∈ Ω, (1.58)

ψ(t, x) = 0 on ∂Ω,

ψ(0, x) = g(x),

that is,
ψ(t, x) ∼ e−λ1(ε)tφ1(x), as t→ +∞. (1.59)
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Note that when u = 0 the exponential rate of decay for the solutions of (1.58) is simply
the principal eigenvalue of the Laplacian. On the other hand, solutions of the Laplacian-less
problem

ψt +
1

ε2
u · ∇ψ = 0 (1.60)

do not decay at all – their L2 norm is preserved, as are all Lp-norms for p ≥ 1. This is because
the flow u is incompressible and parallel to ∂Ω on the boundary.

Thus, the Laplacian by itself produces dissipation of order one, and the drift u·∇ produces
no dissipation whatsoever. An interesting phenomenon is that it is possible that solutions of
the ”combined” Cauchy problem (1.58) can still decay much faster than when u = 0 even
though the drift can not lead to any decay by itself. To quantify this ”enhanced relaxation”,
let us ask if it is possible that

λ1(ε)→ +∞ as ε→ 0. (1.61)

Then (1.59) would show that solutions to (1.58) decay ”very fast”. Physically, this would
mean that a sufficiently mixing flow, together with diffusion, would dramatically increase the
cooling of the interior by the boundary. As we have explained above, one would expect this
if the flow is sufficiently ”complex” or ”mixing”.

A natural questions is what ”mixing” or ”complex” flow means in this context, and how
one can quantify such property. Usually, the mixing properties of a flow are defined in terms
of the dynamic properties of the ODE

Ẋ = u(X).

Here, we are asking a PDE question – hence, the first issue is to define what “mixing” means
for us. This is quantified by the following beautiful result due to Berestycki, Hamel and
Nadirashvili [8]. We denote by I0 the set of all first integrals of u, solutions of

u · ∇φ = 0 a.e. in Ω, (1.62)

in the space H1
0 (Ω).

Theorem 1.3 The principal eigenvalue λ1(ε) of (1.57) tends to +∞ as ε→ 0 if and only if
the flow u has no first integral in H1

0 (Ω). Moreover, if u has a first integral in H1
0 (Ω), then

λ1(ε)→ λ̄ := min
w∈I0

∫
Ω
|∇w|2dx∫

Ω
|w|2dx

as ε→ 0, (1.63)

and the minimum in the right side is achieved.

A couple of comments are in order. First, notice that the only information about the Laplacian
operator in (1.57) that survives in the statement of the theorem is in the condition that the
first integral lies in H1

0 (Ω). This regularity requirement comes exactly from the presence of the
Laplacian in (1.57), as irregular first integrals do not prevent strong decay of the solutions of
the Cauchy problem. Roughly speaking, if u has an irregular first integral, then the solution
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of the Cauchy problem may take its shape first because the drift is strong, but then the
diffusion term will start dissipating it very quickly because of the relation

d

dt

∫
Ω

|ψ(t, x)|2dx = −
∫

Ω

|∇ψ(t, x)|2dx (1.64)

that holds for solutions of (1.58) since u is incompressible: ∇ · u = 0. The irregularity of
the first integral would mean that the right side of (1.64) is ”huge”, leading to a very fast
decrease of the L2-norm of ψ(t, x).

Second, the strong flow essentially forces the eigenfunction to be close to a first integral (if
they exist), and then the variational principle (1.53) for the Laplacian operator is replaced by
essentially the same expression (1.63) except that the set of allowed test functions is restricted
to the first integrals.

Proof of Theorem 1.3

The proof of this Theorem is nicely short. First, we claim that if u has a non-zero first
integral w in H1

0 (Ω), normalized so that

‖w‖L2 = 1,

then we have

0 ≤ λ1(ε) ≤
∫

Ω

|∇w(x)|2dx, (1.65)

for any ε ∈ R. In order to show that (1.65) holds, we take any first integral w ∈ I0, and
multiply (1.57) by w2/(φ+ ε) with ε > 0 fixed:

−
∫

Ω

w2∆φ

φ+ ε
dx+

∫
Ω

w2

φ+ ε
(u · ∇φ)dx = λ1(ε)

∫
Ω

w2

φ+ ε
φ dx. (1.66)

Integrating by parts in the first term gives

−
∫

Ω

w2∆φ

φ+ ε
dx =

∫
Ω

∇φ · ∇
(

w2

φ+ ε

)
dx =

∫
Ω

2w(φ+ ε)∇φ · ∇w − w2|∇φ|2

(φ+ ε)2
dx

≤
∫

Ω

|∇w|2dx.

The second term in the left side of (1.66) vanishes because ∇ · u = 0 and w is a first integral:∫
Ω

w2

φ+ ε
(u · ∇φ) dx =

∫
Ω

w2(u · ∇(log φ+ ε)) dx = −
∫

Ω

2w log(φ+ ε)(u · ∇w)dx = 0.

The boundary terms above vanish since w ∈ H1
0 (Ω) (it vanishes on the boundary). We

conclude that

λ1(ε)

∫
Ω

w2

φ+ ε
φdx ≤

∫
Ω

|∇w|2dx, (1.67)

for any w ∈ I0. Passing to the limit ε → 0 gives (1.65). Thus, existence of a first integral
implies that λ1(ε) are uniformly bounded for all ε ∈ R.
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On the other hand, if there exists a sequence εn → 0 such that λ1(εn) are bounded, then,
again, as u is divergence-free, we have∫

Ω

|∇φn(x)|2dx = λ1(εn)

∫
Ω

|φn(x)|2dx = λ1(εn). (1.68)

Here, φn(x) are the associated positive eigenfunctions φn(x) normalized so that ‖φn‖L2(Ω) = 1.
Then, there exists a subsequence nk so that the sequence φnk converges weakly in H1

0 (Ω) and
strongly in L2(Ω) to a function w̄(x) ∈ H1

0 (Ω). Moreover, multiplying (1.57) by εnk and
passing to the limit k → +∞ gives

u · ∇w̄ = 0, weakly in H1
0 (Ω),

and
‖w̄‖L2(Ω) = 1. (1.69)

Hence, w̄ is a first integral of u in H1
0 (Ω). Thus, the non-existence of the first integral in H1

0 (Ω)
implies that

lim
ε→0

λ1(ε) = +∞. (1.70)

Finally, to show that (1.63) holds, let us assume, once again, that there exists a se-
quence εn → 0 such that λ1(εn) are bounded. As the convergence of the subsequence φnk to
the first integral w̄ is strong in L2(Ω) and weak in H1

0 (Ω), it follows from (1.68), (1.69) and
Fatou’s lemma that

lim inf
n→+∞

λ1(εn) ≥
∫

Ω

|∇w̄(x)|2dx. (1.71)

It remains to notice that (1.71) and (1.65) together imply the Rayleigh quotient formula (1.63),
finishing the proof of Theorem 1.3.

2 Particles in two-dimensional randomly perturbed flows

The ”eigenvalue relaxation enhancement” example shows that the interaction of a strong
”complex’ flow with a random perturbation may lead to extremely fast mixing. In this
section, we consider particles governed by the familar stochastic differential equation

dXt = −u(X)dt+
√

2εdBt, (2.1)

but with a ”simple” background flow u(x). As before, we assume that u(x) is an incompressible
flow in a simply-connected domain Ω:

∇ · u = 0, for all x ∈ Ω, (2.2)

and Bt is the standard Brownian motion. To simplify further, we will consider the two-
dimensional case, where, as Ω is simply connected, all incompressible flows are of the form

u = ∇⊥H = (Hy,−Hx),
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with some Hamiltonian H(x, y). In particular, H(x, y) is a first integral:

u · ∇H = 0,

and the flow u can not be relaxation enhancing. The underlying time-dependent PDE is

∂φ

∂t
+ u · ∇φ = ε2∆φ, (2.3)

and its time-rescaled version is
∂φ

∂t
+

1

ε2
u · ∇φ = ∆φ, (2.4)

We will assume that the flow u does not penetrate the boundary of Ω:

u · ν = 0 on ∂Ω. (2.5)

Here, ν is the normal to the boundary. We impose the Dirichlet boundary condition at ∂Ω:

u = 0 on ∂Ω. (2.6)

Let us make one additional observation. Recall that the probabilistic interpretation for
the solutions of (2.4) is as follows. Consider the solution of the stochastic differential equation

dXt = − 1

ε2
u(Xt)dt+

√
2dBt, X0 = x. (2.7)

Then φ(t, x) is given by
φ(t, x) = Ex[φ0(Xmin(t,τ)], (2.8)

with the convention that φ0(Xτ ) = 0. Here, τ is the first exit time from the domain Ω for the
process Xt starting at X0 = x. Assume now that Φ(x) is a first integral of the flow u(x):

u · ∇Φ = 0, (2.9)

and consider Yt = Φ(Xt). The process Yt satisfies a stochastic differential equation

dYt = ∇Φ(Xt) · dXt + ∆Φ(Xt)dt = ∆Φ(Xt)dt+
√

2∇Φ(Xt) · dBt. (2.10)

In particular, there is no large term in (2.10) – the process Φ(Xt) remains of the order O(1),
and undergoes a slow evolution. Thus, even though the evolution of Xt is fast, the first
integrals evolve slowly, because Xt moves very fast on the level sets of the Hamiltonian but
not across the level sets.

Oscillation on streamlines

Let us first show that the solution becomes nearly uniform on the streamlines of the flow. To
keep the presentation simple, we will consider a steady version of this problem:

−∆φε +
1

ε2
u · ∇φε = g(x), (2.11)

φε(x) = 0, x ∈ ∂Ω.
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Here, Ω is a bounded smooth domain. Multiplying by φε(x) and integrating by parts gives∫
Ω

|∇φε|2dx =

∫
Ω

fφεdx ≤ ‖g‖L2‖φε‖L2 . (2.12)

The Poincaré inequality implies that

‖φε‖L2 ≤ Cp‖∇φε‖L2 . (2.13)

It follows from (2.12) and (2.13) that

‖φε‖L2 ≤ C‖∇φε‖L2 ≤ C‖g‖L2 . (2.14)

Next, we multiply (2.11) by u · ∇φε and integrate to get∫
Ω

|u · ∇φε|2dx = ε2

∫
Ω

(u · ∇φε)∆φεdx+ ε2

∫
Ω

g(x)(u · ∇φ) (2.15)

≤ −ε2

∫
Ω

∇(u · ∇φε) · ∇φεdx+
ε2

2
‖g‖2

L2 +
ε2

2

∫
Ω

|u · ∇φε|2dx.

We rewrite the integrand in the second line above above as:

∇(u · ∇φε) · ∇φε =
∂uk
∂xi

∂φε

∂xk

∂φε

∂xi
+ uk

∂2φε

∂xk∂xi

∂φε

∂xi
=
∂uk
∂xi

∂φε

∂xk

∂φε

∂xi
+

1

2
u · ∇(|∇φε|2). (2.16)

Once again using incompressibility of u, we obtain from the above

−
∫

Ω

∇(u · ∇φε) · ∇φεdx =
1

2

∫
Ω

(u · ∇
(
|∇φε|2

)
)dx−

∫
Ω

∂un
∂xm

∂φε

∂xm

∂φε

∂xn
dx

≤Mε2

∫
Ω

|∇φε|2dx ≤ CMε2‖g‖L2 , (2.17)

where M = ‖∇u‖L∞(Ω). We deduce that∫
Ω

|u · ∇φε|2dx ≤ Cε2‖g‖2
L2 . (2.18)

Informally, this estimate means that the oscillation of φε along the stream lines of u is small.
There are, of course, ways to make this more precise but it says, roughly, that as ε → 0 the
function φε(x) converges to a limit φ̄(x) which is constant on the streamlines of u.

An unfortunate toy example: a radially symmetric Hamiltonian

For a time-dependent problem, let us first consider a special situation when a radially sym-
metric Hamiltonian H(x, y) = (x2 + y2)/2, so that

u(x, y) = ∇⊥H(x, y) = (Hy,−Hx) = (y,−x),
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and (2.1) becomes

dXt = Ytdt+ εdB
(1)
t , (2.19)

dYt = −Xtdt+ εdB
(2)
t .

The time rescaling t→ t/ε2 leads to

dXt =
1

ε2
Ytdt+ dB

(1)
t , X0 = x, (2.20)

dYt = − 1

ε2
Xtdt+ dB

(2)
t , Y0 = y.

The corresponding PDE is

∂v

∂t
=

y

ε2

∂v

∂x
− x

ε2

∂v

∂y
+

1

2
εv, (2.21)

v(0, x) = v0(x),

in the sense that
v(t, x) = Ex,y[v0(Xt, Yt)]. (2.22)

Switching to the polar coordinates x = r cos θ, y = r sin θ gives

∂v

∂t
= − 1

ε2

∂v

∂θ
+

1

2

[∂2v

∂2r
+

1

r

∂v

∂r
+

1

r2

∂2v

∂θ2

]
, (2.23)

v(0, r, θ) = v0(r, θ).

We see that the average along the streamlines

v̄(t, r) =
1

2π

∫ 2π

0

v(t, r, θ)dθ

satisfies a parabolic equation

∂v̄

∂t
=

1

2

[∂2v̄

∂2r
+

1

r

∂v̄

∂r

]
, (2.24)

v̄(0, r) = v̄0(r).

The corresponding process Rt = (X2
t + Y 2

t )1/2 converges to a diffusion with the generator as
in (2.24). There is an additional feature here, specific to the quadratic Hamiltonian: we may
write

v(t, r, θ) = w(t, r, θ − t

ε2
). (2.25)

The function w satisfies

∂w

∂t
=

1

2

[∂2w

∂2r
+

1

r

∂w

∂r
+

1

r2

∂2w

∂θ2

]
, (2.26)

w(0, r, θ) = v0(r, θ).

In other words, by factoring out the background dynamics –a fast rotation, we arrive exactly
at a diffusion equation, without any need to pass to the limit ε→ 0.
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This example may look somewhat unfortunate since we do not see the uniformization
along the streamlines that we have observed in the general steady version of this problem. To
see it, one should consider the time-averages of the solution. In other words, the weak limit
(as a function in time) of the function v(t, r, θ) in (2.25) is

v̄(t, r) =
1

2π

∫ 2π

0

w(t, r, θ)dθ, (2.27)

and is independent of θ.

The Freidlin problem in two dimensions: one cell

Let us now consider the more general two-dimensional case, with u(x, y) = ∇⊥H(x, y). We
first assume that the Hamiltonian H(x, y) is a convex function growing at infinity, with a
minimum at some point (x0, y0) ∈ R2. We denote H0 = H(x0, y0). The assumption that u is
parallel to the boundary of Ω means that ∂Ω is a level set of H(x, y). Solutions of (2.11)

−∆φε +
1

ε2
u · ∇φε = g(x), (2.28)

φε(x) = 0, x ∈ ∂Ω.

are uniformly bounded in L∞(Ω) ∩H1
0 (Ω):

0 ≤ φε ≤ C,

∫
|∇φε|2dx ≤ C, (2.29)

with the constant C > 0 independent of ε > 0. The L2-bound on the gradient in (2.29) is
obtained by a simple multiplication of (2.28) by φε and integration by parts. The L∞-bound
independent of ε in (2.29) is slightly trickier to prove and is a good exercise for the reader.
Hence, the family φε converges weakly in H1(Ω) (after extracting a subsequence) and strongly
in L2(Ω) to a function φ̄.

We claim that φ̄ depends only on the variable h = H(x, y). Indeed, if we multiply (2.28)
by ε2 and let ε→ +∞, we get

u · ∇φ̄ = 0 (2.30)

in the sense of distributions. In order to get an equation characterizing the limit φ̄(h), it
is convenient to introduce the curvilinear coordinates (h, θ). The coordinates are chosen so
that h(x, y) = H(x, y), and the streamlines of the flow u(x, y) are {h = const}. The level
lines of the coordinate θ = Θ(x, y) are orthogonal to the flow lines:

∇Θ · ∇H = 0.

We normalize θ so that 0 ≤ θ ≤ 2π. As we have mentioned, the boundary ∂Ω is a level set

∂Ω = {h = h0},

and we will assume without loss of generality that h0 = 0. Then (2.30) implies that φ̄ depends
only on the variable h. The L∞-bound in (2.29) implies that

0 ≤ φ̄(h) ≤ C.
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In addition, we have∫
|∇xφ̄|2dx =

∫
|φ̄h|2|∇h|2dx =

∫ H0

0

|φ̄h|2
(∫ 2π

0

|∇H|2

J
dθ

)
dh.

