
Eigenvalues problems in inverse scattering theory

Samuel Cogar

Department of Mathematical Sciences
University of Delaware

Advisors: David Colton and Peter Monk
Email: cogar@udel.edu

Website: sites.udel.edu/cogar

Research supported by the Army Research Office through the National
Defense Science and Engineering Graduate (NDSEG) Fellowship

Samuel Cogar (University of Delaware) Eigenvalues problems in inverse scattering May 2018 1 / 26



Introduction

Outline

1 Introduction

2 Eigenvalue problems

3 Numerical Examples

4 Related and Future Work

Samuel Cogar (University of Delaware) Eigenvalues problems in inverse scattering May 2018 2 / 26



Introduction

Scattering by an inhomogeneous medium

u 

s

D
i

u 

∆us + k2us = 0 in R3 \ D,
∇ · A∇u + k2nu = 0 in D,

u = us + ui on ∂D,

∂u

∂νA
=
∂(us + ui )

∂ν
on ∂D,

lim
r→∞

r
(∂us
∂r
− ikus

)
= 0, r = |x | .

A is a 3× 3 matrix function with L∞(D) entries which represents the
anisotropic properties of the material, <(A) positive-definite, =(A)
nonpositive

n ∈ L∞(D) is the index of refraction, <(n) > 0, =(n) ≥ 0

ui is an incident field which satisfies the Helmholtz equation in R3

(except for possibly at one point)
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Introduction

The scattered field us

The Sommerfeld radiation condition

lim
r→∞

r

(
∂us

∂r
− ikus

)
= 0

is assumed to hold uniformly in all directions, and it ensures that the
scattered field us is outgoing rather than incoming.

For the plane wave incident field ui (x) = e ikx·d with |d | = 1, the scattered
field us has the asymptotic behavior

us(x) =
e ik|x|

|x |
u∞(x̂ , d) +O

(
1

|x |2

)

as |x | → ∞, where x̂ := x/ |x | and u∞(x̂ , d) is the far field pattern.
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Introduction

The far field operator

We define the far field operator F : L2(S2)→ L2(S2) by

(Fg)(x̂) :=

∫
S2
u∞(x̂ , d)g(d)ds(d), x̂ ∈ S2.

With the Herglotz wave function vg defined by

vg (x) :=

∫
S2
e ikx·dg(d)ds(d), x ∈ R3,

linearity of the scattering problem implies that Fg is the far field pattern for
the incident field ui = vg .

The operator F is compact and has infinitely many eigenvalues.
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Introduction

Nondestructive testing of materials

A problem in the field of nondestructive testing is to detect a flaw in a
material using only its measured scattering data u∞(x̂ , d) for some
observation directions x̂ and incident directions d .

Theorem: If A = I , then the refractive index n is uniquely determined by a
knowledge of the far field pattern u∞(x̂ , d) for x̂ , d ∈ S2 and a fixed wave
number k .

D. Colton and R. Kress, Inverse Acoustic and Electromagnetic
Scattering Theory, 3rd edition, Springer, New York, 2013.

It has been shown that there exist anisotropic materials (A 6= I ) for which
the far field data does not uniquely determine A and n!

F. Gylys-Colwell, An inverse problem for the Helmholtz equation,
Inverse Problems, 1996.

Samuel Cogar (University of Delaware) Eigenvalues problems in inverse scattering May 2018 6 / 26



Eigenvalue problems

Outline

1 Introduction

2 Eigenvalue problems

3 Numerical Examples

4 Related and Future Work

Samuel Cogar (University of Delaware) Eigenvalues problems in inverse scattering May 2018 7 / 26



Eigenvalue problems

Target signatures

Since we only wish to detect a change in the material properties, we
use the idea of a target signature: a set of numbers which
corresponds to a material.

A good target signature satisfies the following properties:

1. the target signature should exist for any given material;
2. one should be able to compute the target signature from scattering

data;
3. minimal data collection should be required, preferably for a single fixed

frequency.

With a good choice of target signature, we hope to infer changes in a
material compared to some reference configuration from shifts in the
target signature.
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Eigenvalue problems

Scattering resonances

Values of the wave number k for which there exist nontrivial solutions
of the scattering problem corresponding to ui = 0 are called
scattering resonances.

