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Inverse problems and an example

Direct problem: solve a given PDE.
Inverse problem: given solution on the boundary, determine

coefficient(s) in PDE.
An example: X-rays - send a narrow beams of X-rays with initial

intensity /i, through the body, measure /.

o loyr = linexp(— fl_ f(x)dx)
@ Radon transform
Rf(t,w) ::/ f(x)dx
X-w=t

o Rf(—t,—w) =RF(t,w)

Detector
&

atten. coef. f(z)

Inverse problem for X-rays:
given Rf(t,w) for (t,w) € R x S, reconstruct atten. coef. f(x)
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Inverting the Radon transform

Inversion of the Radon transform is a well-solved problem by
now.

1 0
f(x) = ;R H 5 RF(t,0),

where the adjoint (backprojection) operator R*is

(R*h)(x) E/h(w,x‘w)dw,
Sl
and H is the Hilbert transform

(Hu) (p) = pv.

s

o
T | =
i
M N—r
&

This is the famous filtered backprojection inversion formula.
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Hybrid methods: motivation

@ Acoustic waves yield high resolution but the contrast is low.

@ Conductivity in tumors is much higher than that in healthy
tissues = EM waves or currents yield high contrast.
Electrical impedance tomography, optical and microwave
tomography lead to strongly non-linear and ill-posed inverse
problems

Idea: Use hybrid techniques: couple ultrasound with EM field:
Thermo-Acoustic and Photo-Acoustic Tomography (TAT /PAT)
Ultrasound Modulated Optical Tomography (UMOT)
Acousto-Electric Tomography (AET)

Magneto-Acousto-Electric Tomography (MAET)
Magneto-Acoustic Tomography with Magnetic Induction
(MAT-MI)

Ngoc Do University of Arizona TAT /PAT with reduced data



Thermo- and photo-acoustic tomography (TAT /PAT)

Send a short EM pulse =

EM energy will be absorbed=

Tissues will heat and expand =
Acoustic wave will propagate =
Detectors will measure acoustic pressure

L]
sSessesssssese’® o
Detectors

Inverse source problem of TAT /PAT:
given pressure on the boundary, find the initial pressure
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Open space TAT

Detectors do not reflect or distort the waves

Waves propagate to infinity

In theory, surface ' may be closed or open — but in reality, should
be open.

L AR

)
\ \\k(g ///
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Formulation of the problem

We consider the homogeneous case: constant speed of sound
c(x) =1 (acceptable!)
Acoustic pressure u(t, x) satisfies the wave equation

uyr = Au,x € R” o S
ut(0,x) =0
u(0,x) = f(x)

Detectors

Initial pressure f(x) is supported within bounded region Qy C Q.
The boundary of € is a closed surface I'.
Measurements g(t,y) = u(t, y) are done on the subset S C T.

Inverse source problem:
Given g(t,y), (t,y) € [0, diam(Q2)] x S, reconstruct f(x)

This problem was studied intensively.
We are interested in explicit, theoretically exact inversion
formulas with S being a proper subset of I'.
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Direct problem for TAT /PAT

Acoustic pressure u(t, x) satisfies the wave equation

ugr = Au,x € R"

u(0,x) =0
u(0,x) = f(x)
Solution of this equation is
ulty) = 5 [ 0@t x — y)ax
Qo

where the ®,(t, x) is Green function for free wave equation

®o(t,x) = H,¢3(t,x) — W

In particular, measurements g(t,y) = u(t,y) on S:

0
g(t.y) = 5:6(6), 6(t.y) = [ F()0u(tx ~y)dry €S CT.
Qo
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Integral geometry formulation

Circular/Spherical Radon transform /(t, y):

I(t,y)=t""! / f(y + to)dD
sn—1
Data g(t,y) is directly related to the circular Radon transform.
In 3D, the relation is very simple

a (I(t,
g(t’y):8t< (Mi/))ayegz

In 2D, the connection is through the Abel transform:

t
0 I(r,y)
g(@)’)—at/mdhye&-
0

Inverse source problem:

Given spherical data /(t,y), t € [0, diam(Q2)],y € S, reconstruct
f(x)
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Known inversion formulas for various surfaces S

S is a plane: multiple works

" Universal formula” in 3D: a sphere, a plane, a cylinder (Xu &
Wang)

Spheres (multiple works by Finch et al; Kunyansky; Nguyen)
Ellipsoids and paraboloids (Natterer; Haltmeier;
Palamodov;Salman)

Limiting cases of ellipsoids and paraboloids (Haltmeier &
Pereverzyev Jr.)