Here J = HyΘx − HxΘy is the Jacobian of the coordinate change. Note that ∇Θ = ρ∇⊥H
with some scalar function ρ > 0, so that

J = ρ|∇H|2, |∇Θ| = ρ|∇H| and dl = dθ/|∇Θ|.

Therefore, we have ∫ 2π

0

|∇H|2

J
dθ =

∮
H(x,y)=h

|∇H|dl := a(h), (2.31)

and thus we have a weighted H1-bound∫ H0

0

a(h)|φ̄h|2dh < +∞,

which follows from (2.29), and hence φ̄(h) is continuous for h < H0, as p(h) ∼ C(H0 − h)
for h close to H0.

Next, we re-write (2.28) in the curvilinear coordinates:

−|∇H|
2

J

∂2φε

∂h2
− |∇Θ|2

J

∂2φε

∂θ2
− (εH)

J

∂φε

∂h
− (εΘ)

J

∂φε

∂θ
+

1

ε2

∂φε

∂θ
=

1

J
g(h, θ), (2.32)

φε(0, θ) = 0, φε(h, θ) is bounded for 0 ≤ h ≤ H0.

Integrating this equation in θ and passing to the limit ε→ 0 we obtain the limit problem for
the function φ̄:

−a(h)φ̄′′(h)− b(h)φ̄′(h) = ḡ(h), (2.33)

φ̄(0) = 0, φ̄(h) is bounded for 0 ≤ h ≤ H0,

with a(h) as in (2.31), and

b(h) =

∫ 2π

0

∆H

J
dθ, ḡ(h) =

∫ 2π

0

g(h, θ)dθ

J
.

The problem (2.33) is called the Freidlin problem. We note that

b(h) =

∫ 2π

0

∆H

J
dθ =

∮
H(x,y)=h

∆H

|∇H|
dl = a′(h).

The last equality above follows from the fact that

a(h) =

∮
H(x,y)=h

|∇H|dl =

∫
Gh

∆Hdxdy.

Here Gh = {h ≤ H(x, y) ≤ H0} is the interior of the streamline {H(x, y) = h}. Hence, the
Freidlin problem (2.33) can be re-written in a self-adjoint form as

− d

dh

(
a(h)

dφ̄(h)

dh

)
= ḡ(h), (2.34)

φ̄(0) = 0, φ̄(h) is bounded for 0 ≤ h ≤ H0.
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The Freidlin problem: gluing conditions

Let us now consider a more general situation when the function H(x, y) may have many
critical points. We will assume that each level set can contain just one critical point. Then
the limiting diffusion is defined on the Reeb graph of the function H(x, y). The Reeb graph
can be informally described as follows. Its vertices correspond to the level sets of H containing
the saddle points x̄1, . . . , x̄N of H. The level sets containing a saddle point x̄k of H(x) are
topologically ”figure eights”, with one critical point ofH(x) inside each of the two ”circles” Ck1

and Ck2. The level sets inside each of Ck1 and Ck2 correspond to an edge of the Reeb
graph, ek1 and ek2. These two edges are joined at the vertex corresponding to x̄k. Each edge
is parametrized by the values of H inside the corresponding ”circle”. The limit function φ̄(h)
satisfies the Freidlin problem (2.34) along each edge, with the coefficients a(h) computed as
in (2.31), inside the cell of the flow that corresponds to that edge.

Let us now obtain the gluing conditions at a vertex x̄k, where three edges eout and ei1,
ei2 join, corresponding to the ”outside” region Cout,k, and two inside circles Ck1 and Ck2. We
integrate (2.28)

−∆φε +
1

ε2
u · ∇φε = g(x), (2.35)

over a domain bounded by a ”just outside circle” Cout and two just circles Ck1 and Ck2. It
follows that, to the leading order in the thickness of this annular region, we have∮

Cout

∂φ

∂n
dl =

∮
Ck1

∂φ

∂n
dl +

∮
Ck2

∂φ

∂n
dl + l.o.t. (2.36)

Note that, since all contours in (2.36) are level sets, we have

∂φ

∂n
≈ ∂φ̄

∂h
|∇H|.

Using this in (2.36) leads to

∂φ̄out
∂h

∮
Cout

|∇H|dl =
∂φ̄k,1
∂h

∮
Ck1

|∇H|dl +
∂φ̄k,2
∂h

∮
Ck2

|∇H|dl. (2.37)

In other words, the gluing condition at vertex k corresponding to the level set H(x, y) = Hk,
is:

ak,out
∂φ̄out
∂h

(Hk) = ak,in1
∂φ̄k,1
∂h

(Hk) + ak,in1
∂φ̄k,1
∂h

(Hk). (2.38)

These gluing conditions together with the Poisson equations (2.34) completely describe the
limit problem.

3 Mixing in strong shear flows

In the previous section, we have considered a strong flow with closed streamlines, perturbed
by a small diffusion. Let us now consider what happens when the streamlines are open. A
simple example of such dynamics is advection by a shear flow in a channel

D = {(x, y) : x ∈ R, y ∈ Ω ⊂ Rd} ⊂ Rd+1. (3.1)
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Here, Ω is a smooth bounded domain – the channel cross-section. The flow trajectories are
straight lines along the channel:

dX

dt
= u(Y (t)),

dY

dt
= 0, X(0) = x, Y (0) = y. (3.2)

This, of course, has an explicit solution

X(t) = x+ u(y)t, Y (t) = y. (3.3)

We will now add a diffusive perturbation to the flow and consider a system of two stochastic
differential equations

dXt = −u(Yt) +
√

2εdB
(1)
t , (3.4)

dYt =
√

2εdB
(2)
t .

The Brownian motion B
(1)
t is one-dimensional, while B

(2)
t is d-dimensional. The corresponding

Kolmogorov equation is
∂φ

∂t
+ u(y)

∂φ

∂x
= ε2∆φ. (3.5)

We will consider this problem on long time scales, of the order t ∼ ε2, to make the effect of
the random perturbation non-trivial. The corresponding time-rescaling gives

∂φ

∂t
+

1

ε2
u(y)

∂φ

∂x
= ∆φ. (3.6)

This problem is posed in the channel D in (3.1), with the Neumann boundary condition at
the boundary:

∂φ

∂ν
= 0 at ∂D = R× ∂Ω. (3.7)

Note that if u(y) ≡ ū = const, then solution of (3.7) is simply a translate of the solution
of the heat equation:

φ(t, x, y) = φ̄(t, x− ū t
ε2
, y), (3.8)

where φ̄(t, x, y) is the solution of the standard heat equation

∂φ̄

∂t
= ∆φ̄, (3.9)

with the Neumann boundary conditions (3.7). Therefore, if u(y) is a uniform flow, then the
solution of (3.6) behaves as the solution of the standard heat equation.

Quenching by a shear flow

The goal of this section is to investigate what happens if the flow is not uniform – there is a
speed mismatch when moving along the trajectories. Thus, we will ask the following question:
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consider the solution of

∂φ

∂t
+

1

ε2
u(y)

∂φ

∂x
= ∆φ. (3.10)

∂φ

∂ν
= 0 at ∂D = R× ∂Ω, (3.11)

φ(0, x, y) = φ0(x, y),

with a rapidly decaying initial condition φ0(x, y). When is it true that for any time τ > 0
and ε > 0 we have

‖φ(τ, ·)‖L∞(D) ≤ ε, (3.12)

provided that ε < ε0(τ, ε)?

Definition 3.1 We say that the profile u(y) is quenching if for any L and any initial condi-
tion φ0(x, y) supported inside the interval [−L,L]× Ω, with 0 ≤ φ0(x, y) ≤ 1, there exists ε0

such that the solution of (3.10) satisfies (3.12) for all ε ∈ (0, ε0).

The key feature that distinguishes quenching from non-quenching velocities is the absence or
presence of large enough flat parts in the profile u(y).

Definition 3.2 We say that the profile u(y) ∈ C∞(Ω) satisfies the H-condition if

there is no point y ∈ Ω, where all derivatives of u(y) vanish. (3.13)

The H-condition guarantees that the operator

∂

∂t
+ u(y)

∂

∂x
− εy (3.14)

is hypoelliptic [32]. The study of existence of smooth fundamental solutions for such operators
was initiated by Kolmogorov [41]. Kolmogorov’s work with Ω = R and u(y) = y served in
part as a motivation for the fundamental result on characterization of hypoelliptic operators
of Hörmander [32]. The hypoellipticity of the operator (3.14) plays a key role in some of our
considerations. The next result shows that the H-condition implies quenching.

Theorem 3.3 Let u ∈ C∞(Ω) satisfy the H-condition. Then u(y) is quenching. That is,
for any ε > 0 and any τ > 0 there exists a constant C(u,Ω, τ, ε) > 0 that is independent
of ε ∈ (0, 1) such that

‖φ(τ, ·)‖L∞(D) ≤ ε (3.15)

whenever the initial condition φ0(x, y) is supported in an interval [−L,L]×Ω, with L < C/ε.

More precise refinements of Theorem 3.3 can be found in [12, 40].
We now prove Theorem 3.3. Let φ(t, x, y) be the solution of

φt +
1

ε2
u(y)φx = ∆φ (3.16)

φ(0, x, y) = φ0(x, y)

∂φ

∂n
= 0 on ∂D.
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Let us write

φ(t, x, y) =

∫ ∞
−∞

dzG(t, x− z)Ψ(t, z, y),

with the function Ψ(t, x, y) satisfying the degenerate parabolic equation

Ψt +
1

ε2
u(y)Ψx = ∆yΨ (3.17)

Ψ(0, x, y) = φ0(x, y)

∂Ψ

∂n
= 0 on ∂D.

Here, G(t, x) is the standard heat kernel

G(t, x) =
1√
4πt

exp

(
−x

2

4t

)
.

If u(y) satisfies the H-condition (3.13) then the diffusion process defined by (3.17) has a unique
smooth transition probability density. Indeed, the Lie algebra generated by the operators ∇y

and ∂t + ε−2u(y)∂x consists of vector fields of the form

∇y,
∂

∂t
+ u(y)

∂

∂x
,
∂u(y)

∂yk

∂

∂x
,
∂2u(y)

∂yi∂yj

∂

∂x
, . . . , u(n)(y)

∂

∂x
, . . .

which span R2 if u(y) satisfies (3.13). Then the theory of Hörmander [32], and the results
of Ichihara and Kunita [31] imply that there exists a smooth transition probability den-
sity pε(t, x, y, y

′) such that

Ψ(t, x, y) =

∫
R

dx′
∫
Ω

dy′pε (t, x− x′, y, y′)φ0(x′, y′).

In particular, the function pε(t) is uniformly bounded from above for any t > 0 [31]. Then we
have

‖φ(t)‖L∞D ≤ ‖pε(t)‖L∞(D)‖φ0‖L1(D).

It is straightforward to observe that

pε(t, x, y, y
′) = ε2p0(t, ε2x, y, y′)

with p0 being the transition probability density for (3.17) with ε = 1. That is, p0 satisfies

∂p0

∂t
+ u(y)

∂p0

∂x
= ∆yp0,

p0(0, x, y, y′) = δ(x)δ(y − y′),
∂p0

∂n
= 0 for x ∈ ∂Ω.

Therefore, we obtain
φ(t, x, y) ≤ ε2‖p0(t)‖L∞(D)‖φ0‖L1(D),

and the conclusion of Theorem 3.3 follows.
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Non-quenching by flows with plateaus

The next result shows that a plateau in the profile u(y) prohibits quenching. Therefore, the
conditions in Theorem 3.3 are natural.

Theorem 3.4 There exists a universal constant C0 > 0, such that, if u(y) = ū = const in a
ball y ∈ B(a, h) ⊂ Ω for some a ∈ Ω and h > 0, then there exist initial conditions supported
in [−1, 1]× Ω such that

‖φ(t = 1, ·)‖L∞(D) ≥ C0, (3.18)

for all ε ∈ (0, 1).

The proof is quite simple: solution of (3.16) is above the solution of the Dirichlet problem in
the smaller channel D′ = {(x, y) : x ∈ R, y ∈ B(a, h)}:

φt +
1

ε
u(y)φx = ∆φ in D′, (3.19)

φ(0, x, y) = φ0(x, y)

φ = 0 on ∂D′.

However, as u(y) = ū in D′, we have

φ(t, x, y) = ψ(t, x− ū t
ε2
, y),

with the function ψ(t, x, y) that solves

ψt = ∆φ in D′, (3.20)

φ(0, x, y) = φ0(x, y)

ψ = 0 on ∂D′.

The conclusion of Theorem 3.4 follows simply from the fact that the function ψ does not
depend on ε.

4 A limit theorem for a particle in a random flow

Let us now start adding perturbations that are not just white in time, which is what we have
done so far in our considerations of the evolution of particles in incompressible flows perturbed
by a diffusion. We will go just one level up in difficulty compared to the toy problem

dX

dt
= εV (t), (4.1)

considered in the introduction. To illustrate how the background dynamics improves mixing
in a very simple setting, we look at a particle moving in a time-independent random flow with
a large mean:

dX

dt
= ū+ εv(X). (4.2)
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An important remark is that, again, as in another example in the introduction, of an advection
equation with a potential, a non-zero background flow ū 6= 0 is absolutely essential for the
results of this section: very little is known about the solutions of the ODE

Ẋ(t) = εv(X), (4.3)

with a random velocity field v(X). In particular, ε > 0 here is superfluous: one can remove
this factor by a simple rescaling of time t→ t/ε, to get

Ẋ(t) = v(X). (4.4)

The first order PDE corresponding to (4.2) is

φt + (ū+ εv(x)) · ∇φ = 0. (4.5)

Rescaling the time variable t→ t/ε2 gives

φt +
1

ε2
(ū+ εv(x)) · ∇φ = 0. (4.6)

The background dynamics is very simple:

φ̄t +
1

ε2
ū · ∇φ̄ = 0, (4.7)

or

φ̄(t, x) = φ0(x− ū t
ε2

).

Accordingly, we take out the background dynamics, as in the fast/slow dynamics decomposi-
tion (1.33):

φ(t, x) = ψ(t, x− ū t
ε2

). (4.8)

The function ψ(t, x) satisfies

ψt +
1

ε
v(x+ ū

t

ε2
) · ∇ψ = 0. (4.9)

A convenient approach to this problem is via understanding the general problem of the
behavior of a particle in a rapidly varying in time random flow:

Ẋ =
1

ε
V

(
t

ε2
, X

)
, X(0) = x, (4.10)

with a given random field V (t, x) when ε � 1. When the random flow is spatially uniform,
so that V = V (t), then

X(t) =
1

ε

∫ t

0

V (
s

ε2
)ds = ε

∫ t/ε2

0

V (s)ds, (4.11)

and X(t) converges in law to a Brownian motion, according to Theorem 1.1. In the general
case, when V (t, x) is not spatially uniform, this question goes back to the papers by Khas-
minskii [38] from the 60’s with subsequent contributions by various authors: without any

24



attempt at completeness we mention the work of Papanicolaou and Kohler [50], and Kesten
and Papanicolaou [36]. We present a version of the limit theorem due to T. Komorowski [42].

Let us explain where the scaling in (4.10) comes from – why the time dependence of the
particle velocity is ”fast” and the space-dependence is ”slow”. To see that let us start with a
dynamical system

dY

dT
= v0V

(
T

t0
,
Y

x0

)
with a random time-dependent field V (s, x) and introduce non-dimensional space-time vari-
ables X = Y/x0, s = T/t0:

dX

ds
= εV (s,X) , ε =

v0t0
x0

.

Let us now assume that ε � 1 is a small parameter – physically, this means that the time
it takes the particle to pass one spatial correlation length is much larger than the correlation
time of the random fluctuations. Therefore, in this regime the temporal randomness of V (s, x)
“dominates” the spatial variations. If we now introduce a slow time t so that t = ε2s, then in
the variables (t, x) the particle obeys (4.10). The limit ε → 0 now corresponds to observing
the particle at times much larger than the correlation time of the random fluctuations and
on the spatial scale of the order of the correlation length of the medium.

The first order equation corresponding to (4.10) is

∂φ

∂t
− 1

ε
V

(
t

ε2
, x

)
· ∇φ = 0, φ(0, x) = φ0(x). (4.12)

Its solution is φ(t, x) = φ0(X(t;x)), where X(t;x) is the solution of (4.10).
When does one expect the trajectories of (4.10) to behave diffusively? First of all, V has to

have mean zero so that the mean displacement would not be clearly biased. Second, V should
“mix things around” which means that the flow should be incompressible. It helps if dynamics
at “far away” points is nearly independent: this is formalized by the mixing assumption below
that eliminates the memory effect. Finally, there should be no distinguished times – this
requires stationarity of V in time.

