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The imaging problem

Goal: Locate targets in a scattering medium.

Scattering media has many unknown inhomogeneities, time reversal would
not work (human tissues, the atmosphere, construction materials, etc).

Model the media as realizations of a random process. Wave equations
contain random coefficients.

Each sample is one realization. Predictions has to be statistically stable,

characterized by a big SNR= E[·]√
Var[·] .
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Length scales of a scattering medium

The scattering mean free path / mean free path ls: the average distance
between two scattering events of a photon.

The transport mean free path / transport length lt : the average distance
after which the travel direction of a photon is randomized (the wave does
not have a well defined propagation direction).

Propagation distance L: the size of the medium.
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Scattering regimes

Scattering regimes for different scattering media (fixed L).
Image credit: John Schotland (and daughter).
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Scattering regimes and imaging methods
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Scattering regimes for L’s (fixed medium).
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Imaging methods for mesoscopic problems

Incoherent methods (intensity is measured):

confocal microscopy
optical projection tomography
single-scattering optical tomography

Coherent methods (both phase and intensity are measured):

optical coherence microscopy
interferometric synthetic aperture microscopy
coherent interferometry (CINT)

Works on imaging of nonlinear scatterers in the mesoscopic regime

experimental: Brown-McKee-diTomaso-Pluen-Boucher-Jain ’03,
SeedHsieh-Grange-Pu-Psaltis ’09
theoretical: Habib-Garnier-Millien ’14

Works on CINT Borcea-Papanicolaou-Tsogka ’05, ’06, ’07,
Borcea-Garnier-Papanicolaou ’11
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Set up of imaging

Scalar wave equation
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Wave equations

Incident field u(i)1,0(x;θ q) = eikθ q·x:

∆u(i)1,0(x;θ)+ k2u(i)1,0(x;θ) = 0.

u1(x;θ) and u2(x;θ): the fields at frequency ω and 2ω.

Wave equations:

∆u1(x;θ)+ k2[1+4πη(x)]u1(x;θ)

=−4πk2[η1(x)u1(x;θ)+2η2(x)u2(x;θ)u∗1(x;θ)] ,

∆u2(x;θ)+(2k)2[1+4πη(x)]u2(x;θ)

=−4π(2k)2[η1(x)u2(x;θ)+η2(x)u
2
1(x;θ)].
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Measured fields and data

Measured fields at the receivers xs

u1(xs,θ q), u2(xs,θ q), s = 1, . . . ,Nx, q = 1, . . . ,Nθ .

Data:

d1(xs,θ q) = u1(xs;θ q)−u(i)1,0(xs;θ q),

d2(xs,θ q) = u2(xs;θ q).
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Analysis: ideas and results

The forward model

Kinematics: The propagation of the wave is in the scaling regime of
geometric optics with randomized phases.
Dynamics: The scattering off the targets are approximated by the Born
approximation (waves are scattered once by the scatterers).

The reconstruction

The migration imaging functions are superpositions of the
backpropagated data.
The coherent-interferometry (CINT) imaging functions are
superpositions of the backpropagated crosscorrelations of the data.

The performance

CINT is more trustworthy (stable) than migration because CINT
mitigates the random phases (at the expense of resolution).
The image of the nonlinear η2 has no spurious peaks.
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Forward model of the data

Born approximations:

u1(x;θ)≈ u(i)1 (x;θ)+ k2
∫

dyη1(y)G(x,y;ω)u(i)1 (y;θ),

u2(x;θ)≈ (2k)2
∫

dyη2(y)G(x,y;2ω)[u(i)1 (y;θ)]2,

where G is the Green function in the random medium:

∆G(x,y;ω)+ k2[1+4πη(x)]G(x,y;ω) =−4piδ (x),

and u(i)1 the randomized incident field:

∆u(i)1 (x;θ)+ k2[1+4πη(x)]u(i)1 (x;θ) = 0.

11 / 31



Migration in optically thin media

The standard Migration imaging function (whose peaks are the estimated
locations of the scatterers) is

IM
j (y

R) =
Nx

∑
s=1

Nθ

∑
q=1

G?
0(y

R,xs; jω)e−i jkθ q·yR
d j(xs,θ q) =: ( jk)2

∫
V

dyη j(y)K
M
j (y

R,y).