More complicated curves and surfaces (Palamodov)
Triangles, squares, cubes, and some tetrahedra (Kunyansky)
Corner-like domains in 3D, a segment of Coxeter cross in 2D
(Kunyansky)

Less explicit: series techniques (Kunyansky; Haltmeier et al)
In all of these works either S is closed (S =T),or S =T is
unbounded
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Motivation, theoretical standpoint, and our goal

Why reduced data?

@ A body part can’t be surrounded by detectors from all sides
@ An unbounded surface needs to be truncated

© Acoustic waves deteriorate during propagation
Theoretical standpoint:

@ Uniqueness and observation time: If S is a smooth and closed
surface bounding domain €, then the TAT/PAT data on S
collected for time 0 < t < 0.5diam(2) uniquely determines f.

@ Visibility condition: xp is in the visible region iff any line
passing through xg intersects S at least once.

Our goal

given g(t,y) = u(t,y),t € [0, a],a < diam(2), y € open bounded
S, reconstruct Rf(t,w).
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Representing a plane wave by a single layer potential

Suppose 0(t — x - w) enters Q at To(w) and leaves at T1(w).
Define interval T(w) = (To(w), T1(w)).
We want to represent 0(t —w - x),x € Q,t € (To(w), 0] as

(T — x-w) :/ /d>,,(T— t,x — y)pw(t,y)dydt,
To(w) r

where density ¢, (t,y) is a distribution supported on 7T (w) x .
General scattering theory: this problem is uniquely solvable in the
sense of distributions.

Support of

More important,
wu(t,y) =0for t < x - w.
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Inverse source problem

Measurements g(t,y) = u(t,y) on S are given by:

0
8(t.y) = - 6(69), 6(t.y) = [ F()0n(tx —y)dry €S CT.
Qo

We want to recover the Radon projections of f(x) defined as

RF(r,w) = / f(x)dx = / F(x)3( — w - x)dx.

X-W=T Qo

Let us multiply G(t,y) by ¢, (7 — t,y) and integrate over
(0,7 — To(w)] x T
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O/ /G (t,y)pu(T — t,y)dydt
7—To(w)
0/ r/ L/ (it x = )dX] (T — t,y)dydt

(T —s,x — ¥)pu(s, y)dyds | dx

To(
_/ F(x)0(—w - x + 7)dx = Rf(r,w),w € S L, 7 € T(w).
Qo
Similarly,
7—To(w)
%Rf(ﬂ w) = / /g(ta)’)SOw(T—t,y)dydt,w es"lreT(w).
0 r
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For circular and spherical geometry

Theorem (Half-time data)

For n=2, 3, given Qo = B,(0,1),S =T =S,_1, Radon projections
Rf(t,w) can be fully reconstructed from halftime data
g(t,y),te[0,1], y€S.

Theorem (Open observation surface with temporally reduced data)

For n=2, 3, given Qq to be the lower half of the unit ball B,(0,1),
Radon projections Rf(t,w) can be fully reconstructed from
reduced data g(t,y),t € [0,2—1/V2] ~[0,1.3], y € S,
where Sy = {(x,y) : x> +y? = 1,|y| < 1/v2},

Ss={(x,y,z) : x> +y? +22=1,|z| < 1/V2}.
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Fast algorithm for the circular geometry

1. Expand g(t,y) in the Fourier series and Fourier-transform the

result to obtain g, (p) for each p > 0;
2. For each grid value of p > 0, compute coefficients

bi(p) = ‘,*H(’l‘ (‘ )Ek( p) and extend them to negative p's by complex
k| P

conjugation;

3. For each grid value of p, sum up series 3 bi(p)e™*™, and apply
K

the inverse Fourier transform in p to find %Rf(?,w);

4. Anti-differentiate 5~ O Rf(r,w) to find RF(7,w);

5. Compute Rf(w, T) by extracting the correct values of Rf(w,T)
within the intervals prescribed by the theorem presented above.
This is fast: all steps are either FFT's or multiplications;

the total complexity is O(m?log m) flops for an m x m grid (vs.
O(m?3) for filtration /backprojection).
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Simulation, circular geometry, 2D

Our phantom is a collection of
slightly smoothed characteristic
functions of circles.

