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Inverse problems and an example

Direct problem: solve a given PDE.
Inverse problem: given solution on the boundary, determine
coefficient(s) in PDE.
An example: X-rays - send a narrow beams of X-rays with initial
intensity Iin through the body, measure Iout .

Iout = Iin exp(−
∫
L f (x)dx)

Radon transform

Rf (t, ω) :=

∫
x ·ω=t

f (x)dx

Rf (−t,−ω) = Rf (t, ω)

Inverse problem for X-rays:

given Rf (t, ω) for (t, ω) ∈ R× S , reconstruct atten. coef. f (x)
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Inverting the Radon transform

Inversion of the Radon transform is a well-solved problem by
now.

f (x) =
1

4π
R∗H ∂

∂t
Rf (t, ω),

where the adjoint (backprojection) operator R∗is

(R∗h)(x) ≡
∫
S1

h(w , x · ω)dw ,

and H is the Hilbert transform

(Hu) (p) ≡ p.v.
1

π

∫
R

u(s)

p − s
ds.

This is the famous filtered backprojection inversion formula.
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Hybrid methods: motivation

Acoustic waves yield high resolution but the contrast is low.

Conductivity in tumors is much higher than that in healthy
tissues =⇒ EM waves or currents yield high contrast.
Electrical impedance tomography, optical and microwave
tomography lead to strongly non-linear and ill-posed inverse
problems

Idea: Use hybrid techniques: couple ultrasound with EM field:
Thermo-Acoustic and Photo-Acoustic Tomography (TAT/PAT)
Ultrasound Modulated Optical Tomography (UMOT)
Acousto-Electric Tomography (AET)
Magneto-Acousto-Electric Tomography (MAET)
Magneto-Acoustic Tomography with Magnetic Induction
(MAT-MI)
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Thermo- and photo-acoustic tomography (TAT/PAT)

Send a short EM pulse ⇒
EM energy will be absorbed⇒
Tissues will heat and expand ⇒
Acoustic wave will propagate ⇒
Detectors will measure acoustic pressure

Inverse source problem of TAT/PAT:

given pressure on the boundary, find the initial pressure
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Open space TAT

Detectors do not reflect or distort the waves
Waves propagate to infinity
In theory, surface Γ may be closed or open — but in reality, should
be open.

G
EM pulse
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Formulation of the problem

We consider the homogeneous case: constant speed of sound
c(x) ≡ 1 (acceptable!)
Acoustic pressure u(t, x) satisfies the wave equation

utt = ∆u, x ∈ Rn

ut(0, x) = 0

u(0, x) = f (x)

Initial pressure f (x) is supported within bounded region Ω0 ⊆ Ω.
The boundary of Ω is a closed surface Γ.
Measurements g(t, y) ≡ u(t, y) are done on the subset S ⊂ Γ.

Inverse source problem:

Given g(t, y), (t, y) ∈ [0, diam(Ω)]× S , reconstruct f (x)

This problem was studied intensively.
We are interested in explicit, theoretically exact inversion
formulas with S being a proper subset of Γ.
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Direct problem for TAT/PAT

Acoustic pressure u(t, x) satisfies the wave equation
utt = ∆u, x ∈ Rn

ut(0, x) = 0

u(0, x) = f (x)

Solution of this equation is

u(t, y) ≡ ∂

∂t

∫
Ω0

f (x)Φn(t, x − y)dx ,

where the Φn(t, x) is Green function for free wave equation

Φ2(t, x) =
H(t − |x |)

2π
√
t2 − |x |2

,Φ3(t, x) =
δ(t − |x |)

4π|x |
In particular, measurements g(t, y) ≡ u(t, y) on S :

g(t, y) =
∂

∂t
G (t, y),G (t, y) ≡

∫
Ω0

f (x)Φn(t, x − y)dx , y ∈ S ⊂ Γ.
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Integral geometry formulation

Circular/Spherical Radon transform I (t, y):

I (t, y) ≡ tn−1

∫
Sn−1

f (y + tν̂)d ν̂

Data g(t, y) is directly related to the circular Radon transform.
In 3D, the relation is very simple

g(t, y) =
∂

∂t

(
I (t, y)

4πt

)
, y ∈ S2.