G0(x,y;ω) =
eik|x−y|

|x− y| .

If the medium is optically thin:

u(i)1 (xs;θ q)≈ u(i)1,0(xs;θ q) and G(xs,y; jω)≈ G0(xs,y; jω),

then the point spread function of the imaging function is

KM
j (y

R) =
Nx

∑
s=1

Nθ

∑
q=1

G?
0(y

R,xs; jω)e−i jkθ q·yR
G0(xs,y; jω)ei jkθ q·y.

It peaks at yR ≈ y due to constructive superposition with resolution λL/( ja).

It breaks down when the cumulative scattering is not negligible.
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Model of the scattering background

Suppose that the random medium consists of small, mean zero fluctuations
which lacks long range correlations and has an integrable autocorrelation
function:

4πη(x) = σ µ
(x

l

)
.

µ is a bounded, mean zero and stationary random process, which lacks long
range correlation.

l is the correlation length, the spatial scale over which the autocorrelation
decays.

σ is the amplitude of the fluctuations.

For convenience (elementary formulas), suppose the autocorrelation takes
the form

E[µ(h)µ(0)] = e−
|h|2

2 .
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Geometrical optics in random media

Random geometrical optics wave propagation model

λ � l� L,

σ � (l/L)3/2 , σ �
√

λ l/L.

the waves propagate along straight lines, the variance of the amplitude of
the Green function is negligible.
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Geometrical optics in random media

The Green function is

G(x,y; jω) = G0(x,y; jω)ei jkν(x,y), forx ∈ A and y ∈ R,

where

ν(x,y) =
σ |x− y|

2

∫ 1

0
dt µ

( (1− t)y
l

+
tx
l

)
.

The randomized incident wave is

u(i)1 (x;θ) = eikθ ·x+ikγ(x,θ), forx ∈ A and θ ∈C,

where

γ(x,θ) =
σ |x− x(i)(θ)|

2

∫ 1

0
dt µ

( (1− t)x
l

+
tx(i)(θ)

l

)
.

ν(x,y) and γ(x,θ) are approximately Gaussian.
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Randomization of the waves

Large wavefront distortions

σ � λ√
lL

.

consistent when l�
√

λL.

Paraxial regime
a� (λL3)1/4� L,

and

r� λL2

a2 � a.
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Randomization of the waves

The expectation of the Green function is

E [G(x,y; jω)] = G0(x,y; jω)E [exp [i jkν(x,y)]]

≈ G0(x,y; jω)exp
[
− ( jk)2E[ν2(x,y)]

2

]
= G0(x,y; jω)exp

[
−|x− y|

S j

]
,

where S j are the mean scattering free paths:

S j =
8√

2πσ2( jk)2l
� L.

The expectation of the norm square of the Green function is

E[|G(x,y))|2] = E[|G0(x,y))|2].

Thus the SNR is exponentially small for |x− y| ∼ L.
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Migration is unstable

The signal-to-noise ratio (SNR) of the Migration imaging functions are

SNR(IM
j (y

R)) :=
E[|IM

j (y
R)|2]

SD[IM
j (yR)]

∝ exp
[
−|x− y|

S j

]
.

This is exponentially small near the location of the scatterers.

It fails to focus or the peaks change unpredictably with the realizations of
the random medium.

This is caused by the large random phases of the Green function (and the
incident field).
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CINT imaging functions

The CINT imaging function is

ICINT
j (yR)(xs,θ q,yR) =

Ñx

∑
s̃=1

Ñθ

∑
q̃=1

Φ

( x̃s̃

X j

)
Φ

( θ̃ q̃

Θ j

)
×b j

(
xs +

x̃s̃

2
,θ q +

θ̃ q̃

2
,yR
)

b?j
(

xs−
x̃s̃

2
,θ q−

θ̃ q̃

2
,yR
)
,

which uses local correlations to eliminate random phases and extract deterministic
phases. Here Φ is a window function,

b j(xs,θ q,yR) = d j(xs,θ q)G?
0(y

R,xs; jω)e−i jkθ q·yR
,

the center-offsets coordinates for the receivers are

xss′ = (xs + xs′)/2, x̃ss′ = xs− xs′ , s,s′ = 1, . . . ,Nx,

and those for the incident directions are

θ qq′ = (θ q +θ q′)/2, θ̃ qq′ = θ q−θ q′ , q,q′ = 1, . . . ,Nθ .
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Decorrelation of the waves and choice of window widths