Assumptions on the random field

We now list the formal assumptions on the random field that we will use to prove the diffusive
limit.

Stationarity. The random field V (t, x) is strictly stationary in time and space. This
means that for any t1, t2, . . . , tm ∈ R, x1, . . . , xm ∈ Rn, and each h ∈ R and y ∈ Rn the joint
distribution of

V (t1 + h, x+ y), V (t2 + h, x+ y), . . . , V (tm + h, x+ y)

is the same as that of
V (t1, x), V (t2, x), . . . , V (tm, x).

We will denote by Rnm(t, x) the two-point correlation tensor of V (t, x):

Rnm(t, x) = E {Vn(s, y)Vm(t+ s, y + x)} . (4.13)
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The spatial stationarity of V (t, x) is not necessary but it allows to simplify a few expressions
in what follows. It can, however, be dropped and we adopt it here simply for convenience.
On the other hand, stationarity in time is essential for the limit theorem.

Mixing: attempt 1. We will assume that the field V (t, x) is mixing. Roughly speaking,
this means that the values of V (t, x) are sufficiently independent at different times. One
possible way to formulate this assumption is to say that V (t, x) and V (t + h, y) are nearly
independent if the time increment h is large enough, no matter what x and y are. This is
formalized in terms of the σ-algebras Ṽba generated by the sets of the form

{ω : V (t, x, ω) ∈ A},

where a ≤ t ≤ b, x ∈ Rn, and A is a Borel set in Rn. The corresponding mixing coefficient is

β̃(h) = sup
t≥0

sup
A∈Ṽ∞t+h,B∈Ṽ

t
0

|P (A ∩B)− P (A)P (B)|
P (B)

.

The mixing assumption would be that or any m ≥ 0 the mixing coefficient satisfies

hmβ̃(h) ≤ Cm for all h ≥ 0.

Heuristically, this means that events in Ṽ t0 and Ṽt+h are basically independent.
The problem with this definition of mixing is that it would not apply to random fields of

the form
V (t, x) = v(x+ ūt), (4.14)

with ū 6= 0, and a random field v(x), which is our original motivation. Indeed, for such V (t, x),
we have

V (t, x) = V (t+ h, y − hū), (4.15)

for all x and y such that y = x− hū. Thus, the assumption that V (t, x) and V (t + h, y) are
nearly independent for all x, y ∈ Rn can not hold for V (t, x) given by (4.14). On the formal
level, this is reflected in the fact that all σ-algebras Ṽba are the same in this case, no matter
what a, b are.

Mixing: attempt 2. Thus, to allow for random fields as in (4.14), we need to modify the
definition of the mixing coefficient. One natural way is to assume that V (t, x) and V (t+h, y)
are nearly independent only for ”nearby” x and y if h is large. Identity (4.15) hints that it
suffices to have ”near independence” of V (t, x) and V (t+h, y) for x and y such that |x−y| � h.

To make this formal, we fix C > 0 and, given a time interval Iab = a ≤ t ≤ b, consider the
sets

Sba = {(t, x) : a ≤ t ≤ b, |x| ≤ C(1 +
√
t)}.

We denote by Vba the σ-algebra generated by the sets of the form {ω : V (t, x, ω) ∈ A},
with(t, x) ∈ Sba, and A is a Borel set in Rn. The mixing coefficient is now defined as

β(h) = sup
0≤t≤1+h3/2

sup
A∈V∞t+h,B∈V

t
0

|P (A ∩B)− P (A)P (B)|
P (B)

, (4.16)

and our mixing assumption is that it satisfies

hmβ(h) ≤ Cm for all h ≥ 0.
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Let us see why this mixing condition is reasonable for velocity fields of the form (4.14), and
why we have the restriction

0 ≤ t ≤ 1 + h3/2

in the supremum in (4.16). Consider two space-time points (s1, x1) ∈ St0, and (s2, x2) ∈ S∞t+h,
with 0 ≤ t ≤ 1 + h3/2, then

V (s1, x1) = v(x1 + s1ū), V (s2, x2) = v(x2 + s2ū), (4.17)

and

d = |x2 + s2ū− (x1 + s1ū)| ≥ (s2 − s1)|ū| − |x2| − |x1| (4.18)

≥ (s2 − s1)|ū| − C(1 +
√
s2)− C(1 +

√
s1) ≥ (s2 − s1)|ū| − 2C(1 +

√
s2).

Now, if s2 ≤ Ch5/3, then
d ≥ h|ū| − C(1 + h5/6) ≥ ch,

for h > C. On the other hand, if s2 ≥ Ch5/3, then, as s1 ≤ t ≤ C(1 + h3/2), we have

d ≥ cs2 − C
√
s2 ≥ cs2 ≥ ch5/3.

Thus, the distance between the points entering V (s1, x1) and V (s2, x2) in (4.17) is large, and
spatial decorrlation of v(x) would imply that our mixing assumption on V (t, x) holds.

Exercise 4.1 Formulate carefully a mixing condition on the field v(x) that would imply the
mixing assumption on V (t, x). See [36] for the precise details.

Boundedness. We assume that the random field V (t, x) has three spatial derivatives and
there exists a deterministic constant C > 0 so that with probability one we have

|V (t, x)|+
∣∣∣∣∂V (t, x)

∂xj

∣∣∣∣+

∣∣∣∣ ∂2V

∂xi∂xj

∣∣∣∣+

∣∣∣∣ ∂3V

∂xl∂xi∂xj

∣∣∣∣ ≤ C < +∞

for all 1 ≤ i, j, l ≤ n. This assumption can be weakened considerably.
Incompressibility. The field V is divergence free, that is, almost surely

∇ · V (t, x) =
n∑
j=1

∂Vj
∂xj

= 0.

The reason this assumption is made is to avoid sinks and sources that may exist in non-
divergence free flows. Random incompressible flows, on the other hand, act more like measure-
preserving random rearrangements.

The limit theorem

Let us define the diffusion matrix

apq =

∫ ∞
0

E {Vq(t, 0)Vp(0, 0) + Vp(t, 0)Vq(0, 0)} dt =

∫ ∞
0

[Rpq(t, 0) +Rqp(t, 0)] dt

and its symmetric non-negative definite square-root matrix σ: σ2 = a. Then the following
theorem holds.
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Theorem 4.2 Suppose that the random field V (t, x) satisfies the assumptions above, and that
the matrix apq is strictly positive definite. Then the process Xε(t), which satisfies

Ẋε =
1

ε
V

(
t

ε2
, Xε

)
, Xε(0) = x, (4.19)

converges weakly as ε→ 0 to the limit process X̄(t) = x+ σB(t). Here, B(t) is the standard
Brownian motion.

The main result of [42] is actually much more general – it applies also to non-divergence
free velocities and allows for a mean drift. Then the large time behavior is a sum of a large
(order 1/ε) deterministic component that comes from the flow compressibility and an order
one diffusive process. One can also account for the possible small scale variations of the
random field looking at equations of the form

dX

dt
=

1

ε
V

(
t

ε2
,
X(t)

εα

)
with 0 ≤ α < 1. We will not describe these generalizations in detail here. We should also
mention that when α = 1 a new regime arises – the time it takes the particle to pass one
spatial correlation length is no longer much larger than the correlation time of the random
fluctuations. This seriously changes the analysis.

5 Basic facts on weak convergence in C and D

Weak convergence

Before we present the proof of Theorem 4.2, we recall in this section basic facts from [10]
on weak convergence of probability measures. All the proofs of the results of this section
can be found there as well as a wealth of other information. Recall that a sequence of Borel
measures Pn defined on a space Ω converges weakly to a Borel measure P on Ω if for every
bounded continuous real function f we have∫

Ω

fdPn →
∫

Ω

fdP.

Equivalently, for every set A with P (∂A) = 0 we have Pn(A)→ P (A). A family F of (Borel)
probability measures on Ω is relatively weakly compact if every sequence Pn of elements
in F contains a weakly convergent subsequence Pnk which converges weakly to a probability
measure Q.

Weak convergence in C

An effective way to verify weak compactness in the space C = C([0, T ];Rn) of continuous
functions (paths) is provided by Prokhorov’s theorem. Recall that a family F of probability
measures is tight if for every ε > 0 there exists a compact set K so that P (K) > 1− ε for all
measures P ∈ F .
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Theorem 5.1 If a family F is tight then it is relatively compact.

As a corollary we have the following basic criterion for weak convergence.

Corollary 5.2 Let Pn and P be probability measures on C. If the finite-dimensional distirbu-
tions of Pn converge weakly to those of P and {Pn} is a tight family then Pn converge weakly
to P .

It is important to note that convergence of finite-dimensional distributions in C in it-
self does not imply weak convergence and tightness assumption in Corollary 5.2 can not be
dropped. Indeed, consider a sequence of piece-wise linear functions zn which increase from 0
to 1 on the interval [0, 1/n], decrease from 1 to 0 on the interval [1/n, 2/n] and are equal to
zero for t ≥ 2/n. Set the measure Pn = εzn and let P = ε0, the delta-function concentrated
on the function z = 0. Suppose that A is a finite-dimensional subset of C, that is, there
exists a finite set of times t1, . . . , tk so that if a path x(t) lies in A then so do all paths y(t)
such that x(ti) = y(ti) for all 1 ≤ i ≤ k. Then, as soon as n is so large that 1/n < ti for
all i = 1, . . . , k such that ti > 0 we have Pn(A) = P (A) simply because zn(tj) = z(tj) for
all j = 1, . . . , k (including the time ti = 0 if there is such an i) and thus zn lies in A if and
only if z ∈ A. On the other hand, if we define f(x) = min[2, ‖x‖] with the uniform norm

‖x‖ = sup
0≤t≤1

|x(t)|

then f is a continuous function on C but∫
fdPn = 1

while ∫
fdP = 0.

Therefore Pn does not converge weakly to P . This example shows that convergence of finite-
dimensional distributions is not sufficient for weak convergence.

The advanatage of tightness is that it is a verifiable notion by means of various moduli of
continuity. The usual modulus of coninuity of a function x(t), t ∈ [0, 1] is defined as

wx(ε) = sup
|t−s|≤ε

|x(s)− x(t)|, 0 < ε ≤ 1.

The Arzela-Ascoli theorem implies that a set A is relatively compact in C if and only if both

sup
x∈A
|x(0)| < +∞,

and
lim sup
ε→0

sup
x∈A

wx(ε) = 0.

The following theorem (Theorem 7.3 in [10]) is the most basic criterion for tightness in C.
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Theorem 5.3 A sequence of probability measures Pn on C is tight if and only if the following
two conditions hold: (i) for each η > 0 there exist n0 and a > 0 so that

Pn[x : x(0) ≥ a] ≤ η for all n ≥ n0, (5.1)

and (ii) for each ε > 0 and η > 0 there exists 0 < ε < 1 and n0 so that

Pn [x : wx(ε) ≥ ε] ≤ η for all n ≥ n0. (5.2)

Condition (5.1) is usually easy to verify, especially so when we the measures Pn are generated
by solutions of differential equations (with coefficients that depend on the parameter n) with
a prescribed initial point – then x(0) does not depend on n. On the other hand, verifying (5.2)
is the heart of the proof of many limit theorems. Some criteria for (5.2) to hold will be given
in the next section.

The space D

It is quite common that one has to deal with convergence of processes that have jumps but
are “nice” otherwise. The appropriate space to work with is of functions that have limits on
the left and are continuous on the right:

(i) For 0 ≤ t < 1 the right limit x(t+) = lims→t+ x(s) exists and x(t) = x(t+).

(ii) For 0 < t ≤ 1 the left limit x(t−) = lims→t− x(s). (5.3)

Such functions are often called cadlag functions (“continu á droite, limites á gauche”).
Cadlag functions can not be too bad: for instance, it is easy to check that for any cadlag

function x(t) and any ε > 0 one can find a finite partition 0 = t0 < t1 < · · · < tn = 1 of the
interval [0, 1] such that the oscillation wx[ti−1, ti) < ε. Here the oscillation of a function x(t)
on a set S is defined as

wx(S) = sup
s,t∈S
|x(s)− x(t)|. (5.4)

It follows that any cadlag function x(t) is uniformly bounded and, moreover, has at most
countably many discontinuities since the number of points where the jump magnitude ex-
ceeds 1/n is finite for all n ∈ N. We will continue to denote the usual uniform norm by

‖x‖ = sup
0≤t≤1

|x(t)|.

The usual uniform topology is too rigid to work in the space D. If we think of functions
in D as, for instance, realizations of a random jump process, then we would like to think of
two realizations as close even if the jumps occur not at exactly the same time but rather at
close times. The uniform norm does not capture this idea. Instead, for two functions x and y
in D we define the distance d(x, y) as the smallest number ε > 0 so that we may find an
increasing continuous function (“time change”) λ(t) such that λ(0) = 0, λ(1) = 1 and both

sup
t∈[0,1]

|λ(t)− t| < ε
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and
sup
t∈[0,1]

|x(t)− y(λ(t))| = sup
t∈[0,1]

|x(λ−1(t))− y(t)| < ε. (5.5)

This metric defines the Skorohod topology.
Let Λ be the set of increasing continuous functions λ(t) such that λ(0) = 0, λ(1) = 1. A se-

quence xn(t) converges to x(t) in the Skorohod topology in D if there exists a sequence λn ∈ Λ
such that x̃n(t) = xn(λn(t)) converges to x(t) and λn(t) converges to t – both in the uniform
topology of [0, 1]. In particular, the usual uniform convergence implies convergence in the
Skorohod topology – simply take λn(t) = t. Moreover, as

|xn(t)− x(t)| ≤ |xn(t)− x(λn(t))|+ |x(λn(t))− x(t)|, (5.6)

it follows that xn(t) converges pointwise to x(t) at the points where x(t) is continuous.
Since x(t) is continuous for all but countably many points, the Skorohod convergence im-
plies pointwise convergence except on a countable set of points. In addition (5.6) implies that
if the limit x(t) is continuous on [0, 1] (and hence uniformly continuous) then the Skorohod
convergence implies the uniform convergence.

The problem is that the space D is not complete under the metric d as can be seen on the
following example. Let xn(t) = 1 for 0 ≤ t ≤ 1/2n and xn(t) = 0 otherwise. Let λn ∈ Λ be a
(piecewise) linear function:

λn(t) =
t

2

on the interval [0, 1/2n] and

λn(t) =
1

2n+1
+

1− 1
2n+1

1− 1
2n

(
t− 1

2n

)
on the interval [1/2n, 1] so that λn maps [0, 1/2n] onto [0, 1/2n+1]. Then xn+1(λn(t)) = xn(t)
and |λn(t) − t| ≤ 1/2n+1. This means that d(xn, xn+1) ≤ 1/2n+1 and the sequence xn(t) is
Cauchy in the metric d. On the other hand, xn(t) converges pointwise to x(t) = 0 for all t > 0.
Therefore, if xn converges in the Skorohod topology the only possible limit function is x(t) = 0
(because the Skorohod convergence implies pointwise convergence except on a countable set).
However, the distance from each xn(t) to x = 0 is equal to one (simply because x(λ(t)) ≡ 0
for all λ ∈ Λ and xn(0) = 1 for all n) and thus xn(t) does not converge in the Skorohod
topology.

The way to make the space D complete is to introduce a different metric d0 defined as
follows. For λ ∈ Λ define

‖λ‖0 = sup
s<t

∣∣∣∣log
λ(t)− λ(s)

t− s

∣∣∣∣ .
This means that the slopes of λ are bounded away from zero and infinity if ‖λ‖0 < ∞. The
distance d0(x, y) for x, y ∈ D is the smallest number ε ≥ 0 so that there exists λ ∈ Λ such
that ‖λ‖0 < ε and (5.5) holds. This is more restrictive than d: it requires that not only λ is
close to identity in the uniform norm but the slopes of λ are all close to one. In particular,
the above example of a non-converging Cauchy sequence involves λn which are not close to
identity in this norm. We have the following proposition.
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Proposition 5.4 The metrics d and d0 are equivalent on D in the sense that d(xn, x) → 0
if and only if d0(xn, x) → 0. Moreover, the space D is separable under both d and d0 and
complete under d0.

There is no contradiction in this proposition to the above example of a sequence xn which
is d-Cauchy in D but does not converge. This sequence is simply not d0-Cauchy:

d0(xn, xn+1) = ‖λn‖0 = log 2.

