Inverse source problem for the wave equation with reduced data: an explicit solution

Ngoc Do
University of Arizona
(joint with L. Kunyansky)

Fort Collins, May 252018

Inverse problems and an example

Direct problem: solve a given PDE.
Inverse problem: given solution on the boundary, determine coefficient(s) in PDE.
An example: X-rays - send a narrow beams of X-rays with initial intensity $I_{\text {in }}$ through the body, measure $I_{\text {out }}$.

Detector

- $I_{\text {out }}=l_{\text {in }} \exp \left(-\int_{L} f(x) d x\right)$
- Radon transform

$$
\mathcal{R} f(t, \omega):=\int_{x \cdot \omega=t} f(x) d x
$$

- $\mathcal{R} f(-t,-\omega)=\mathcal{R} f(t, \omega)$

Inverse problem for X -rays:
given $\mathcal{R} f(t, \omega)$ for $(t, \omega) \in \mathbb{R} \times S$, reconstruct atten. coef. $f(x)$

Inverting the Radon transform

Inversion of the Radon transform is a well-solved problem by now.

$$
f(x)=\frac{1}{4 \pi} \mathcal{R}^{*} \mathcal{H} \frac{\partial}{\partial t} \mathcal{R} f(t, \omega)
$$

where the adjoint (backprojection) operator R^{*} is

$$
\left(\mathcal{R}^{*} h\right)(x) \equiv \int_{\mathbb{S}^{1}} h(w, x \cdot \omega) d w
$$

and \mathcal{H} is the Hilbert transform

$$
(\mathcal{H} u)(p) \equiv \text { p.v. } \frac{1}{\pi} \int_{\mathbb{R}} \frac{u(s)}{p-s} d s
$$

This is the famous filtered backprojection inversion formula.

Hybrid methods: motivation

- Acoustic waves yield high resolution but the contrast is low.
- Conductivity in tumors is much higher than that in healthy tissues $\Longrightarrow E M$ waves or currents yield high contrast.
Electrical impedance tomography, optical and microwave tomography lead to strongly non-linear and ill-posed inverse problems

Idea: Use hybrid techniques: couple ultrasound with EM field:
Thermo-Acoustic and Photo-Acoustic Tomography (TAT/PAT) Ultrasound Modulated Optical Tomography (UMOT) Acousto-Electric Tomography (AET) Magneto-Acousto-Electric Tomography (MAET) Magneto-Acoustic Tomography with Magnetic Induction (MAT-MI)

Thermo- and photo-acoustic tomography (TAT/PAT)

Send a short EM pulse \Rightarrow
EM energy will be absorbed \Rightarrow
Tissues will heat and expand \Rightarrow
Acoustic wave will propagate \Rightarrow
Detectors will measure acoustic pressure

Inverse source problem of TAT/PAT:
given pressure on the boundary, find the initial pressure

Open space TAT

Detectors do not reflect or distort the waves
Waves propagate to infinity
In theory, surface 「 may be closed or open - but in reality, should be open.

Formulation of the problem

We consider the homogeneous case: constant speed of sound $c(x) \equiv 1$ (acceptable!)
Acoustic pressure $u(t, x)$ satisfies the wave equation

$$
\left\{\begin{array}{l}
u_{t t}=\Delta u, x \in \mathbb{R}^{n} \\
u_{t}(0, x)=0 \\
u(0, x)=f(x)
\end{array}\right.
$$

Initial pressure $f(x)$ is supported within bounded region $\Omega_{0} \subseteq \Omega$.
The boundary of Ω is a closed surface Γ.
Measurements $g(t, y) \equiv u(t, y)$ are done on the subset $S \subset \Gamma$.
Inverse source problem:
Given $g(t, y),(t, y) \in[0, \operatorname{diam}(\Omega)] \times S$, reconstruct $f(x)$
This problem was studied intensively.
We are interested in explicit, theoretically exact inversion formulas with S being a proper subset of Γ.