The second moment of the Green function is

E
[
G(x,y; jω)G?(x′,y; jω)

]
≈ 1

L2 exp

[
i jk
(

L+
|x⊥− y⊥|2

2L

)
−|x

′
⊥− x⊥|2
2X2

d, j

]
,

where

Xd, j = l

√
3S j

2L
= O

(
λ
√

l
σ
√

L

)
� l.

The second moment of the randomized incident wave is

E
[
ud

1(x,θ)ud
1(x
′,θ ′)

]
≈ e

ik(x·θ−x′·θ ′)− 3|Pϑ x̃|2−3|x−x(i)(θ)|̃x·Pϑ θ̃+|x−x(i)(θ)|2 |Pϑ θ̃ |2
2X2

d,1 ,

where x̃ = x− x′, θ̃ = θ −θ ′.
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Decorrelation of the waves and choice of window widths

The second moments of the waves impinging on the scatterer at y are

E
[
ud

1(y,θ)ud
1(y,θ

′)
]
≈ e

iky·θ̃− |Pϑ θ̃ |2
2Θ2

d ,

where

Θd =
Xd,1

|y− y(i)(ϑ)| �
l
L
.

The incident waves and the scatterers waves decorrelate:

a� (λL2)1/3.

These second moments are exponentially small over receiver location offsets
comparable to the decorrelation length Xd, j, or over incident angle offsets
comparable to the decorrelation angle Θd .

Choose X ≈ X j and Θ j ≈Θd/ j.
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Stability of CINT

CINT is statistically stable when

a� l.

Note that all the above scaling constraints are consistent

λ �
√

λL� l� (λL2)1/3� a� (λL3)1/4� L,

λ√
lL
� σ �

√
λ l
L

.
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The CINT image of the quadratic susceptibility

The expectation of the CINT image of η2 is

E
[
ICINT
2 (yR)

]
≈ (2π)3

2

(
4k2 〈η2〉2 αΘe

aXe

L2

)2

× exp

[
−1

2

(
2kXe|y⊥− yR

⊥|
L

)2

− 1
2
(
2kΘe|Pϑ (y− yR)|

)2
]
.

The Variance of the CINT image of η2 is (l/a)2E
[
ICINT
2 (yR)

]2
The SNR of the imaging function evaluated at the scatterer location is of
the order a/l� 1.

The resolution is Lλ
Xe

, which is worse than the resolution of the migration

images in homogeneous media Lλ
2a .

The peak of the CINT image can be observed in the search region R with

linear size r since λL/Xe
λL2/a2 � 1.
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The CINT image of η1

The CINT image of η1 has big spurious peaks near the receiver array.

Recall that

d1(xs,θ q) = u1(xs;θ q)−u(i)1,0(xs;θ q),

d2(xs,θ q) = u2(xs;θ q).

It’s caused by the uncompensated distorted incident wave in the data.

The image of η2 does not suffer from this problem.
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Numerics: another scaling regime

The scalings for the numerics is different from geometric optics in random
media:

L = 20λ , l = 0.3λ , a = 20λ , σ = 0.01∗4π,

X1/2 = X2 = 7λ , Θ =
π
5
.

All the above results hold qualitatively.
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One realization of the random medium
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Images
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The Migration (top) and CINT (bottom) images of η1 (left) and η2 (right).
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Another realization of the random medium
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Images
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The Migration (top) and CINT (bottom) images of η1 (left) and η2 (right).
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Numerics
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The CINT images of η1 (left, rescaled) and η2 (right) in the entire domain.
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Thank you!
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