Compactness in D

Modulus of continuity is not a right notion for a function in D as wx(ε) does not vanish in
the limit ε → 0. An alternative modulus which allows for jumps is defined as follows. We
have mentioned that for any function x(t) ∈ D and any ε > 0 one can find a finite partition

0 = t0 < t1 < · · · < tn = 1,

such that on each sub-interval the oscillation wx[ti−1, ti) < ε. We say that a partition {ti}
is ε-sparse if ti − ti−1 > ε for all i. Define the modulus

w′x(ε) = inf
{ti}

max
1≤i≤n

wx[ti−1, ti)

with the infimum taken over all ε-sparce partitions {ti}. The previous argument shows that

lim
ε→0

w′x(ε) = 0,

for any cadlag function x ∈ D. It is straightforward to check that we always have

w′x(ε) ≤ wx(2ε).

There can be no inequality in the opposite direction because the usual modulus of continu-
ity wx(ε) does not go to zero as ε → 0 for a discontinuous function from D. However, for a
continuous function x(t) we do have an inequality wx(ε) ≤ 2w′x(ε) so for continuous functions
the two moduli are equivalent.

The most basic criterion for compactness in D is the following analog of the Arzela-Ascoli
theorem.

Theorem 5.5 A necessary and sufficient condition for a set A to be relatively compact in
the Skorohod topology is that supx∈A ‖x‖ <∞ and limε→0 supx∈Aw

′
x(ε) = 0.

Since the space D is separable and complete, an immediate consequence of this theorem is
the following tightness criterion.

Theorem 5.6 A necessary and sufficient condition for a sequence Pn of probability measures
on D to be tight is that

(i) lim
a→∞

lim sup
n

Pn [x : ‖x‖ ≥ a] = 0,

and
(ii) lim

ε→0
lim sup

n
Pn [x : w′x(ε) ≥ ε] = 0 for all ε > 0.

32



Another useful generalization of the modulus of continuity is the following modulus

w′′x(ε) = sup
0≤u−s≤ε

[
sup
s≤t≤u

(min [|x(u)− x(t)|, |x(t)− x(s)|])
]
.

This is yet another relaxation as it is not hard to see that w′′x(ε) ≤ w′x(ε). However, once
again, there is no inequality in the opposite direction: for the functions

xn(t) =

{
1, for 0 ≤ t < 1/n,
0, for 1/n ≤ t ≤ 1

,

we have w′′xn(ε) = 0 while w′xn(ε) = 1 for ε > 1/n because any ε-sparse partition will still
contain an interval [0, t1) with t1 > ε > 1/n where the oscillation is equal to one. This is an
end-point phenomenon which also happens for the functions

yn(t) =

{
0, for 0 ≤ t < 1− 1/n,
1, for 1− 1/n ≤ t ≤ 1

.

Nevertheless, this is the only obstacle for a compactness criterion in terms of w′′x(ε) alone.
The following result takes this problem into account.

Theorem 5.7 A necessary and sufficient condition for a set A to have a compact closure in
the Skorohod topology is that supx∈A ‖x‖ <∞, limε→0 supx∈Aw

′′
x(ε) = 0 and

lim
ε→0

sup
x∈A
|x(ε)− x(0)| = 0, and lim

ε→0
sup
x∈A
|x(1−)− x(1− ε)| = 0.

A direct analog of Theorem 5.6 is then the following.

Theorem 5.8 A necessary and sufficient condition for a sequence Pn of probability measures
on D to be tight is that

(i) lim
a→∞

lim sup
n

Pn [x : ‖x‖ ≥ a] = 0,

and
(ii.1) lim

ε→0
lim sup

n
Pn [x : w′′x(ε) ≥ ε] = 0 for all ε > 0,

and

(ii.2)

{
limε→0 lim supn Pn [x : |x(ε)− x(0)| ≥ ε] = 0

limε→0 lim supn Pn [x : |x(1−)− x(1− ε)| ≥ ε] = 0.

A convenient and more practical criterion for weak convergence is the following. Given a
probability measure P we denote by TP the set of all times t such that P [Jt] = 0 where

Jt = {x ∈ D : x(t) 6= x(t−)}

is the set of all functions that have a jump at time t. If X is a random variable on D then
we write TX for TP where TP is the law of X.
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Theorem 5.9 Suppose that the finite-dimensional distirbutions (Xn
t1
, . . . , Xn

tk
) of random

variables Xn defined on D converge weakly as n → ∞ to (Xt1 , . . . , Xtk) whenever all ti
lie in TX , and X1 −X1−ε goes weakly to zero as ε→ 0. Assume also that there exists β ≥ 0
and α > 1/2 so that for all r ≤ s ≤ t and λ > 0 we have

P [min{|Xn
s −Xn

r |, |Xn
t −Xn

s |} ≥ λ] ≤ C

λ4β
|F (t)− F (s)|2α, (5.7)

where F is a non-decreasing continuous function on [0, 1]. Then Xn converge weakly to X as
n→∞.

The key estimate in the proof of Theorem 5.9 is that (5.7) implies that there exists a con-
stant K that depends only on C, α and β so that

P [w′′Xn(ε) ≥ ε] ≤ K

ε4β
(F (1)− F (0))[wF (2ε)]2α−1, (5.8)

where wF is the modulus of continuity of the function F . This means that (5.7) ensures that
condition (ii.1) of Theorem 5.8 holds. A useful and verifiable condition that guarantees (5.7)
is that there exist β > 0, α > 1/2 and C > 0 so that

E
{
|Xn

s −Xn
r |2β|Xn

t −Xn
s |2β

}
≤ C|t− r|2α (5.9)

for all n. Then we may take F (t) = t and (5.8) becomes

P [w′′Xn(ε) ≥ ε] ≤ K

ε4β
ε2α−1. (5.10)

This is why we need α > 1/2 in (5.9). It follows that we may use (5.9) as a substitute for
condition (ii.1) in Theorem 5.8.

In turn, the following condition is sufficient to ensure that (5.9) holds: for any T > 0
and ν > 0 there exists a constant C(T, ν) so that for all n, and all 0 ≤ s ≤ t ≤ u ≤ T , we
have

E
{
|Xn(u)−Xn(t)|2|Xn(t)−Xn(s)|ν

}
≤ C(T, ν)(u− t)E {|Xn(t)−Xn(s)|ν} . (5.11)

Indeed, when ν = 0 in (5.11) we have

E
{
|Xn(u)−Xn(t)|2

}
≤ C(T, ν)(u− t) for all n and all 0 ≤ t ≤ u ≤ T .

Taking ν = 2 in (5.11) we get, using the above:

E
{
|Xn(u)−Xn(t)|2|Xn(t)−Xn(s)|2

}
≤ C(T, ν)(u− t)E

{
|Xn(t)−Xn(s)|2

}
(5.12)

≤ C(T, ν)(u− t)(t− s) ≤ C(T, ν)(u− s)2

and thus (5.9) indeed holds. A somehwat more general estimate than (5.11) is a reformulation
in terms of the conditional expectation

E
{
|Xn(t)−Xn(s)|2|

∣∣Fs} ≤ C(T )(t− s). (5.13)

A practical advantage of working with the conditional expectation in (5.13) is that the power
of (t− s) on the right is equal to one, not larger than one as in (5.9).
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6 The proof of the limit theorem

We now come to the proof of the limit Theorem 4.2 for the solutions of

Ẋε =
1

ε
V

(
t

ε2
, Xε

)
, Xε(0) = x. (6.1)

The ”difficult to believe at first” aspect of Theorem 4.2 is simply the fact that Xε(t) is of the
size O(1) despite the coefficient ε−1 in front of the velocity field. Understanding that is the
key to the proof, and is a result of cancellation due to the mixing properties of the velocity
field.

The proof proceeds in two steps. The main step is to establish tightness of the pro-
cesses Xε(t), so that a limit in law along a subsequence εk → 0 exists. This is done in the
space D of cadlag functions. However, as the processes Xε(t) are all continuous the limit
process also has to be continuous and convergence take place in the space C of continuous
functions. In the last step we show that the only possible limit along a subsequence is a
Brownian motion multiplied by the matrix σ. This uses the martingale characterization of
the Brownian motion.

Tightness of Xε is a consequence of the following.

Proposition 6.1 There exist C > 0 and ν > 0 so that

E
{
|Xε(t)−Xε(s)|2|Xε(s)−Xε(u)|2

}
≤ C(t− u)1+ν , (6.2)

for all 0 ≤ u ≤ s ≤ t ≤ T .

This is criterion (5.9) for tightness in the space D with β = 1 and α = (1 + ν)/2. The main
step in the proof of (6.2) is to find γ ∈ (1, 2) such that we have the following estimate for the
conditional expectation

E
{
|Xε(t)−Xε(s)|2

∣∣Fs} ≤ C(t− s) for t− s > 10εγ. (6.3)

As we have explained, the estimate (6.3) itself is sufficient to establish tightness in D for the
family Xε(t) if it were to hold for all t > s – see (5.13). As we will prove it only for pairs of
time with a gap: t− s > 10εγ, we may at the moment conclude only that

E
{
|Xε(t)−Xε(s)|2|Xε(s)−Xε(u)|2

}
≤ C(t− u)2 for t− s > 10εγ and s− u > 10εγ.

Our first step is to establish that, with an appropriate choice of γ ∈ (1, 2), if either t−s ≤ 10εγ

or s−u ≤ 10εγ, the estimate (6.2) follows from (6.3) together with the dynamical system (6.1)
governing Xε(t). If both t− s ≤ 10εγ and s− u ≤ 10εγ then we have directly from (6.1):

E
{
|Xε(t)−Xε(s)|2|Xε(s)−Xε(u)|2

}
≤ C(t− s)2(s− u)2

ε4
≤ Cε11γ/4(t− u)5/4

ε4
≤ C(t−u)5/4,

provided that γ > 16/11. On the other hand, if, say, t − s ≤ 10εγ but s − u > 10εγ, (6.3)
implies that

E
{
|Xε(s)−Xε(u)|2

}
≤ C(s− u),
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and (6.1) implies that with probability one

|Xε(t)−Xε(s)| ≤
C(t− s)

ε
.

Therefore, the following estimate holds for such times t, s and u:

E
{
|Xε(t)−Xε(s)|2|Xε(s)−Xε(u)|2

}
≤ C

ε2
(t− s)2(s− u)

≤ Cε7γ/4−2(t− u)5/4 ≤ C(t− u)5/4,

provided that γ > 8/7. We see that, indeed, (6.3) together with (6.1) are sufficient to prove
the tightness criterion (6.2). The rest of the proof of tightness of the processes Xε(t) is
concerned with verifying (6.3).

The mixing lemmas

A crucial component in many proofs of this kind is some sort of a mixing lemma that is
needed to establish the tightness of the dynamics. It translates the mixing properties of the
random field into the mixing properties of the trajectories.

We set G0(s, x) = V (s, x) and

G1,j(s1, s2, x) =
n∑
p=1

Vp(s2, x)
∂Vj(s1, x)

∂xp
, j = 1, . . . , n.

Exercise 6.2 Show that incompressibility of V (t, x) and its spatial stationarity imply that

E{G1(s1, s2, x)} = 0,

for all s1, s2 and x.

The next lemma quantifies the mixing of the trajectories.

Lemma 6.3 Fix T ≥ 0 and let 0 ≤ u ≤ s ≤ T . Assume that Y is a Vs/ε
2

0 -measurable
random vector function. Then there exists ε0 > 0 and a constant C > 0 such that for any
0 ≤ u ≤ s ≤ s2 ≤ s1 ≤ T and 0 < ε < ε0 we have∣∣∣E{V (s1

ε2
, Xε(u)

)
Y
( s
ε2

)}∣∣∣ ≤ Cβ(s1 − s)E
∣∣∣Y ( s

ε2

)∣∣∣ , (6.4)∣∣∣∣E{ ∂

∂xk

[
V
(s1

ε2
, Xε(u)

)]
Y
( s
ε2

)}∣∣∣∣ ≤ Cβ(s1 − s)E
∣∣∣Y ( s

ε2

)∣∣∣ , (6.5)

and ∣∣∣E{G1

(s1

ε2
,
s2

ε2
, Xε(u)

)
Y
( s
ε2

)}∣∣∣ ≤ Cβ1/2(s1 − s2)β1/2(s2 − s)E
∣∣∣Y ( s

ε2

)∣∣∣ , (6.6)∣∣∣∣E{ ∂

∂xk

[
G1

(s1

ε2
,
s2

ε2
, Xε(u)

)]
Y
( s
ε2

)}∣∣∣∣ ≤ Cβ1/2(s1 − s2)β1/2(s2 − s)E
∣∣∣Y ( s

ε2

)∣∣∣ , (6.7)

for all 1 ≤ k ≤ n.
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Proof. First of all, we note that for ρ > 1/2, C > 1 + sup |V (t, x)| and 0 < ε < ε0(T ) the
process Xε(t), 0 ≤ t ≤ u ≤ T does not leave the ball of the radius C(1 + uρ/ε2ρ) centered at

the origin, and hence is Vu/ε
2

0 (C, ρ) -measurable:

|Xε(t)| ≤
1

ε

∫ u

0

∣∣∣V ( s
ε2
, Xε(s)

)∣∣∣ ds ≤ Cu

ε
≤ C

(
1 +

uρ

ε2ρ

)
for all 0 ≤ t ≤ u.

We first prove (6.4)-(6.5). We prove only the second inequality, (6.5) as the proof of (6.4)
is identical. The idea is to replace the random variable Xε(u) by a deterministic value and
use the mixing properties of the field V (t, x) in time. Let M ∈ N be a fixed positive integer
and l ∈ Zn. Define the event

A(l) =

[
ω :

lj
M
≤ Xε

j (u) <
lj + 1

M
, j = 1, . . . , n

]
, l = (l1, . . . , ln).

The event A(l) is Vs/ε
2

0 measurable since u ≤ s. We may decompose the expectation in (6.5)
using the fact that the random variable Xε(u) is close to the non-random value l/M on the
event A(l) as follows:∣∣∣∣E{ ∂

∂xk

[
V
(s1

ε2
, Xε(u)

)]
Y
( s
ε2

)}∣∣∣∣ =

∣∣∣∣∣∑
l

E
{

∂

∂xk

[
V
(s1

ε2
, Xε(u)

)]
Y
( s
ε2

)
χA(l)

}∣∣∣∣∣
≤

∣∣∣∣∣∑
l

E
{[

∂

∂xk

[
V
(s1

ε2
, Xε(u)

)]
− ∂

∂xk

[
V

(
s1

ε2
,
l

M

)]]
Y
( s
ε2

)
χA(l)

}∣∣∣∣∣
+

∣∣∣∣∣∑
l

E
{

∂

∂xk

[
V

(
s1

ε2
,
l

M

)]
Y
( s
ε2

)
χA(l)

}∣∣∣∣∣ = I + II.

As the points l/M are deterministic, the second term above may be now estimated using the
mixing property (4.16) and the fact that E {∂V/∂xk} = 0 by

II ≤ 2Kβ

(
s1 − s
ε2

)∑
l

E
{∣∣∣Y ( s

ε2

)∣∣∣χA(l)

}
= 2Kβ

(
s1 − s
ε2

)
E
{∣∣∣Y ( s

ε2

)∣∣∣} ,
uniformly in M .

As far as I is concerned, we have assumed that two spatial derivatives of the field V (t, x)
are bounded by a deterministic constant, hence ∂V/∂xk is uniformly continuous in space.
Therefore, using the Lebesgue dominated convergence theorem we conclude that

I ≤ C

M

∑
l

E
{∣∣∣Y ( s

ε2

)∣∣∣χA(l)

}
=

C

M

∑
l

E
{∣∣∣Y ( s

ε2

)∣∣∣}→ 0 as M → +∞,

and (6.5) follows. An identical proof shows that in addition we have the same bound for the
second derivatives of the random field V :∣∣∣∣E{ ∂2

∂xk∂xm

[
V
(s1

ε2
, Xε(u)

)]
Y
( s
ε2

)}∣∣∣∣ ≤ Cβ(s1 − s)E
∣∣∣Y ( s

ε2

)∣∣∣ . (6.8)
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We now prove (6.7) – the proof of (6.6) is identical. Let us first write out the expression
for G1 : ∣∣∣∣E{ ∂

∂xk

[
G1

(s1

ε2
,
s2

ε2
, Xε(u)

)]
Y
( s
ε2

)}∣∣∣∣
≤

n∑
p=1

∣∣∣∣E{ ∂

∂xk

[
Vp

(s2

ε2
, Xε(u)

) ∂

∂xp

(
V
(s1

ε2
, Xε(u)

))]
Y
( s
ε2

)}∣∣∣∣
Now we may apply (6.5), (6.8) in two different ways using different parts of the inequality

0 ≤ u ≤ s ≤ s2 ≤ s1.