The study of scattering resonances has produced beautiful
mathematics and provided insight into both direct and inverse
scattering theory.

S. Dyatlov and M. Zworski, Mathematical Theory of Scattering
Resonances, in preparation.

However, every resonance has negative imaginary part and hence their
detection from far field data becomes problematic.
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Eigenvalue problems

Transmission eigenvalues

Theorem: The far field operator F : L2(S2)→ L2(S2) is injective with
dense range if and only if there does not exist a nontrivial solution to the
transmission eigenvalue problem of finding w , v ∈ H1(D) satisfying

∇ · A∇w + k2nw = 0 in D,

∆v + k2v = 0 in D,

w − v = 0 on ∂D,

∂w

∂νA
− ∂v

∂ν
= 0 on ∂D,

such that v is a Herglotz wave function.
Definition: A value of the wave number k ∈ C for which this problem has
nontrivial solutions is called a transmission eigenvalue.
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Eigenvalue problems

Transmission eigenvalues

A transmission eigenvalue may be viewed as a value of the wave
number for which no scattering occurs for special incident fields.

Transmission eigenvalues have received considerable attention since
their introduction by Kirsch (1986) and Colton and Monk (1988). A
great deal of effort has been spent in studying their discreteness,
existence, and distribution in the complex plane.

F. Cakoni, D. Colton, and H. Haddar, Inverse Scattering Theory
and Transmission Eigenvalues, SIAM, Philadelphia, 2016.

However, only real transmission eigenvalues may be detected from far
field data, no real transmission eigenvalues exist for absorbing media,
and the detection of transmission eigenvalues requires collecting data
for multiple frequencies in a predetermined range.
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Eigenvalue problems

A modified far field operator

Many of the problems faced by using scattering resonances or
transmission eigenvalues involve their relationship to the physical
parameter of frequency.

We can overcome this issue by modifying the far field operator and
generating new eigenvalue problems whose eigenparameters are
entirely artificial.

We consider an auxiliary scattering problem depending on a
parameter η with scattered field us0, and we let F0 : L2(S2)→ L2(S2)
be the corresponding auxiliary far field operator.

We construct the modified far field operator as F := F − F0, which
may be written explicitly as

(Fg)(x̂) =

∫
S2

[
u∞(x̂ , d)− u0,∞(x̂ , d)

]
g(d)ds(d), x̂ ∈ S2.
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Eigenvalue problems

Modified transmission eigenvalues

We choose some γ > 0, and we consider the transmission auxiliary problem

∆us0 + k2us0 = 0 in R3 \ B,
1

γ
∆u0 + k2ηu0 = 0 in B,

u0 − (us0 + ui ) = 0 on ∂B,

1

γ

∂u0
∂ν
− ∂(us0 + ui )

∂ν
= 0 on ∂B,

lim
r→∞

r

(
∂us0
∂r
− ikus0

)
= 0 r = |x | .
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Eigenvalue problems

Modified transmission eigenvalues

In this case, the modified far field operator F is injective with dense range
provided that there exist no nontrivial solutions (w , v) ∈ H1(B)× H1(B)
of the modified transmission eigenvalue problem

∇ · A∇w + k2nw = 0 in B,

1

γ
∆v + k2ηv = 0 in B,

w − v = 0 on ∂B,

∂w

∂ν
− 1

γ

∂v

∂ν
= 0 on ∂B.

Definition: A value of η for which there exist nontrivial solutions of this
problem is called a modified transmission eigenvalue.
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Eigenvalue problems

Modified transmission eigenvalues

The modified transmission eigenvalue problem possesses many
desirable properties, including discreteness, existence even for
complex-valued n ∈ C∞(B), and the ability to detect eigenvalues
using only data for a single k > 0.

For A = I , the choice γ 6= 1 is sufficient for the modified transmission
eigenvalue problem to be of Fredholm type.

The choice of γ can dramatically affect the sensitivity of the
eigenvalues to changes in n, in some cases improving the sensitivity
by an order of magnitude.