In 2D, the connection is through the Abel transform:

g(t, y) =
∂

∂t

t∫
0

I (r , y)

2π
√
t2 − r2

dr , y ∈ S1.

Inverse source problem:

Given spherical data I (t, y), t ∈ [0, diam(Ω)], y ∈ S , reconstruct
f (x)
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Known inversion formulas for various surfaces S

S is a plane: multiple works
”Universal formula” in 3D: a sphere, a plane, a cylinder (Xu &
Wang)
Spheres (multiple works by Finch et al; Kunyansky; Nguyen)
Ellipsoids and paraboloids (Natterer; Haltmeier;
Palamodov;Salman)
Limiting cases of ellipsoids and paraboloids (Haltmeier &
Pereverzyev Jr.)
More complicated curves and surfaces (Palamodov)
Triangles, squares, cubes, and some tetrahedra (Kunyansky)
Corner-like domains in 3D, a segment of Coxeter cross in 2D
(Kunyansky)
Less explicit: series techniques (Kunyansky; Haltmeier et al)
In all of these works either S is closed (S = Γ), or S = Γ is
unbounded
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Motivation, theoretical standpoint, and our goal

Why reduced data?

1 A body part can’t be surrounded by detectors from all sides

2 An unbounded surface needs to be truncated

3 Acoustic waves deteriorate during propagation

Theoretical standpoint:

1 Uniqueness and observation time: If S is a smooth and closed
surface bounding domain Ω, then the TAT/PAT data on S
collected for time 0 ≤ t ≤ 0.5diam(Ω) uniquely determines f .

2 Visibility condition: x0 is in the visible region iff any line
passing through x0 intersects S at least once.

Our goal

given g(t,y) = u(t, y), t ∈ [0, a], a < diam(Ω), y ∈ open bounded
S , reconstruct Rf(t, ω).
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Representing a plane wave by a single layer potential

Suppose δ(t − x · ω) enters Ω at T0(ω) and leaves at T1(ω).
Define interval T (ω) ≡ (T0(ω),T1(ω)).
We want to represent δ(t − ω · x), x ∈ Ω, t ∈ (T0(ω), 0] as

δ(τ − x · ω) =

∫ τ

T0(ω)

∫
Γ

Φn(τ − t, x − y)ϕω(t, y)dydt,

where density ϕω(t, y) is a distribution supported on T (ω)× Γ.
General scattering theory: this problem is uniquely solvable in the
sense of distributions.

More important,
ϕω(t, y) = 0 for t < x · ω.

x

t

0
Support of 

w(t,y)
w

j

G
-W
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Inverse source problem

Measurements g(t, y) ≡ u(t, y) on S are given by:

g(t, y) =
∂

∂t
G (t, y),G (t, y) ≡

∫
Ω0

f (x)Φn(t, x − y)dx , y ∈ S ⊂ Γ.

We want to recover the Radon projections of f (x) defined as

Rf (τ, ω) ≡
∫

x ·ω=τ

f (x)dx =

∫
Ω0

f (x)δ(τ − ω · x)dx .

Let us multiply G (t, y) by ϕω(τ − t, y) and integrate over
(0, τ − T0(ω)]× Γ:
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τ−T0(ω)∫
0

∫
Γ

G (t, y)ϕω(τ − t, y)dydt

=

τ−T0(ω)∫
0

∫
Γ

∫
Ω0

f (x)Φn(t, x − y)dx

ϕω(τ − t, y)dydt

=

∫
Ω0

f (x)

 τ∫
T0(ω)

∫
Γ

Φn(τ − s, x − y)ϕω(s, y)dyds

dx
=

∫
Ω0

f (x)δ(−ω · x + τ)dx = Rf (τ, ω), ω ∈ Sn−1, τ ∈ T (ω).