Direct problem for TAT/PAT

Acoustic pressure $u(t, x)$ satisfies the wave equation

$$
\left\{\begin{array}{l}
u_{t t}=\Delta u, x \in \mathbb{R}^{n} \\
u_{t}(0, x)=0 \\
u(0, x)=f(x)
\end{array}\right.
$$

Solution of this equation is

$$
u(t, y) \equiv \frac{\partial}{\partial t} \int_{\Omega_{0}} f(x) \Phi_{n}(t, x-y) d x
$$

where the $\Phi_{n}(t, x)$ is Green function for free wave equation

$$
\Phi_{2}(t, x)=\frac{H(t-|x|)}{2 \pi \sqrt{t^{2}-|x|^{2}}}, \Phi_{3}(t, x)=\frac{\delta(t-|x|)}{4 \pi|x|}
$$

In particular, measurements $g(t, y) \equiv u(t, y)$ on S :

$$
g(t, y)=\frac{\partial}{\partial t} G(t, y), G(t, y) \equiv \int_{\Omega_{0}} f(x) \Phi_{n}(t, x-y) d x, y \in S \subset \Gamma
$$

Integral geometry formulation

Circular/Spherical Radon transform $I(t, y)$:

$$
I(t, y) \equiv t^{n-1} \int_{\mathbb{S}^{n-1}} f(y+t \hat{\nu}) d \hat{\nu}
$$

Data $g(t, y)$ is directly related to the circular Radon transform. In 3D, the relation is very simple

$$
g(t, y)=\frac{\partial}{\partial t}\left(\frac{I(t, y)}{4 \pi t}\right), y \in \mathbb{S}_{2}
$$

In 2D, the connection is through the Abel transform:

$$
g(t, y)=\frac{\partial}{\partial t} \int_{0}^{t} \frac{I(r, y)}{2 \pi \sqrt{t^{2}-r^{2}}} d r, y \in \mathbb{S}_{1}
$$

Inverse source problem:

Given spherical data $I(t, y), t \in[0, \operatorname{diam}(\Omega)], y \in S$, reconstruct $f(x)$

Known inversion formulas for various surfaces S

S is a plane: multiple works
"Universal formula" in 3D: a sphere, a plane, a cylinder (Xu \& Wang)
Spheres (multiple works by Finch et al; Kunyansky; Nguyen)
Ellipsoids and paraboloids (Natterer; Haltmeier;
Palamodov;Salman)
Limiting cases of ellipsoids and paraboloids (Haltmeier \&
Pereverzyev Jr.)
More complicated curves and surfaces (Palamodov)
Triangles, squares, cubes, and some tetrahedra (Kunyansky)
Corner-like domains in 3D, a segment of Coxeter cross in 2D (Kunyansky)
Less explicit: series techniques (Kunyansky; Haltmeier et al) In all of these works either S is closed $(S=\Gamma)$, or $S=\Gamma$ is unbounded

Motivation, theoretical standpoint, and our goal

Why reduced data?

(1) A body part can't be surrounded by detectors from all sides
(2) An unbounded surface needs to be truncated
(3) Acoustic waves deteriorate during propagation

Theoretical standpoint:
(1) Uniqueness and observation time: If S is a smooth and closed surface bounding domain Ω, then the TAT/PAT data on S collected for time $0 \leq t \leq 0.5 \operatorname{diam}(\Omega)$ uniquely determines f.
(2) Visibility condition: x_{0} is in the visible region iff any line passing through x_{0} intersects S at least once.

Our goal

$$
\begin{aligned}
& \text { given } \mathbf{g}(\mathbf{t}, \mathbf{y})=u(t, y), t \in[0, a], a<\operatorname{diam}(\Omega), y \in \text { open bounded } \\
& S \text {, reconstruct } \operatorname{Rf}(t, \omega) .
\end{aligned}
$$

Representing a plane wave by a single layer potential

Suppose $\delta(t-x \cdot \omega)$ enters Ω at $T_{0}(\omega)$ and leaves at $T_{1}(\omega)$. Define interval $\mathcal{T}(\omega) \equiv\left(T_{0}(\omega), T_{1}(\omega)\right)$.
We want to represent $\delta(t-\omega \cdot x), x \in \Omega, t \in\left(T_{0}(\omega), 0\right]$ as

$$
\delta(\tau-x \cdot \omega)=\int_{T_{0}(\omega)}^{\tau} \int_{\Gamma} \Phi_{n}(\tau-t, x-y) \varphi_{\omega}(t, y) d y d t
$$

where density $\varphi_{\omega}(t, y)$ is a distribution supported on $\mathcal{T}(\omega) \times \Gamma$. General scattering theory: this problem is uniquely solvable in the sense of distributions.

More important, $\varphi_{\omega}(t, y)=0$ for $t<x \cdot \omega$.