S. C., D. Colton, S. Meng, and P. Monk, Modified transmission
eigenvalues in inverse scattering theory, Inverse Problems, 2017.
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Eigenvalue problems

A variational formulation

Find (w , v) ∈ H := {(ϕ,ψ) ∈ H1(B)× H1(B) | ϕ− ψ ∈ H1
0 (B)} which satisfies

(A∇w ,∇w ′)B −
1

γ
(∇v ,∇v ′)B − k2(nw ,w ′)B + k2η(v , v ′)B = 0

for all (w ′, v ′) ∈ H.
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Eigenvalue problems

A variational formulation

Find (w , v) ∈ H := {(ϕ,ψ) ∈ H1(B)× H1(B) | ϕ− ψ ∈ H1
0 (B)} which satisfies[

(A∇w ,∇w ′)B −
1

γ
(∇v ,∇v ′)B + k2α(w ,w ′)B − k2β(v , v ′)B

]
+
[
− k2((n + α)w ,w ′)B + k2(η + β)(v , v ′)B

]
= 0

for all (w ′, v ′) ∈ H. If Â,Bη : H → H represent the first and second bracketed
expressions, respectively, then we arrive at the operator equation

(Â + Bη)(w , v) = 0.

Theorem: The operator Bη is compact. Under certain conditions on γ, the

operator Â is invertible.
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Eigenvalue problems

Generalized linear sampling method (GLSM)

We define the GLSM cost functional

Jα(g) := α
∣∣(F0g , g)L2(S2)

∣∣+ ‖Fg − Φ∞(·, z)‖L2(S2)

and we let {gα
z } be the minimizing sequence satisfying

Jα(gα
z ) ≤

(
inf

g∈L2(S2)
Jα(g)

)
+ Cα.

Theorem: (F0g
α
z , g

α
z )L2(S2) is bounded as α→ 0 if and only if η is not a modified

transmission eigenvalue.

Note: In practice we use a regularized cost function Jδα(·) and minimize it using a
suitable optimization scheme.

L. Audibert, F. Cakoni, H. Haddar, New sets of eigenvalues in inverse
scattering for inhomogeneous media and their determination from scattering
data, Inverse Problems, 2017.
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Numerical Examples

The test domain

We perform tests in two dimensions using an L-shaped domain with
n = 4 unless otherwise stated.
We choose B to be the ball of radius 1.5 centered at the origin.
We test both γ = 0.5 and γ = 2.

Figure: Eigenfunction corresponding to η = −12.3088
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Numerical Examples

Sensitivity of the eigenvalues to changes in the location of
a circular flaw

Figure: γ = 0.5 Figure: γ = 2
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Numerical Examples

Sensitivity of the eigenvalues to changes in the size of a
circular flaw

Figure: γ = 0.5 Figure: γ = 2
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Numerical Examples

Detecting eigenvalues from far field data

Figure: γ = 0.5, n = 4 Figure: γ = 0.5, n = 4 + 4i
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Related and Future Work

Related Work

∇ · A∇w + k2nw = 0, γ∆v + k2ηv in R3 \ B

w − v = 0,
∂w

∂νA
− γ ∂v

∂ν
= 0 on ∂B

lim
r→∞

r

(
∂w

∂r
− ikw

)
= 0, lim

r→∞
r

(
∂v

∂r
− ikv

)
= 0

S. C., D. Colton, and P. Monk, Using eigenvalues to detect anomalies in the
exterior of a cavity, Inverse Problems (accepted).

∆w + k2w = 0 in B \ Γ, γ∆v + k2ηv = 0 in B,

w− = 0,
∂w+

∂ν
+ iσw+ = 0 on Γ,

w − v = 0,
∂w

∂ν
− γ ∂v

∂ν
= 0 on ∂B

S. C., A modified transmission eigenvalue problem for scattering by a
partially coated crack, under review.
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Related and Future Work

Future Work

Develop a modified transmission eigenvalue problem for
electromagnetic scattering (and possibly elastic scattering)

For a constant permittivity ε with contrast supported in the unit ball,
the electromagnetic modified transmission eigenvalues accumulate at
both +∞ and ε. No compactness!

Design more exotic auxiliary problems which may improve detection
of eigenvalues with limited aperture data or for non-smooth domains

Investigate the precise effect of changes in a material on the
eigenvalues
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