First, we may use (6.5), (6.8) with the gap between s1 and s2, that is, we group into “Y ” in
(6.5), (6.8) all terms that involve s and s2. Using in addition the uniform bounds on V and
its derivatives this leads to∣∣∣∣E{ ∂

∂xk

[
G1

(s1

ε2
,
s2

ε2
, Xε(u)

)]
Y
( s
ε2

)}∣∣∣∣ ≤ Cβ

(
s1 − s2

ε2

)
E
{∣∣∣Y ( s

ε2

)∣∣∣} .
Second, note that (6.5) may be slightly generalized to apply with ∂V/∂xk replaced by a
sufficiently smooth in space VTs1 random variable with an expectation equal to zero. As
E{G1} = 0 indeed, we can use use this modified version of (6.5) with the gap between s2 and
s, taking “Y ” in (6.5) to be simply Y (s/ε2):∣∣∣∣E{ ∂

∂xk

[
G1

(s1

ε2
,
s2

ε2
, Xε(u)

)]
Y
( s
ε2

)}∣∣∣∣ ≤ Cβ

(
s2 − s
ε2

)
E
{∣∣∣Y ( s

ε2

)∣∣∣} .
Multiplying these two inequalities and taking the square root we conculde that (6.7) holds.
This finishes the proof of Lemma 6.3. �

The proof of Proposition 6.1

Step 1. Taking a time-step backward. We start with a pair of times t > s with a gap
between them: t − s > 10εγ. Consider a partition s = t0 < t1 < · · · < tM+1 = t of the
interval [s, t] into subintervals of the length

εt = lε = (t− s)
([

t− s
εγ

])−1

,

where [x] is the integer part of x, so that εγ/2 ≤ lε ≤ 2εγ. The parameter γ ∈ (1, 2) is to be
defined later. The important aspect is that γ < 2 so that εt is much larger than the velocity
correlation time ε2. The basic idea in the proof of (6.3) is “to expand Xε(t) − Xε(s) in a
Taylor series” with a “large” time step O(εt). The first two terms in this expansion will be
explicitly computable. The error terms which are nominally large are shown to be small using
the mixing Lemma 6.3. The last point is the key to the whole argument.

Dropping the subscript ε of Xε we write for t > s:

X(t)−X(s) =
1

ε

∫ t

s

V
( u
ε2
, X(u)

)
du =

1

ε

M∑
i=0

ti+1∫
ti

V
( u
ε2
, X(u)

)
du (6.9)
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Our task is to estimate the integral inside the summation in the right side of (6.9). In
the preparation for the application of the mixing lemma, on the interval ti ≤ u ≤ ti+1 the
integrand can be rewritten as

V
( u
ε2
, X(u)

)
= V

( u
ε2
, X(ti−1)

)
+

∫ u

ti−1

d

du1

V
( u
ε2
, X(u1)

)
du

= V
( u
ε2
, X(ti−1)

)
+

u∫
ti−1

n∑
p=1

∂

∂xp

[
V
( u
ε2
, X(u1)

)](1

ε
Vp

(u1

ε2
, X(u1)

))
du1

= V
( u
ε2
, X(ti−1)

)
+

1

ε

∫ u

ti−1

G1

( u
ε2
,
u1

ε2
, X(u1)

)
du1.

The next step is to expand G1 as well, also around the “one-step-backward” time ti−1:

G1

( u
ε2
,
u1

ε2
, X(u1)

)
= G1

( u
ε2
,
u1

ε2
, X(ti−1)

)
+

1

ε

∫ u1

ti−1

G2

( u
ε2
,
u1

ε2
,
u2

ε2
, X(u2)

)
du2

with

G2(u, u1, u2, x) =
n∑
q=1

∂

∂xq
[G1 (u, u1, x)]Vq (u2, x) .

Putting together the above calculations we see that

X(t)−X(s) =
1

ε

M∑
i=0

∫ ti+1

ti

V
( u
ε2
, X(u)

)
du =

1

ε

M∑
i=0

∫ ti+1

ti

V
( u
ε2
, X(ti−1)

)
du

+
1

ε2

M∑
i=0

∫ ti+1

ti

[∫ u

ti−1

G1

( u
ε2
,
u1

ε2
, X(u1)

)
du1

]
du

=
1

ε

M∑
i=0

∫ ti+1

ti

V
( u
ε2
, X(ti−1)

)
du+

1

ε2

M∑
i=0

∫ ti+1

ti

[∫ u

ti−1

G1

( u
ε2
,
u1

ε2
, X(ti−1)

)
du1

]
du

+
1

ε3

M∑
i=0

∫ ti+1

ti

[∫ u

ti−1

[∫ u1

ti−1

G2

( u
ε2
,
u1

ε2
,
u2

ε2
, X(u2)

)
du2

]
du1

]
du.

The triple integral on the last line is deterministically small with an appropriate choice of γ:
the time interval in each integration is smaller than εγ and the total number of terms is at
most 2(t−s)/εγ as we have assumed that t−s ≥ 10εγ. Therefore, the last integral is bounded
by

1

ε3

∣∣∣∣∣
M∑
i=0

∫ ti+1

ti

[∫ u

ti−1

[∫ u1

ti−1

G2

( u
ε2
,
u1

ε2
,
u2

ε2
, X(u2)

)
du2

]
du1

]
du

∣∣∣∣∣ ≤ Cε2γ−3(t− s)

which is small if γ > 3/2. This is a general idea in proofs of weak coupling limits: pull back
one time step and expand the integrands until they become almost surely small, then compute
the limit of the (very) finite number of surviving terms. In our present case we have shown
that, for 3/2 < γ < 2,

X(t)−X(s) = L1(s, t) + L2(s, t) + E(s, t)
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where

L1(s, t) =
1

ε

M∑
i=0

ti+1∫
ti

V
( u
ε2
, X(ti−1)

)
du

and

L2(s, t) =
1

ε2

M∑
i=0

ti+1∫
ti

[∫ u

ti−1

G1

( u
ε2
,
u1

ε2
, X(ti−1)

)
du1

]
du,

while |E(s, t)| ≤ Cεα(t − s) with some α > 0 and a deterministic constant C > 0. This
finishes the first preliminary step in the proof of tightness.

Step 2. Application of the tightness criterion. Now we are ready to prove (6.3).

That is, we have to verify that for any non-negative and Vs/ε
2

0 -measurable random variable Y
we have for all 0 ≤ s ≤ t ≤ T such that t ≥ s+ 10εγ:

E
{
|X(t)−X(s)|2Y

}
≤ C(T )(t− s)E {Y } .

Our estimates in Step 1 show that it is actually enough to verify that

E
{

(Lj(s, t))
2Y
}
≤ C(t− s)E{Y }, j = 1, 2.

An estimate for L1. We first look at the term corresponding to L1: it is equal to

E
{

(L1(s, t))2Y
}

=
2

ε2

∑
i<j

n∑
p=1

ti+1∫
ti

tj+1∫
tj

E
{
Vp

( u
ε2
, X(ti−1)

)
Vp

(
u′

ε2
, X(tj−1)

)
Y

}
du′du

+
1

ε2

∑
j

n∑
p=1

tj+1∫
tj

tj+1∫
tj

E
{
Vp

( u
ε2
, X(tj−1)

)
Vp

(
u′

ε2
, X(tj−1)

)
Y

}
du′du =

∑
i≤j

Iij.

The idea is to use separation between ti−1 and tj−1 and apply the mixing lemma. Accordingly
we look at the cases i ≤ j − 2, i = j − 1 and i = j separately as the terms end up being of
a different order. The terms with i ≤ j − 2 may be estimated with the help of the mixing
Lemma 6.3 using the time gap between the times u′ and tj−1 ≥ ti+1 ≥ u which is much larger
than the correlation time ε2:

M∑
j=0

∑
i≤j−2

|Iij| ≤
C

ε2

M∑
j=0

∑
i≤j−2

ti+1∫
ti

tj+1∫
tj

β

(
u′ − tj−1

ε2

)
E {Y } du′du

≤ C

ε2
β
(
ε−2+γ

)
(t− s)2E {Y } ≤ Cεp(t− s)E {Y }

for any p > 0 since γ < 2 and β(s) decays faster than any power of s. The term I3 corre-
sponding to i = j can be estimated using the mixing lemma again, using the fact that tj−1 is
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smaller than both u and u′:

M∑
j=0

|Ijj| ≤
C

ε2

M∑
j=0

tj+1∫
tj

tj+1∫
tj

E
{
Vp

( u
ε2
, X(tj−1)

)
Vp

(
u′

ε2
, X(tj−1)

)
Y

}
du′du (6.10)

≤ 2C

ε2

∑
j∈I

tj+1∫
tj

tj+1∫
u′

β

(
u− u′

ε2

)
dudu′E {Y } ≤ C(t− s)E {Y }

∫ ∞
0

β(u)du.

The integral I2 with i = j − 1 is estimated similarly.
A better estimate estimate for L1. Let us now go one step further and actually identify

the limit of E{L1,j(s, t)L1,m(s, t)Y } with 1 ≤ j,m ≤ n. The previous calculations already
show that the term corresponding to the previous I1 (but now with Vj and Vm replacing Vp
and Vp) satisfies

|I1| ≤ Cεα(t− s)E{Y },

with α > 0 so we are interested only in the limit of I2 and I3. The term I3 is computed as
in (6.10) with the help of the mixing lemma:

∑
j∈I

|Ijj| =
1

ε2

M∑
j=0

tj+1∫
tj

tj+1∫
tj

E
{
Vj

( u
ε2
, X(tj−1)

)
Vm

(
u′

ε2
, X(tj−1)

)
Y

}
du′du (6.11)

=
1

ε2

M∑
j=0

tj+1∫
tj

tj+1∫
tj

Rjm

(
u− u′

ε2
, 0

)
dudu′E {Y }+ o(1)(t− s)E {Y }

=

[∫ ∞
−∞

Rjm(τ, 0)dτ + o(1)

]
(t− s)E {Y } .

Finally, I2 corresponding to i = j − 1 is computed as

∑
j∈I

|Ij−1,j| =
1

ε2

M∑
j=0

tj+1∫
tj

tj∫
tj−1

E
{
Vj

( u
ε2
, X(tj−1)

)
Vm

(
u′

ε2
, X(tj−2)

)
Y

}
du′du (6.12)

=
1

ε2

∑
j∈I

tj+1∫
tj

tj∫
tj−1

Rjm

(
u− u′

ε2
, 0

)
dudu′E {Y }+ o(1)(t− s)E {Y } = o(1)(t− s)E {Y } .

because tj+1 − tj = εγ � ε2. Therefore we actually have a more precise estimate

E {(L1,j(s, t)L1,m(s, t))Y } =

[∫ ∞
−∞

Rjm(τ, 0)dτ + o(1)

]
(t− s)E {Y } . (6.13)

An estimate for L2. Following the above steps one also establishes the required estimate
for L2:

E
{

(L2(s, t))2Y
}
≤ C(t− s)E{Y }. (6.14)
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There is no reason to repeat these calculations separately for L2 except that an even stronger
estimate than (6.14) holds with an appropriate choice of γ:

E
{

(L2(s, t))2Y
}
≤ Cεα(t− s)E{Y } (6.15)

with α > 0. We will need (6.15) in the identification of the limit, thus we will show it now:

E
{

(L2(s, t))2Y
}

=
1

ε4

∑
i,j

ti+1∫
ti

du

tj+1∫
tj

du′
u∫

ti−1

du1

u′∫
tj−1

du′1E
{
G1

( u
ε2
,
u1

ε2
, X(ti−1)

)
G1

(
u′

ε2
,
u′1
ε2
, X(tj−1)

)
Y

}
.

Once again, you split the sum above into terms with i ≤ j − 2, i = j − 1 and i = j: those
with i ≤ j − 2 add up to

1

ε4

∑
i≤j−2

ti+1∫
ti

du

tj+1∫
tj

du′
u∫

ti−1

du1

u′∫
tj−1

du′1E
{
G1

( u
ε2
,
u1

ε2
, X(ti−1)

)
G1

(
u′

ε2
,
u′1
ε2
, X(tj−1)

)
Y

}
≤ Cε2γ−4β

(
εγ−2

)
(t− s)2E{Y }.

We used in the above estimate the mixing lemma with the gap between ti−1 and tj−1 as well
as the fact that the length of each time interval is εγ while the total number of terms in
the sum is not more than (2(t − s)/εγ)2. The important difference with L1 is that the term
with i = j is also small:

1

ε4

∑
i

ti+1∫
ti

du

ti+1∫
ti

du′
u∫

ti−1

du1

u′∫
ti−1

du′1E
{
G1

( u
ε2
,
u1

ε2
, X(ti−1)

)
G1

(
u′

ε2
,
u′1
ε2
, X(ti−1)

)
Y

}
≤ Cε3γ−4(t− s)E{Y }

simply because now the number of summands is bounded by (2(t−s)/εγ) (without the square).
This means that if we take γ > 4/3 this term is bounded by the right side of (6.15). The
contribution of the terms with i = j − 1 is estimated identically – hence (6.15) indeed holds.

Summarizing our work so far (and restoring the missing indices) we have shown that

E {(Xm(t)−Xm(s))(Xn(t)−Xn(s))Y } =

[∫ ∞
−∞

Rmn(τ, 0)dτ + o(1)

]
(t− s)E {Y } (6.16)

for all t > s with t − s ≥ 10εγ. This, of course, implies (6.3) and hence the tightness of the
family Xε(t) follows.

Identification of the limit

In order to identify the limit all we have to do is verify that the limit is continuous (that we
already know) and the following two conditions hold: first,

lim
ε→0

E
{[

(Xε
j (t)−Xε

j (s))(X
ε
m(t)−Xε

m(s))− ajm(t− s)
]

Ψ
}

= 0
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for all bounded non-negative continuous functions

Ψ = Ψ(Xε(t1), . . . , Xε(tn)),

with 0 ≤ t1 ≤ t2 ≤ · · · ≤ tn ≤ s < t ≤ T . Second, we need

lim sup
ε→0

E
{

(Xε
j (t))

4
}
< +∞

for all t > 0. The former condition we have already verified in the previous section in the
proof of tightness. The latter may be checked using very similar arguments. This finishes the
proof of Theorem 4.2. �

7 The random Schrödinger equation: geometric optics

We will now consider the Schrödinger equation with a weak random potential:

iψt +
1

2
∆ψ − εV (t, x)ψ = 0. (7.1)

The random potential may be either time-dependent or time-independent, so that V = V (x).
We will always assume that V is a mean-zero random field, that is either space-time stationary
if V = V (t, x) or space stationary if V = V (x). Typically, the problems with a time-dependent
potential are easier since one can use mixing in time, in addition to the spatial mixing. As
usual, we will denote by R(t, x) (or R(x) for time-independent potentials) the two-point
correlation function of V (t, x) (or V (x)).

The Schrödinger equation (7.1) needs to be supplemented by an initial condition, which
is important both for the physics and mathematics of the problem. If a typical scale of
variations in the initial condition is lin and the correlation function of the random potential
has support of size lcor, then we should distinguish three regimes: lin � lcor – the initial
condition varies on the scales much faster than the random potential. This is known as the
random geometric optics regime. One can first pass to the ray description of wave propagation,
and then analyze the resulting random classical system. If lin ∼ lcor then wave has full
interactions with the random inhomogeneities, and energy scattering is described by a kinetic
equation. Accordingly, this is known as the kinetic regime. Finally, if lin � lcor so that
the scale of the random heterogeneities is much smaller than that of the initial condition,
then the heterogeneities produce an effective potential, and this situation is known as the
homogenization regime. We will discuss these regimes separately.

The Liouville-Green (Wentzel-Kramers-Brillouin) approximation

One natural way to look at weakly perturbed non-dissipative problems is provided by the
WKB approximation developed originally, and independently from each other, by Liouville
and Green in 1837. The idea is very simple, and we illustrate it for the Schrödinger equation
with a slowly varying potential

iψt +
1

2
∆ψ − V (εx)ψ = 0. (7.2)
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Rescaling time and space as t→ t/ε and x→ x/ε leads to

iεψt +
ε2

2
∆ψ − V (x)ψ = 0. (7.3)

Let us seek an oscillatory solution of the wave equation in the form

ψ(t, x) = A(t, x)eiS(t,x)/ε.