S is the acquisition surface.

Solve wave equation
find g(t,w(6 + 7))
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1 5
0 T Pz

Exact Rf (7, w(0))

o T o 072

Reconstruction error after step 5

Number of " detectors” = 512,
reconstruction time = 0.4 sec.,

Reconstruction results, truncated circular geometry

-1.04
-052
-0.00
-0.52

Reconstructed Rf (r,w(0

) on step 5

T
-o72 1

-4e-4
- 204
0 |-0.0
--2.e-4
1 0
0 T o At

Reconstruction error after step 6

number of time samples = 257,
relative L°° error ~ 5.E-4.

Ngoc Do University of Arizona TAT /PAT with reduced data



Reconstructing f(x), truncated circular geometry

Phantom Reconstruction  Error(not to scale)
Relative error in f(x) measured in L2(Q) ~ 0.6 %.
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Next simulation, circular geometry with 50% noise (in L?)

0
0 T Pz 0 T o o

Noisy data g(t,w(0 + 7)) Reconstruction from noisy data

M\/\/\w&y AW
U

Noisy data g(t,w(0)) vs exact  Reconstructed Rf(7,w(0)) vs exact

Relative L2 error in the reconstructed Rf(7,w) is ~ 7%.
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Reconstructing f(x) from data with 50% noise

Phantom Reconstruction  Error(not to scale)
Relative error in f(x) measured in L%(Q) ~ 28%
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Fast algorithm for the spherical geometry

1. Expand E(p,)?) in spherical harmonics in § and compute the

Fourier transform in t to obtain g, «(p), k =0,1,---, m= —k, k;
4 LIPS

2. For p > 0, compute bi(p) = _—Wﬁgmk(p), and extend to
P b (p)

p < 0 by complex conjugation;

00 k
3. For each p and w sum up series Z Z bm,k(p) Y (w) and
k=0 m=—k

—
—_~—

. . 0
compute the inverse Fourier transform to get 8—Rf(r,w);
T

0 S
4. Anti-differentiate a—Rf(T,w) to find Rf(7,w);
T

5. Compute Rf(7,w) by extracting the correct values of Rf(7,w)
within the intervals prescribed by the theorem presented above.
This algorithm is fast: the total complexity is O(m*) flops for an
m x m x m grid (vs. O(m®) for filtration/backprojection)
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Simulation, spherical geometry, 3D

0800 0800
0.5 s 080 0 0.5 iT 080 0 0.5

Data g(t, (00, ¢)), o ~ 69° Reduced data g(t, ¥(6o, ¥)) Reduced noisy data

~090 1'% -090 1'%
’. ‘000” |
=2 --0.90 - -0.90 -1

0.5 Y ) 0577.' 0 0.5 s
Exact Rf(1,w(bo, ¢)), o =~ 69° Step 4: ’R,f(‘r w(6o, ¢)) Step 5: error in Rf(...)
Relative L error is 3.E 4; with 50% noisy data relative L2 error is 0.8%.
Reconstruction of f(x) from 50% noisy data has relative L? error of 9%.
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Some discussion

The proposed technique is somewhat sub-optimal: generally, g
could have larger support, still with injectivity /stability.

Good news: our approach is quite general. And this is the only
explicit result for open and bounded acquisition surfaces.

More good news: we rely on the scattering problem by closed
surfaces. For such surfaces there is a significant body of work on
finding the density of singular layers and/or solving the scattering
problem.

Bad news: our technique is only as explicit as the densities we find.

Fortunately, for certain surfaces this can be done analytically as in
the circular/spherical cases.
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Thank you!

University of Arizona T/PAT with reduced data