Inverse source problem

Measurements $g(t, y) \equiv u(t, y)$ on S are given by:

$$
g(t, y)=\frac{\partial}{\partial t} G(t, y), G(t, y) \equiv \int_{\Omega_{0}} f(x) \Phi_{n}(t, x-y) d x, y \in S \subset \Gamma
$$

We want to recover the Radon projections of $f(x)$ defined as

$$
\mathcal{R} f(\tau, \omega) \equiv \int_{x \cdot \omega=\tau} f(x) d x=\int_{\Omega_{0}} f(x) \delta(\tau-\omega \cdot x) d x
$$

Let us multiply $G(t, y)$ by $\varphi_{\omega}(\tau-t, y)$ and integrate over $\left(0, \tau-T_{0}(\omega)\right] \times \Gamma$:

$$
\begin{aligned}
& \int_{0}^{\tau-T_{0}(\omega)} \int_{\Gamma} G(t, y) \varphi_{\omega}(\tau-t, y) d y d t \\
= & \int_{0}^{\tau-T_{0}(\omega)} \int_{\Gamma}\left[\int_{\Omega_{0}} f(x) \Phi_{n}(t, x-y) d x\right] \varphi_{\omega}(\tau-t, y) d y d t \\
= & \int_{\Omega_{0}} f(x)\left[\int_{T_{0}(\omega)}^{\tau} \int_{\Gamma}^{\tau} \Phi_{n}(\tau-s, x-y) \varphi_{\omega}(s, y) d y d s\right] d x \\
= & \int_{\Omega_{0}} f(x) \delta(-\omega \cdot x+\tau) d x=\mathcal{R} f(\tau, \omega), \omega \in \mathbb{S}^{n-1}, \tau \in \mathcal{T}(\omega)
\end{aligned}
$$

Similarly,

$$
\frac{\partial}{\partial \tau} \mathcal{R} f(\tau, \omega)=\int_{0}^{\tau-T_{0}(\omega)} \int_{\Gamma} g(t, y) \varphi_{\omega}(\tau-t, y) d y d t, \omega \in \mathbb{S}^{n-1}, \tau \in \mathcal{T}(\omega)
$$

For circular and spherical geometry

Theorem (Half-time data)

For $n=2$, 3, given $\Omega_{0} \equiv B_{n}(0,1), S \equiv \Gamma \equiv \mathbb{S}_{n-1}$, Radon projections $\mathcal{R} f(t, \omega)$ can be fully reconstructed from halftime data $g(t, y), t \in[0,1], y \in S$.

Theorem (Open observation surface with temporally reduced data)

For $n=2,3$, given Ω_{0} to be the lower half of the unit ball $B_{n}(0,1)$, Radon projections $\mathcal{R} f(t, \omega)$ can be fully reconstructed from reduced data $g(t, y), t \in[0,2-1 / \sqrt{2}] \approx[0,1.3], y \in S_{n}$, where $S_{2}=\left\{(x, y): x^{2}+y^{2}=1,|y| \leq 1 / \sqrt{2}\right\}$,

$$
S_{3}=\left\{(x, y, z): x^{2}+y^{2}+z^{2}=1,|z| \leq 1 / \sqrt{2}\right\} .
$$

Fast algorithm for the circular geometry

1. Expand $\widetilde{g}(t, \hat{y})$ in the Fourier series and Fourier-transform the result to obtain $\widehat{\widetilde{g}}_{k}(\rho)$ for each $\rho \geq 0$;
2. For each grid value of $\rho \geq 0$, compute coefficients
$b_{k}(\rho) \equiv \frac{4}{i} \frac{i^{|k|}}{H_{|k|}^{(1)}(\rho)} \widehat{\widetilde{g}}_{k}(\rho)$ and extend them to negative ρ 's by complex conjugation;
3. For each grid value of ρ, sum up series $\sum_{k} b_{k}(\rho) e^{i k \varpi}$, and apply the inverse Fourier transform in ρ to find $\frac{\partial}{\partial \tau} \mathcal{R} f(\tau, \omega)$;
4. Anti-differentiate $\widehat{\widehat{\partial} \mathcal{\partial} \mathcal{R} f}(\tau, \omega)$ to find $\widehat{\mathcal{R} f(\tau, \omega)}$;
5. Compute $\mathcal{R} f(\omega, \tau)$ by extracting the correct values of $\widehat{\mathcal{R} f(\omega, \tau)}$ within the intervals prescribed by the theorem presented above.
This is fast: all steps are either FFT's or multiplications; the total complexity is $O\left(m^{2} \log m\right)$ flops for an $m \times m$ grid (vs. $O\left(m^{3}\right)$ for filtration/backprojection).