Here, A(t, x) is the wave amplitude and S(t, x) is its phase. Note that the amplitude and the
phase vary on the macroscopic scale (independent of ε) but, for ε � 1, the function ψ(t, x)
oscillates on the scale ε, which is the original microscopic scale in (7.2). Inserting this ansatz
for ψ(t, x) into (7.3), we get, in the leading order the eikonal equation

St +
|∇S|2

2
+ V (x) = 0. (7.4)

The next order of powers in ε gives the amplitude equation

(|A|2)t +∇ · (|A|2∇S) = 0. (7.5)

Let us make the following observation: consider the measure

W (t, x, ξ) = |A(t, x)|2δ(ξ −∇S(t, x)),

with A(t, x) and S(t, x) which solve the eikonal equation (7.4), and the amplitude equa-
tion (7.5). Then, a direct computation shows that W (t, x, ξ) satisfies the Liouville equation
of the classical mechanics

∂W

∂t
+ ξ · ∇xW −∇xV · ∇ξW = 0. (7.6)

The corresponding characteristics are

dX

dt
= K,

dK

dt
= −∇V (X), (7.7)

which is nothing but Newton’s equations of motion. This is probably the simplest connection
between the classical and quantum mechanics. We can think of W (t, x, ξ) as the phase space
energy density of the quantum particle: note that

ρ(t, x) := |A(t, x)|2 =

∫
W (t, x, ξ)dξ,

and if we think of (7.5) as the fluid equation

ρt +∇ · (ρv) = 0,

with the velocity v(t, x) = ∇S(t, x), then the support of W (t, x, ξ) is exactly at ξ = v(t, x).
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A caustic: seductiveness of the kinetic approach

Let us now explain how we can see the formation of a caustic in terms of the Liouville equation.
To be concrete and simple, consider the Schrödinger equation with V = 0, and let us take
the initial phase as S0(x) = −x2/2 with a smooth initial amplitude A0(x). Solution of the
eikonal equation

St +
1

2
S2
x = 0,

is given explicitly by S(t, x) = −x2/(2(1− t)) – a caustic appears at t = 1. The corresponding
characteristics for the amplitude equation satisfy

Ẋ = − X

1− t
, X(0) = x

and are given by X(t) = x(1− t) – hence all characteristics arrive to the point x = 0 at the
time t = 1. This is the caustic point. At this time the geometric optics approximation breaks
down and is no longer valid.

On the other hand, the Liouville equation (7.6) is linear, and its solutions should not break
down. Let us see what happens: as V = 0, the Liouville equation is

Wt + k · ∇xW = 0, W (0, x, k) = W0(x, k). (7.8)

Its solution is W (t, x, k) = W0(x−kt, k) and clearly exists for all time. Since the initial phase
is S0(x) = −x2/2, at t = 0 we have

W0(x, k) = |A0(x)|2δ(k + x),

so that the solution of (7.8) is

W (t, x, k) = |A0(x− kt)|2δ(k + x− kt).

This means that at the time t = 1 the solution

W (t = 1, x, k) = |A0(x− k)|2δ(x)

is no longer singular in momenta k but rather in space, being concentrated at x = 0. On the
other hand, the solution of the Liouville equation exists beyond this time, unlike that of the
eikonal equation, and from the Liouville point of view nothing particularly dramatic happens
at t = 0.

Anticipating the need to study problems in a random medium, a natural question then is
the following: suppose that the initial condition for the eikonal equation is S0(x) = k0 · x –
this is a plane wave, and the medium is weakly random. How long will it take for the solution
to form a caustic? If it happens very quickly, then the geometric options ansatz in a random
medium can not be used for too long – this is a very important point, as it gives the need to
very interesting mathematics!
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A stochastic caustic

Let us now make a jump of more than a hundred years and look at the question of when a
caustic would appear in a weakly random medium. This is the work of Kulkarny and White
in 1982 in 2D, and White in 1984 in 3D. Assume that the sound speed in the medium is
weakly fluctuating: it has the form

c(x) = 1 + εµ(x),

where µ(x) is a mean zero random process, stationary in space, and ε� 1 is a small parameter
measuring the strength of the fluctuations. As we have seen, typically, a mean zero random
fluctuation of size ε will produce a non-trivial effect on a time scale Tε ∼ ε−2. White (and
with Kulkarny) considered the ray equations in such medium, and in 2D it was shown (after
lengthy calculations) that on the time scale t ∼ ε−2/3 the ray curvature behaves as the solution
of the stochastic differential equation

dZ = −Z2dt+ dBt. (7.9)

Solutions of this stochastic differential equation blow up in a finite (but random) time, almost
surely. This means that (in the original time variables), a caustic will form at a random
time of the order T ∼ O(ε−2/3) which is much shorter than the ”interesting” central limit
time scale O(ε−2). Thus, a caustic happens relatively quickly, before one would expect the
macroscopic observables to be affected. This time is even much shorter than the naive “non-
trivial effect” time O(ε−1). Thus, a straightforward geometric optics ansatz in a weakly
random medium can be expected to hold only for times which are much shorter than times of
”real” interest. A different description has to be used if we want to understand what happens
on longer time scales, and this is accomplished by the kinetic theory.

The kinetic models of wave propagation in heterogenous media

We will not discuss much about the kinetic models in these notes but some comments are in
order.

We have at least three basic length scales in wave propagation problems: L – the overall
propagation distance from the source to our observation point, λ – the scale on which the
initial source is localized, and lc – the typical scale of variations of the medium. The latter two
scales are often not defined in a precise way, and we will explain later what exactly we mean
by them. Generally, we will be interested in the situations when the propagation distance L
is much larger than both λ and lc, giving even small variations in the microstructure a chance
to have a strong effect on the macroscopic features of the wave. This brings us to the next
important parameter: ε � 1 is the relative strength of the microscopic fluctuations in the
parameters of the medium. We will always assume that this strength is small.

Note that λ can often be chosen – this is, essentially, the wave length of the probing
signal, and we may modify it to suit a particular application. The propagation distance L
can also be chosen – this is the observation scale, that the observer can often (but not always)
control. On the other hand, the scale of the medium variations lc is typically outside of
our control – the medium is usually given to us, and we can not modify it. The same is true
for ε – this parameter is a feature of the medium and not of a particular setting of the physical
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experiment. A typical question we will be facing is “Given the strength of the microscopic
fluctuations ε � 1, and the medium variations scale lc, as well as the probing signal wave
length λ, how large can the propagation distance L be, so that we can still have an effective
macroscopic model for the wave, and what will that model be?” The answer will, broadly
speaking, depend on two factors: the relative size of lc and λ, and on the statistics of the
small scale fluctuations of the medium. The three regimes we would ideally describe in some
detail are random geometric optics, radiative transport, and random homogenization. It is
not very likely we will have time for all of them in these lectures.

The macroscopic models are often written in terms of the energy density in the phase
space. The underlying premise is that the multiple scattering of the waves by the medium
inhomogeneities will create “waves going in all directions at each point”. Thus, the primary
object is now not the wave field but the (empirical) wave energy density W (t, x, ξ) at the
time t > 0, at a position x ∈ Rn, with the wave vector ξ ∈ Rn. The wave energy evolution is
described in terms of the kinetic equation

∂W (t, x, ξ)

∂t
+∇ξω(ξ) · ∇xW (t, x, ξ) = LscW (t, x, ξ). (7.10)

Here, ω(ξ) is the dispersion relation of the wave and depends on the particular type of the
wave. The left side of (7.10) has nothing to do with the inhomogeneities of the medium1

and represents the free transport of the wave energy along the characteristics Ẋ = ∇ξω(ξ)
(which are straight lines). On the other hand, the scattering operator Lsc incorporates the
macroscopic effects of the small scale inhomogeneities, and involves the possibility for waves
to scatter in different directions at a given point. Its exact form depends on the physical
regime of the problem, and the task of modeling is typically two-fold: to find the relation of
the phase space energy density W (t, x, ξ) to the underlying wave field that can be directly
measured (pressure, electric and magnetic fields, elastic displacements, and so on, depending
on the problem), and to identify the scattering operator Lsc for a particular physical problem.

Particles in weakly random Hamiltonian flows

As we have seen, random heometric optics for the Schrödinegr equation reduces to the motion
of a Newtonian particle (7.7). If the random potential is weak, we are faced with the problem

dX(t)

dt
= K(t),

dK(t)

dt
= −ε∇V (X(t)), (7.11)

in dimensions d ≥ 3. This is the motion corresponding to the classical Hamiltonian

Hε(x, k) =
k2

2
+ εV (x). (7.12)

We will assume that V (x) is a spatially homogeneous random process with mean zero and a
smooth and rapidly decaying correlation function R(x):

E[V (x)] = 0, R(x) = E[V (y)V (x+ y)]. (7.13)

1Strictly speaking, this statement assumes that the fluctuations are sufficiently weak so that they do not
modify the wave dispersion relation.
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One may consider more general Hamiltonians of the form

Hε(x, k) = H0(k) + εH1(x, k), (7.14)

with a deterministic background Hamiltonian H0(k) and a random perturbation H1(x, k), but
we will not do this here.

We have previously considered in Section 2 white in time perturbations of a two-dimensional
Hamiltonian system that led to a slow diffusion of the particle across the level sets of the
Hamiltonian. The present situation is different. If ε = 0 in (7.11), then the Hamilto-
nan H0(k) = k2/2 is preserved along the trajectories, and the process K(t) stays on the
sphere |K(t)| = |K(0)|. Of course, when ε = 0 in (7.11) we actually have K(t) = K(0)
but that is beside the point. However, unlike for small white-in-time perturbations, here the
fluctuation of the Hamiltonian H0(k) in (7.14) is time-independent and Hamiltonian, thus the
full Hamiltonian Hε(x, k) is preserved by the dynamics for ε > 0. Hence, you do not expect to
see the diffusion across the level sets of the Hamiltonian H0(k). Rather, as the process K(t)
stays on the level sets of Hε(x, k), in the limit ε→ 0, we expect it to converge to a diffusion
on the level set H0(K(t)) = H0(K(0)). For the classical mechanics Hamiltonian (7.12), this
is simply the sphere |K(t)| = |K(0)|.

Thus, we will consider the process

Kε(t) = K
( t
ε2

)
, (7.15)

and we will see that it converges to a Brownian motion K̄(t) on the sphere |K(t)| = |K(0)|,
with a certain diffusivity matrix D(k). If we were to consider a more general background
Hamiltonian than H0(k) = k2/2, we would see in the limit a diffusion process on its level set
rather than on the sphere {|k| = const}, which is a level set of H0(k) = k2/2. As we are
dealing with long times, and Ẋ(t) = K(t) is not small, by the times of the order O(ε−2) the
particle will be ”very far” in space. Accordingly, the spatial component needs to be re-scaled:
the process

Xε(t) = ε2X
( t
ε2

)
(7.16)

converges to

X̄(t) =

∫ t

0

K̄(s)ds. (7.17)

In terms of PDEs, the Hamiltonian dynamics corresponds to the Liouville equation

φt + k · ∇xφ− ε∇V (x) · ∇kφ = 0. (7.18)

The above result says that

φε(t, x) = E(φ(
t

ε2
,
x

ε2
, k))

converges to φ̄(t, x, k), solution of

φ̄t + k · ∇xφ̄−
∂

∂kj

(
Djm(k)

∂φ̄

∂km

)
= 0. (7.19)
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Note, again, that the background dynamics is very important here: if we would consider
the (very artificial) Hamiltonian

Hε(x, k) = εV (x),

with a random function V (x), then the dynamics would be

dX

dt
= 0,

dK

dt
= ε∇V (X).

Its solution is trivial: X(t) = X(0), and

K(t) = ε∇V (X(0))t.

Thus, the long time limit of K(t) would not be diffusive at all. Essentially the role of the
background Hamiltonian is ensure that the particles ”goes around” and always sees a new
randomness, which creates mixing needed for the long time diffusive behavior.

Particles in a random force field: “short” times

We begin with the very basic theory of characteristics in a weakly random medium – this
material originated in the classical paper by J.B. Keller [35]. The characteristics for the
Liouville equation (7.18) are

dX

dt
= −K(t),

dK

dt
= ε∇V (X(t)), X(0) = x, K(0) = k. (7.20)

Let us seek the trajectories X(t), K(t) as a formal perturbation expansion

X(t) = X0(t) + εX1(t) + ε2X2(t) + . . . , K(t) = K0(t) + εK1(t) + ε2K2(t) + . . . .

We insert this expansion into the characteristics (7.20), and get in the leading order:

X0(t) = x− k0t, K0(t) = k.

As expected, in the leading order the characteristics are straight lines. The first order correc-
tion in ε is

K1(t) =

∫ t

0

∇V (X0(s))ds =

∫ t

0

∇V (x− ks)ds, (7.21)

and

X1(t) =

∫ t

0

K1(s)ds =

∫ t

0

(t− s)∇V (x− ks)ds. (7.22)

Naively, in order to see how long this approximation should hold, we estimate that during
a time T we would get K1(T ) ∼ T , and X1(T ) of the order T 2 meaning that we would
need εT 2 � 1, or T � ε−1/2 for the spatial trajectory to stay close to the straight line. Let
us now see how randomness affects this ballpark estimate – we have, as in (1.13):

〈K2
1(t)〉 =

∫ t

0

∫ t

0

〈∇V (x− ks) · ∇V (x− ks′)〉dsds′

= −
∫ t

0

∫ t

0

∆R(k(s− s′))dsds′ = Dt+O(1), as t→ +∞,
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with the diffusion coefficient

D = −
∫ ∞
−∞

∆R(ks)ds. (7.23)

We used here the correlation matrix for ∇V :

E
[∂V (y)

∂yi

∂V (x+ y)

∂yj

]
= −∂

2R(x)

∂xi∂xj
. (7.24)

As in Theorem 1.1, one can show that an appropriate rescaling Kδ(t) = δK1(t/δ2) converges,
as δ → 0, to a Brownian motion with the diffusion matrix

Dij = −
∫ ∞
−∞

∂2R(ks)

∂xi∂xj
ds. (7.25)

The variance of X1(t) can also be computed explicitly:

〈X2
1 (t)〉 =

∫ t

0

∫ t

0

(t− s)(t− s′)〈∇V (x− ks) · ∇V (x− ks′)〉dsds′

= −
∫ t

0

∫ t

0

(t− s)(t− s′)∆R(k(s− s′))dsds′ = Dt3

3
+O(1), as t→ +∞,

and, once again, with a bit more work it can be shown that an appropriate rescaling of X(t)
converges, at large times to the time integral of the Brownian motion with the diffusion
matrix Dij. The above computations indicate that the simple perturbation expansion should
hold for times T such that

ε2T 3 ∼ O(1),

that is, for times of the order T ∼ ε−2/3, which is much longer than the “deterministic
prediction” T ∼ ε−1/2. One should also note that this time scale is exactly when the stochastic
caustic happens according to the analysis of White and Kulkarny that led to (7.9).

Formally, this means that for large times (but much smaller than ε−2/3), the expected
value of the solutions of the Liouville equation

Wt + k · ∇xW − ε∇V (x) · ∇kW = 0, (7.26)

is well-approximated by the solutions of the Fokker-Planck kinetic equation

∂W̄

∂t
+ k · ∇xW̄ = ε2

n∑
i,j=1

Dij
∂2W̄

∂ki∂kj
, (7.27)

that is, E[W (t, x, k)] ≈ W̄ (t, x, k). This is probably the simplest way to get to a kinetic
description of waves in random media. Instead of trying to make this approximation result
precise, for times t � ε−2/3, let us explain why such result, while providing a very nice
“hooligan’s derivation of the kinetic limit”, can not “truly hold” for longer times, when the
deviation of the characteristics from straight lines will be not small. The problem is that the
original characteristics (7.20) preserve the classical Hamiltonian:

ω(x, k) =
k2

2
+ V (x),
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that is, ω(X(t), K(t)) = ω(X(0), K(0)). In particular, if, say, V (x) is a bounded random
potential, it is impossible for K(t) to behave as a Brownian motion for large times. Never-
theless, the overall picture described above is not too wrong, and in the next step we will see
how it can be naturally modified to see what happens at large times.