Our phantom is a collection of slightly smoothed characteristic functions of circles.
S is the acquisition surface.

Solve wave equation find $g(t, \omega(\theta+\pi))$

Reconstruction results, truncated circular geometry

Exact $\mathcal{R} f(\tau, \omega(\theta))$

Reconstruction error after step 5

Number of "detectors" $=512$, reconstruction time $=0.4 \mathrm{sec}$.,

Reconstructed $\mathcal{R} f(\tau, \omega(\theta))$ on step 5
number of time samples $=257$, relative L^{∞} error ≈ 5.E-4.

Phantom

Reconstruction Error(not to scale)
Relative error in $f(x)$ measured in $L^{2}(\Omega) \approx 0.6 \%$.

Next simulation, circular geometry with 50% noise (in L^{2})

Noisy data $g(t, \omega(\theta+\pi))$

Reconstruction from noisy data

Reconstructed $\mathcal{R} f(\tau, \omega(0))$ vs exact Relative L^{2} error in the reconstructed $\mathcal{R} f(\tau, \omega)$ is $\approx 7 \%$.

Reconstructing $f(x)$ from data with 50% noise

Phantom
Relative error in $f(x)$ measured in $L^{2}(\Omega) \approx 28 \%$

Fast algorithm for the spherical geometry

1. Expand $\widehat{\widetilde{g}}(\rho, \hat{y})$ in spherical harmonics in \hat{y} and compute the Fourier transform in t to obtain $\widehat{\widetilde{g}}_{m, k}(\rho), k=0,1, \cdots, m=\overline{-k, k}$;
2. For $\rho \geq 0$, compute $b_{k}(\rho) \equiv \frac{4 \pi}{i \rho} \frac{i^{k}}{h_{k}^{(1)}(\rho)} \widehat{\widetilde{g}}_{m, k}(\rho)$, and extend to
$\rho<0$ by complex conjugation;
3. For each ρ and ω sum up series $\sum_{k=0}^{\infty} \sum_{m=-k}^{k} b_{m, k}(\rho) \overline{Y_{m}^{k}(\omega)}$ and compute the inverse Fourier transform to get $\frac{\partial}{\partial \tau} \mathcal{R} f(\tau, \omega)$;
4. Anti-differentiate $\widetilde{\frac{\partial}{\partial \tau} \mathcal{R} f}(\tau, \omega)$ to find $\widetilde{\mathcal{R} f}(\tau, \omega)$;
5. Compute $\mathcal{R} f(\tau, \omega)$ by extracting the correct values of $\widehat{\mathcal{R} f(\tau, \omega)}$ within the intervals prescribed by the theorem presented above. This algorithm is fast: the total complexity is $O\left(m^{4}\right)$ flops for an $m \times m \times m$ grid (vs. $O\left(m^{5}\right)$ for filtration/backprojection)

Simulation, spherical geometry, 3D

Data $g\left(t, \hat{y}\left(\theta_{0}, \varphi\right)\right), \theta_{0} \approx 69^{\circ}$ Reduced data $\widetilde{g}\left(t, \hat{y}\left(\theta_{0}, \varphi\right)\right)$
Reduced noisy data $\tilde{g}(\ldots)$

Exact $\mathcal{R} f\left(\tau, \omega\left(\theta_{0}, \varphi\right)\right), \theta_{0} \approx 69^{\circ}$ Step 4: $\widetilde{\mathcal{R} f}\left(\tau, \omega\left(\theta_{0}, \varphi\right)\right) \quad$ Step 5: error in $\mathcal{R} f(\ldots)$
Relative L^{∞} error is $3 . \mathrm{E}-4$; with 50% noisy data relative L^{2} error is 0.8%.
Reconstruction of $f(x)$ from 50% noisy data has relative L^{2} error of 9%.

The proposed technique is somewhat sub-optimal: generally, Ω_{0} could have larger support, still with injectivity/stability.

Good news: our approach is quite general. And this is the only explicit result for open and bounded acquisition surfaces.

More good news: we rely on the scattering problem by closed surfaces. For such surfaces there is a significant body of work on finding the density of singular layers and/or solving the scattering problem.

Bad news: our technique is only as explicit as the densities we find.
Fortunately, for certain surfaces this can be done analytically as in the circular/spherical cases.

Thank you!