Random geometric optics: the long time limit

A particle in a random Hamiltonian

We will now study the “truly” long time asymptotics of geometric optics in a weakly random
medium. This problem can be analyzed in the general setting of a particle in a weakly random
Hamiltonian field:

dXε

dt
= ∇kHε,

dKε

dt
= −∇xHε, Xε(0) = 0, Kε(0) = k0, (7.28)

with a random Hamiltonian of the form Hε(x, k) = H0(k)+εH1(x, k). Here H0(k) is the back-
ground Hamiltonian and H1(x, k) is a random perturbation, while the small parameter ε� 1
measures the relative strength of random fluctuations. This was done in [3] and [43]. Here, we
will resist the temptation to describe the general results, and restrict ourselves to the case at
hand, with H0(k) = |k|2/2 and H1(x, k) = V (x), which simplifies some considerations. Thus,
we are interested in the Liouville equations

∂φ

∂t
+ k · ∇xφ− ε∇V (x) · ∇kφ = 0, (7.29)

and the corresponding characteristics

dX

dt
= K,

dK

dt
= −ε∇xV (X), X(0) = 0, K(0) = k0, (7.30)

on the time scale t ∼ ε−2. As usual, we will assume that the random potential V (x) is a
man-zero statistically homogeneous random field, with a rapidly decaying correlation func-
tion R(x):

E[V (x)] = 0, E[V (y)V (x+ y)] = R(x). (7.31)

We have already seen that at relatively short times t � ε−2/3 the “boosted” devia-
tion (K(t) − k0)/ε behaves as a Brownian motion. At the longer times, we are interested
not in the deviation from the original direction but in the particle momentum itself. An
important simple observation is that (7.30) preserves the Hamiltonian

H(x, k) =
k2

2
+ εV (x). (7.32)

Hence, the law of any possible limit for the process Kε(t) = K(t/ε2), as ε → 0, has to
be supported on the sphere |K(t)| = |k0| (and can not be a regular Brownian motion).
Moreover, one would expect the law of the limit process to be isotropic – there is no preferred
direction in the problem. One possibility is that Kε(t) tends to a uniform distribution on the
sphere {|k| = |k0|} – and this is, indeed, what happens at times t � ε−2. However, at an
intermediate stage, at times of the order ε−2, the process Kε(t) converges to the Brownian
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motion Bs(t) on the sphere (this is an isotropic diffusion such that |Bs(t)| = 1 for all t). This
intuitive result has been first proved in [37] in dimensions higher than two, and later extended
to two dimensions with the Poisson distribution of scatterers in [17], and in a general two-
dimensional setting in [44]. The rescaled spatial component Xε(t) = ε2X(t/ε2) converges to
the time integral of the Brownian motion on the sphere:

X(t) =

∫ t

0

Bs(τ)dτ.

In turn, the long time limit of a momentum diffusion is the standard spatial Brownian motion,
and we will see that on the times longer than ε−2 the spatial component X(t) converges to
the Brownian motion, while K(t) becomes uniformly distributed on the sphere {|k| = |k0|}.

Let us mention that another important, (in the context of waves in random media) Hamil-
tonian

Hε(x, k) = (c0 + εc1(x))|k|, (7.33)

arises in the geometrical optics limit of the wave equation. We will not address it directly here,
but, as we have mentioned, the analysis of the classical Hamiltonian (7.32) can be generalized
in a relatively straightforward way – see [43] for details. We stick here with (7.32) solely for
the sake of simplicity of presentation.

The Fokker-Planck limit

Let the function φε(t, x, k) satisfy the Liouville equation

∂φε

∂t
+ k · ∇xφ

ε − ε∇V (x) · ∇kφ
ε = 0, (7.34)

φε(0, x, k) = φ0(ε2x, k).

There are two assumptions implicitly made here: first is that the random potential is weak,
and the second is that the initial data varies on the scale 1/ε2 relative to the scale of the
variations of the potential. In the terminology of the introduction, this means that lc/L = ε2 –
or, we choose the particular observation scale L = lc/ε

2. One may wonder also as to what
happens on other observation scales – we will address this further below.

Let us define the diffusion matrix Dmn by

Dml(k) = − 1

|k|

∫ ∞
−∞

∂2R(sk̂)

∂xn∂xm
ds, m, l = 1, . . . , n. (7.35)

Note that if the correlation function is isotropic: R = R(|x|), then Dmn has a particularly
simple form:

Dml(k) = D(δmn − k̂lk̂m), D = − 2

|k|

∫ ∞
0

R′(r)

r
dr, m, l = 1, . . . , n. (7.36)

We have the following result.
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Theorem 7.1 Let φε be the solution of (7.34), with the initial data φ0 ∈ C∞c (R2d), whose
support is contained inside a spherical shell A(M) = {(x, k) : M−1 < |k| < M} for some
positive M > 0, and let φ̄ satisfy

∂φ̄

∂t
+ k · ∇xφ̄ =

d∑
m,n=1

∂

∂km

(
Dmn(k)

∂φ̄

∂kn

)
(7.37)

φ̄(0, x, k) = φ0(x, k).

Suppose that M ≥ M0 > 0 and T ≥ T0 > 0. Then, there exist two constants C, α0 > 0 such
that for all T ≥ T0

sup
(t,x,k)∈[0,T ]×K

∣∣∣∣Eφε( t

ε2
,
x

ε2
, k

)
− φ̄(t, x, k)

∣∣∣∣ ≤ CT (1 + ‖φ0‖1,4)εα0 (7.38)

for all compact sets K ⊂ A(M).

Note that

d∑
m=1

Dnm(k̂, k)k̂m = −
d∑

m=1

1

2|k|

∫ ∞
−∞

∂2R(sk̂)

∂xn∂xm
k̂mds = −

d∑
m=1

1

2|k|

∫ ∞
−∞

d

ds

(
∂R(sk̂)

∂xn

)
ds = 0

and thus the K-process generated by (7.37) is indeed a diffusion process on a sphere |k| =
const, or, equivalently, equations (7.37) for different values of |k| are decoupled. Another
important point is that the assumption that the initial data does not concentrate close to k = 0
is important – if |k| is very small, the particle moves very slowly, and does not have a sufficient
time to sample enough of the random medium by the time ε−2.

Note that the microscopic dynamics is reflected in the macroscopic limit in the dependence
of the diffusion matrix Dmn(k) on k – this, in particular, ensures that the limit diffusion stays
on the sphere, and, in a sense, is similar to our previous observations about the non-trivial
interactions between the background dynamics and fluctuations that lead to a macroscopic
limit.

Beyond the Fokker-Planck limit

Let us now return to the question of what happens to the solutions of the Liouville equation
with the initial data that varies on a scale much longer than ε−2 – in other words, the
observation is taken on even larger scales than described by the Fokker-Planck limit. It is
straightforward to see that solutions of the Fokker-Planck equation (7.37) themselves converge
in the long time limit to the solutions of the spatial diffusion equation. More, precisely, we
have the following result. Let φ̄γ(t, x, k) = φ̄(t/γ2, x/γ, k), where φ̄ satisfies (7.37) with slowly
varying initial data φ̄γ(0, t, x, k) = φ0(γx, k). We also let w(t, x, |k|) be the solution of the
spatial diffusion equation:

∂w

∂t
=

d∑
m,n=1

amn(|k|) ∂2w

∂xn∂xm
, (7.39)

w(0, x, |k|) = φ̄0(x, |k|)
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with the averaged initial data

φ̄0(x, k) =
1

Γn−1

∫
Sn−1

φ0(x, k)dΩ(k̂).

Here, dΩ(k̂) is the surface measure on the unit sphere Sn−1 and Γn is the area of an n-
dimensional sphere. The diffusion matrix A := [anm] in (7.39) is given explicitly as

aij(k) =
|k|2

Γn−1

∫
Sn−1

k̂iχj(k)dΩ(k̂). (7.40)

The functions χj appearing above are the mean-zero solutions of

d∑
m,i=1

∂

∂km

(
Dmi(k)

∂χj
∂ki

)
= −k̂j, (7.41)

and when the correlation functionR(x) is isotropic, so thatDmi is given by (7.36), they are just
multiples of k̂j: aj(k) = c(|k|)k̂j, with an appropriate constant c(|k|) that can be computed
explicitly. In that case, the matrix anm is a multiple of identity, and (7.39) becomes the
standard diffusion equation

∂w

∂t
= ā(|k|)εxw, (7.42)

with an appropriate diffusion constant ā.

Theorem 7.2 For every pair of times 0 < T∗ < T < +∞ the re-scaled solution φ̄γ(t, x, k) =
φ̄(t/γ2, x/γ, k) of (7.37) converges as γ → 0 in C([T∗, T ];L∞(R2d)) to w(t, x, k). Moreover,
there exists a constant C0 > 0, so that we have

‖w(t, ·)− φ̄γ(t, ·)‖L∞ ≤ C0 (γT +
√
γ) ‖φ0‖C1 , (7.43)

for all T∗ ≤ t ≤ T .

The proof of Theorem 7.2 is based on classical asymptotic expansions and is quite straight-
forward. As an immediate corollary of Theorems 7.1 and 7.2, we obtain the following result.

Theorem 7.3 Let φε be solution of (7.34) with the initial data φε(0, x, k) = φ0(ε2+αx, k) and
let w̄(t, x) be the solution of the diffusion equation (7.39) with the initial data w(0, x, k) =
φ̄0(x, k). Then, there exists α0 > 0 and a constant C > 0 so that for all 0 ≤ α < α0 and all
0 < T∗ ≤ T we have for all compact sets K ⊂ A(M):

sup
(t,x,k)∈[T∗,T ]×K

∣∣w(t, x, k)− Eφ̄ε(t, x, k)
∣∣ ≤ CTεα0−α, (7.44)

where φ̄ε(t, x, k) := φε (t/ε2+2α, x/ε2+α, k) .

Theorem 7.3 shows that if the initial data varies on a scale slightly larger than ε−2 then we
observe spatial diffusion for the solution (and uniform distribution in k) on the appropriate
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time scale. The requirement that α is small is most likely technical and a constraint of a
“perturbative” proof – the result should hold for any α > 0.

To summarize: if the initial data for the random Liouville equation

∂φ

∂t
+ k · ∇xφ− εV (x) · ∇xφ = 0, (7.45)

varies on the scale ε−2: φ(0, x) = φ0(ε2x, k), then on the time scale t ∼ ε−2 the expec-
tation of the rescaled solution φε(t, x, k) = φ(t/ε2, x/ε2, k) converges to the solution of the
Fokker-Planck equation. On the other hand, if the initial data varies on an even larger
scale: φ(0, x, k) = φ(ε2+αx, k) then on the time scale t ∼ ε−2−2α the expectation of the
rescaled field φε(t, x, k) = φ(t/ε2+2α, x/ε2+α, k) converges to the solution of the spatial dif-
fusion equation and is uniformly distributed in the directions k̂ for each |k| fixed. Thus, the
appropriate kinetic limit depends on the scale of the probing signal, which, in turn, determines
the proper time scale of the observations.

A formal derivation of the momentum diffusion

We now describe how the momentum diffusion operator in (7.37) can be derived in a quick
formal way. We represent the solution of (7.34) as φε(t, x, k) = ψε(ε2t, ε2x, k) and write an
asymptotic multiple scale expansion for ψε

ψε(t, x, k) = φ̄(t, x, k) + εφ1

(
t, x,

x

ε2
, k
)

+ ε2φ2

(
t, x,

x

ε2
, k
)

+ . . . (7.46)

We assume formally that the leading order term φ̄ is deterministic and independent of the
fast variable z = x/ε2. We insert this expansion into (7.34) and obtain in the order O (ε−1):

∇V (z) · ∇kφ̄− k · ∇zφ1 = 0. (7.47)

Let θ � 1 be a small positive regularization parameter that will be later sent to zero, and
consider a regularized version of (7.47):

1

|k|
∇V (z) · ∇kφ̄− k̂ · ∇zφ1 + θφ1 = 0,

Its solution is

φ1(z, k) = − 1

|k|

∫ ∞
0

d∑
m=1

∂V (z + sk̂)

∂zm

∂φ̄(t, x, k)

∂km
e−θsds, (7.48)

and the role of θ > 0 is to ensure that the integral in the right side converges. The next order
equation becomes upon averaging

∂φ̄

∂t
+ k · ∇xφ̄ = 〈∇V (z) · ∇kφ1〉. (7.49)

The term in the right side above may be written using expression (7.48) for φ1:

〈∇V (z) · ∇kφ1〉 =
〈 d∑
m,n=1

∂V (z)

∂zm

∂

∂km

( 1

|k|

∫ ∞
0

∂V (z + sk̂)

∂zn

∂φ̄(t, x, k)

∂kn
e−θsds

)〉
.
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Using spatial stationarity of H1(z, k) we may rewrite the above as

−
〈 d∑
m,n=1

V (z)
∂

∂zm

∂

∂km

( 1

|k|

∫ ∞
0

∂V (z + sk̂)

∂zn

∂φ̄(t, x, k)

∂kn
e−θsds

)〉
= −

d∑
m,n=1

∂

∂km

( 1

|k|

∫ ∞
0

〈
V (z, k)

∂2V (z + sk̂)

∂zn∂zm

〉∂φ̄(t, x, k)

∂kn
e−θsds

)
= −

d∑
m,n=1

∂

∂km

( 1

|k|

∫ ∞
0

∂2R(sk̂)

∂xn∂xm

∂φ̄(t, x, k)

∂kn
e−θsds

)
→ −1

2

d∑
m,n=1

∂

∂km

(
1

|k|

∫ ∞
−∞

∂2R(sk̂)

∂xn∂xm

∂φ̄(t, x, k)

∂kn
ds

)
, as θ → 0+.

We insert the above expression into (7.49) and obtain

∂φ̄

∂t
=

d∑
m,n=1

∂

∂kn

(
Dnm(k)

∂φ̄

∂km

)
+ k · ∇xφ̄ (7.50)

with the diffusion matrix D(k̂, k) as in (7.35). Observe that (7.50) is nothing but (7.37).
However, the naive asymptotic expansion (7.46) may not be justified directly, to the best of
my knowledge. The rigorous proof is based on a completely different method.

8 The Schrödinger equation: slowly varying initial con-

ditions

The last example we will consider in these notes is the Schrödinger equation with a weak
random potential:

iφt +
1

2
∆φ− εV (t, x)φ = 0, (8.1)

with initial conditions of the form φ(0, x) = φ0(δx), with δ � 1. In other words, the initial
condition varies on a scale much larger than the correlation length of the random potential. A
common choice is to take δ = ε so that the diffusively rescaled solution φε(t, x) = φ(t/ε2, x/ε)
satisfies

iφεt +
1

2
∆φε − 1

ε
V (

t

ε2
,
x

ε
)φε = 0, φε(0, x) = φ0(x). (8.2)

However, this is not a unique possible choice – it is interesting to consider any δ � 1.
Recall that δ = 1 corresponds to the kinetic regime that we are avoiding in these notes. For
convenience, we will set δ = εα with some α > 0. Our goal is to analyze the long time
behavior of φ(t, x), and understand the energy transfer from the low to high frequencies that
comes about from the inhomogeneities in the random media.

We assume that V (t, x) is a stationary mean-zero Gaussian random field with a spectral
representation

V (t, x) =

∫
Rd
eip·x

Ṽ (t, dp)

(2π)d
. (8.3)
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Here Ṽ (t, dp) is the stochastic measure and Ṽ (t, dp) = Ṽ ∗(t,−dp), so V is real-valued. Its
covariance function and power spectrum are

R(t, x) = E{V (s, y)V (s+ t, y + x)}, R̂(ω, ξ) =

∫
Rd+1

R(t, x)e−iωt−iξ·xdtdx.

We assume that the spatial power spectrum (the Fourier transform of R(t, x) in x only) has
the form

R̃(t, ξ) =

∫
Rd
R(t, x)e−iξ·xdx = e−g(ξ)|t|R̂(ξ), (8.4)

where R̂(ξ) ∈ L1(Rd), and the spectral gap g(ξ) ≥ 0, so that

R̂(ω, ξ) =
2g(ξ)R̂(ξ)

ω2 + g2(ξ)
. (8.5)

By Bochner’s theorem, we have R̂, R̃ ≥ 0, and we assume that

R̂(p)

g(p)
∈ L1(Rd) ∩ L∞(Rd). (8.6)

The compensated wave function

The standard approach to an understanding of the behavior of the solutions of the weakly
random Schrödinger equation is in the context of the kinetic limit [6, 7, 3, 53, 19, 46, 4],
through the study of the Wigner transform of the solution (the phase space resolved energy
density) [30]. We will proceed here as in [5, 45], focusing not on the weak limit of the energy
density of the solution but on the strong limit of the wave field itself. In order to motivate
the “correct” way to this end, let us mention that after a long time the phase of the wave
field acquires a large factor: for instance, setting V = 0 leads to an explicit expression

φ̂(t, ξ) = e−i|ξ|
2t/2φ̂(0, ξ)

for the Fourier transform of the solution. Thus, a convenient object in the context of long
time behaviors is the compensated wave function

ψ̂(t, ξ) = ei|ξ|
2t/2φ̂(t, ξ), (8.7)

which eliminates the deterministic component of the phase. This procedure is also known as
phase conjugation in the engineering and physical literature. The surprising miracle is that
after this simple-minded phase compensation, the wave field has a non-trivial limit. This is
surprisingly similar to what we have done at the very beginning for a particle in a strong
mean flow: there, we have subtracted the mean displacement. Here, we do the same – factor
out the background dynamics.
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Loose end #1: the high frequency initial data

In order to put things into some context, we first describe the results of [5] obtained when
the initial condition is not slowly varying:

φ(0, x) = φ0(x).

Let us set

D(p, ξ) =
2R̂(p)

(2π)d[g(p)− i(|ξ|2 − |ξ − p|2)/2]
, D(ξ) =

∫
Rd
D(p, ξ)dp. (8.8)

It is straightforward to check that

ReD(p, ξ) =
2R̂(p)g(p)

(2π)d[g2(p) + (|ξ|2 − |ξ − p|2)2/4]
=

1

(2π)d
R̂(
|ξ|2 − |ξ − p|2

2
, p). (8.9)

One of the results of [5] is that if

R̂(p)

g(p)
∈ L1(Rd),

then on the time scale t ∼ ε−2, the compensated wave function corresponding to the initial
data with α = 0 converges pointwise in distribution to a Gaussian random variable:

φ̂(
t

ε2
, ξ)e

i|ξ|2t
2ε2 ⇒ φ̂0(ξ)e−

1
2
D(ξ)t + Z(t, ξ). (8.10)

Here, Z(t, ξ) is a centered, complex valued Gaussian with the variance

E{|Z(t, ξ)|2} = Ŵ (t, ξ)− |φ̂0(ξ)|2e−ReD(ξ)t. (8.11)

The function Ŵ solves a (space-homogeneous) kinetic equation

∂tŴ =

∫
Rd
R̂(
|p|2 − |ξ|2

2
, p− ξ)(Ŵ (t, p)− Ŵ (t, ξ))

dp

(2π)d
, (8.12)

with the initial condition
Ŵ (0, ξ) = |φ̂0(ξ)|2.

This result is consistent with the aforementioned “traditional” kinetic equation approaches.

Loose end #2: homogenization of the very low frequencies

The results in the high frequency regime (α = 0) should be contrasted with the analysis of
Bal and Zhang in [57, 58] for the case α = 1, performed for time-independent potentials. For
the initial value problem

iφt +
1

2
∆φ− εV (x)φ = 0, (8.13)

φ(0, x) = φ0(εx),
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with a mean-zero Gaussian random potential V (x), they have established a homogenization
result:

φε(t, x) := φ
( t
ε2
,
x

ε

)
converges in probability, as ε→ 0 to a deterministic limit φ̄(t, x), which satisfies the Schrödinger
equation

iφ̄t +
1

2
∆φ̄− V̄ φ̄ = 0, (8.14)

φ̄(0, x) = φ0(x).

The effective potential is constant and is given by

V̄ =

∫
Rd

R̂(p)dp

|p|2
.

Let us mention that the choice α = 1 is special, as then the overall phase of the solution at
the times t ∼ ε−2 is

t

ε2
ε2|ξ|2 = O(1),

so that no phase compensation is needed.

Homogenization of the low frequencies

Summarizing the above results, while solutions with the high frequency initial data have a
random limit on the time scale t ∼ ε−2, as in (8.10), solutions with the “very slowly varying”
initial data as in (8.13) are homogenized on this time scale – their limit is deterministic. Our
first goal is to understand where the transition between the two regimes occurs – this is the
motivation for introducing a general α > 0. It will turn out that the homogenization result
(formulated for the compensated wave function) holds for all α > 0 – that is, no matter how
“relatively high” the low frequency of the initial condition is, solution has a deterministic limit
at times t ∼ ε−2. However, we will see that, unlike in the setting of [57, 58], the temporal
fluctuations of the random potential lead to an effective potential with a non-trivial imaginary
part. This means that the homogenized field loses mass in the limit. This loss of mass is
attributed to the energy transfer to the high frequencies, which, as we show, account for the
mass missing in the low frequencies, do not homogenize, and satisfy a kinetic type limit. We
also analyze the random fluctuations of the low frequency component of the wave field and
characterize the corrector to the homogenized limit.

More precisely, we consider the Schrödinger equation

i∂tφ(t, x) +
1

2
∆φ(t, x)− εV (t, x)φ(t, x) = 0 (8.15)

with a low frequency initial condition

φ(0, x) = φ0(κx), (8.16)

59



with κ� 1. The Fourier transform of the initial condition is

φ̂(0, ξ) = κ−dφ̂0

( ξ
κ

)
.

Thus, if the function φ̂0(ξ) is of the Schwartz class, φ̂(0, ξ) is concentrated on the wave vectors
ξ of the size O(κ). While the Schrödinger equation with a time-dependent potential conserves
the total mass:

M(t) =

∫
Rd
|φ(t, x)|2dx =

∫
Rd
|φ(0, x)|2dx, (8.17)

the total energy

E(t) =

∫
Rd

[|∇φ|2 + εV |φ|2]dx (8.18)

is not conserved, unlike for time-independent potentials. Thus, even if the mass is initially
concentrated in the low wave numbers, after a long time evolution it may spread to O(1)
frequencies as well. As the potential is weak, the time it takes for the mass to spread over a
range of frequencies will be long.

We consider the long time behavior of the solution, on the time scale of the order t ∼ ε−2,
when the effect of the weak random potential will be non-trivial. We will first consider the
“low frequency” rescaled compensated wave function:

ψε(t, ξ) = κdφ̂(
t

ε2
, κξ)e

iκ2|ξ|2t
2ε2 (8.19)

with the initial data ψε(0, ξ) = φ̂0(ξ). This allows us to study the low frequency component
of the solution – wave numbers of the order O(κ). A straightforward computation shows that
this function is a solution of the following integral equation

ψε(t, ξ) = φ̂0(ξ) +
1

iε

∫ t

0

∫
Rd

Ṽ ( s
ε2
, dp)

(2π)d
eiκ

2(|ξ|2−|ξ− p
κ
|2) s

2ε2ψε(s, ξ −
p

κ
)ds. (8.20)

We have the following result for the low frequencies.

Theorem 8.1 Assume that κ = εα with α > 0. Then, for fixed t > 0 and ξ ∈ Rd,

ψε(t, ξ)→ ψ̄(t, ξ) = φ̂0(ξ)e−
1
2
D(0)t in probability as ε→ 0. (8.21)

Let us stress that ξ = O(1) in the argument of the function ψε(t, ξ) corresponds to ξ = O(κ)
in the argument of the function φ – Theorem 8.1 addresses the evolution of the low frequencies
of the solution of the Schrödinger equation with a slowly varying initial condition. Recall that

D(0) =

∫
Rd

2R̂(p)

(2π)d(g(p) + i|p|2/2)
dp, (8.22)

and, as g(p) ≥ 0, we have ReD(0) > 0. Therefore, the passage to limit ε→ 0 in (8.21) induces
a loss of the L2(Rd) norm: while

‖ψε(t, ·)‖L2 = ‖φ0‖L2 ,
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as can be seen simply from the definition of ψε(t, ξ), we have

‖ψ̄(t, ·)‖L2 = ‖φ0‖L2e−ReD(0)t/2 < ‖φ0‖L2 .

The natural question is how does the loss of mass happen, and where does the mass go?
Mathematically, there is no contradiction, as the convergence in Theorem 8.1 is not uniform
with respect to ξ ∈ Rd. From a physical point of view, as we have mentioned, the time
dependence of the random potential breaks the conservation of the energy (8.18), which allows
the mass to escape to the high frequencies. Let us mention that in the time-independent case
[11], where the conservation of the energy prevents the escape of mass from the low frequencies,
it is shown that the mass is conserved as well.

Generation of the high frequencies

We now investigate the generation of the high frequencies in the above setting. Once again,
we consider the solution φ(t, x) of (8.15) with the initial data (8.16). We stress that in all our
results the initial condition (8.16) is the same – various rescalings in Theorem 8.1 above and
Theorems 8.2, 8.3 and 8.4 below correspond to zooming into various frequency ranges in the
same solution. Our next goal is to understand how the mass escapes from the low frequencies
(those of the initial condition) to the high frequencies, generated by the interaction with the
random potential. As we are now interested in the high and not the low frequencies, we define
the compensated wave function not quite as in (8.19), but as

Ψε(t, ξ) = κ
d
2 φ̂(

t

ε2
, ξ)e

i|ξ|2t
2ε2 , (8.23)

so that the frequency is not rescaled. The initial condition for Ψε is

Ψε(0, ξ) = κ−d/2φ̂0(ξ/κ).

The pre-factor κd/2 in (8.23) is chosen so that we get a non-trivial limit. This function solves
the integral equation

Ψε(t, ξ) =
1

κd/2
φ̂0(

ξ

κ
) +

1

iε

∫ t

0

∫
Rd

Ṽ ( s
ε2
, dp)

(2π)d
ei(|ξ|

2−|ξ−p|2) s
2ε2 Ψε(s, ξ − p)ds. (8.24)

The following result explains the loss of mass observed in Theorem 8.1, and tracks the gener-
ation of the high frequencies.

Theorem 8.2 Assume that κ = εα with α > 0, then for fixed t > 0 and ξ 6= 0, we have

Ψε(t, ξ)⇒ Z̄(t, ξ) in law as ε→ 0,

where Z̄(t, ξ) is a centered, complex valued Gaussian random variable. Its variance Ŵδ(t, ξ)

is the solution of (8.12) with the initial condition Ŵδ(0, ξ) = ‖φ̂0‖2
2δ(ξ).

The variance Ŵδ(t, ξ) can be explicitly written as a series expansion

Ŵδ(t, ξ) = Ŵδ,b(t, ξ) + Ŵδ,s(t, ξ), (8.25)
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with the ballistic part
Ŵδ,b(t, ξ) = ‖φ̂0‖2e−ReD(0)tδ(ξ),

and the scattering part

Ŵδ,s(t, ξ) =
∞∑
k=1

‖φ̂0‖2
2

∫
0=vk+1≤vk≤...≤v1≤v0=t

dv

∫
Rkd

dP

k∏
j=0

e−(vj−vj+1)ReD(ξ−...−Pj)

×
k∏
j=1

ReD(Pj, ξ − . . .− Pj−1)δ(ξ − P1 − . . .− Pk).

Let us mention that Ŵδ(t, ξ) = Ŵδ,s(t, ξ) when ξ 6= 0, that is, only the scattering part
contributes to the variance in Theorem 8.2. We also observe∫

Rd
Ŵδ,b(t, ξ)dξ = ‖φ̂0‖2

2e
−ReD(0)t,

which equals to the mass of the low frequency waves.
Theorems 8.1 and 8.2 describe the dynamics of on different scales of the frequency domain.

In the former case, the low frequencies are zoomed in, and we find a deterministic evolution
(homogenzation). In the latter, we track the high frequency component of the solution, so
that the low frequency initial condition shrinks to a point source at the origin, which generates
the high frequency waves.

The fluctuation analysis in homogenization regime

We now return to the analysis of the behavior of the low frequencies. According to Theo-
rem 8.1, the compensated wave function homogenizes for the low frequencies, hence the next
interesting object is the fluctuation, which we define as

Uε(t, ξ) =
1

κd/2
(ψε(t, ξ)− E{ψε(t, ξ)}).

Here, ψε(t, ξ) is defined as in (8.19). Heuristically, since the homogenization limit in Theo-
rem 8.1 captures the ballistic component of the wave field, we expect small random fluctuations
consisting of the remaining scattering components. Indeed, we will see that the fluctuation
exhibits a kinetic-like behavior. Let us set

Wα(t, ξ) =


0 if α ∈ (0, 1),

−D(0, 0)e−D(0)t

∫ t

0

∫
Rd
φ̂0(ξ − p)φ̂0(ξ + p)e−i|p|

2vdpdv if α = 1,

−D(0, 0)te−D(0)t

∫
Rd
φ̂0(ξ − p)φ̂0(ξ + p)dp if α > 1.

(8.26)

Theorem 8.3 Assume that κ = εα, then for fixed t > 0 and ξ ∈ Rd, we have

Uε(t, ξ)⇒ Zδ(t, ξ) = Xδ(t, ξ) + iYδ(t, ξ) as ε→ 0,
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where Xδ, Yδ are centered, jointly Gaussian random variables such that

E{|Zδ(t, ξ)|2} = Ŵδ,s(t, 0),

and
E{Zδ(t, ξ)2} =Wα(t, ξ).

Therefore, we can write
ψε(t, ξ) = E{ψε(t, ξ)}+ κd/2Uε(t, ξ),

and Theorem 8.3 shows that when κ = εα, with α < 1, the fluctuation Uε(t, ξ) is approximately

distributed as Zδ(t, 0), a centered complex Gaussian random variable with variance Ŵδ,s(t, 0).
This is similar to the result of Theorem 8.2 for the high frequency, albeit the variance is now
given by the transport solution evaluated at the origin ξ = 0, since we are now in the low
frequency regime. If we let α → 0 (which is the same as κ→ 1, so that the initial condition
is less and less slowly varying), then, formally, ψε(t, ξ) is distributed as

φ̂0(ξ)e−
1
2
D(0)t + Zδ(t, 0),

which is consistent with (8.10). That is, Theorem 8.3 also interpolates between the determin-
istic limit for the low frequencies and the random behavior of the high frequency component
of the solution.

The Wigner transform of the random fluctuation

Besides the pointwise fluctuation for a fixed ξ ∈ Rd, we also consider the fluctuation of ψε(t, ξ)
as a wave field. The tool we use is the Wigner transform for some β ≥ 0:

Wε(t, x, ξ) =

∫
Rd
Uε(t, ξ +

εβη

2
)U∗ε (t, ξ − εβη

2
)eiη·x

dη

(2π)d
. (8.27)

Let W̄δ be the solution to the kinetic equation

∂tW̄ + ξ · ∇xW̄ =

∫
Rd
R̂(
|p|2 − |ξ|2

2
, p− ξ)(W̄ (t, x, p)− W̄ (t, x, ξ))

dp

(2π)d
, (8.28)

with the initial condition
W̄δ(0, x, ξ) = ‖φ̂0‖2

2δ(ξ)δ(x),

and W̄δ,b, W̄δ,s be the ballistic and scattering component of W̄δ, respectively:

W̄δ,b(t, x, ξ) = ‖φ̂0‖2
2δ(ξ)δ(x)e−ReD(0)t,

and

W̄δ,s(t, x, ξ) =
∞∑
k=1

‖φ̂0‖2
2

∫
0=vk+1≤vk≤...≤v1≤v0=t

dv

∫
Rkd

dP
k∏
j=0

e−(vj−vj+1)ReD(ξ−...−Pj)

×
k∏
j=1

ReD(Pj, ξ − . . .− Pj−1)δ(ξ − P1 − . . .− Pk)δ(x− ξt+
k∑
j=1

Pjvj).
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Theorem 8.4 Assume that κ = εα, α ∈ (0, 1) and α + β = 2, then for any test function
ϕ ∈ S(R2d) and t > 0,∫

R2d

Wε(t, x, ξ)ϕ
∗(x, ξ)dxdξ →

∫
R2d

W̄δ,s(t, x, 0)ϕ∗(x, ξ)dxdξ

in probability as ε→ 0.

As Theorem 8.1 indicates that the ballistic component of transport solution gives the low fre-
quency behavior, we conclude from Theorems 8.3 and 8.4 that the small random fluctuations
are described by the scattering component of the solution of the kinetic equation.
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[52] M.D. Šklover, Classical dynamical systems on the torus with continuous spectrum, Izv.
Vuzov, 10, 1967, 113–124.

[53] H. Spohn, Derivation of the transport equation for electrons moving through random
impurities, J. Stat. Phys., 17 (1977(6)), pp. 385–412.

[54] S. Sternberg, On differential equations on the torus, Amer. J. Math., 79, 1957, 397–402.

[55] B.S. White, The stochastic caustic, SIAM J. Appl. Math. 44, 1984, 127–149.

[56] E. Wigner, On the quantum correction for thermodynamic equilibrium, Physical Rev.,
40, 1932, 749-759.

[57] N. Zhang and G. Bal, Convergence to spde of the schrödinger equation with large, random
potential, Comm. Math. Sci., 12 (2014).

[58] N. Zhang and G. Bal, Homogenization of the schroedinger equation with large, random
potential, Stoch. Dyn., 14 (2014).

67