Similarly,

∂

∂τ
Rf (τ, ω) =

τ−T0(ω)∫
0

∫
Γ

g(t, y)ϕω(τ−t, y)dydt, ω ∈ Sn−1, τ ∈ T (ω).
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For circular and spherical geometry

Theorem (Half-time data)

For n=2, 3, given Ω0 ≡ Bn(0, 1),S ≡ Γ ≡ Sn−1, Radon projections
Rf (t, ω) can be fully reconstructed from halftime data
g(t, y), t ∈ [0, 1], y ∈ S .

Theorem (Open observation surface with temporally reduced data)

For n=2, 3, given Ω0 to be the lower half of the unit ball Bn(0, 1),
Radon projections Rf (t, ω) can be fully reconstructed from
reduced data g(t, y), t ∈ [0, 2− 1/

√
2] ≈ [0, 1.3], y ∈ Sn,

where S2 = {(x , y) : x2 + y2 = 1, |y | ≤ 1/
√

2},
S3 = {(x , y , z) : x2 + y2 + z2 = 1, |z | ≤ 1/

√
2}.

Ngoc Do University of Arizona TAT/PAT with reduced data



Fast algorithm for the circular geometry

1. Expand g̃(t, ŷ) in the Fourier series and Fourier-transform the

result to obtain ̂̃gk(ρ) for each ρ ≥ 0;
2. For each grid value of ρ ≥ 0, compute coefficients

bk(ρ) ≡ 4
i

i |k|

H
(1)
|k| (ρ)

̂̃gk(ρ) and extend them to negative ρ’s by complex

conjugation;
3. For each grid value of ρ, sum up series

∑
k

bk(ρ)e ik$, and apply

the inverse Fourier transform in ρ to find
̂̃
∂
∂τRf (τ, ω);

4. Anti-differentiate
̂̃
∂
∂τRf (τ, ω) to find R̃f (τ, ω);

5. Compute Rf (ω, τ) by extracting the correct values of ˜Rf (ω, τ)
within the intervals prescribed by the theorem presented above.
This is fast: all steps are either FFT’s or multiplications;
the total complexity is O(m2 logm) flops for an m ×m grid (vs.
O(m3) for filtration/backprojection).
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Simulation, circular geometry, 2D

Our phantom is a collection of
slightly smoothed characteristic
functions of circles.
S is the acquisition surface.

S S

Solve wave equation Truncated g(t, ω(θ + π))
find g(t, ω(θ + π))
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Reconstruction results, truncated circular geometry
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Exact Rf (τ, ω(θ)) Reconstructed Rf (τ, ω(θ)) on step 5
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Reconstruction error after step 5 Reconstruction error after step 6

Number of ”detectors” = 512, number of time samples = 257,
reconstruction time = 0.4 sec., relative L∞ error ≈ 5.E-4.
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Reconstructing f (x), truncated circular geometry

Phantom Reconstruction Error(not to scale)
Relative error in f (x) measured in L2(Ω) ≈ 0.6 %.
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Next simulation, circular geometry with 50% noise (in L2)
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Noisy data g(t, ω(θ + π)) Reconstruction from noisy data

Noisy data g(t, ω(0)) vs exact Reconstructed Rf (τ, ω(0)) vs exact

Relative L2 error in the reconstructed Rf (τ, ω) is ≈ 7%.
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Reconstructing f (x) from data with 50% noise

Phantom Reconstruction Error(not to scale)
Relative error in f (x) measured in L2(Ω) ≈ 28%
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Fast algorithm for the spherical geometry

1. Expand ̂̃g(ρ, ŷ) in spherical harmonics in ŷ and compute the

Fourier transform in t to obtain ̂̃gm,k(ρ), k = 0, 1, · · · , m = −k , k ;

2. For ρ ≥ 0, compute bk(ρ) ≡ 4π

iρ

ik

h
(1)
k (ρ)

̂̃gm,k(ρ), and extend to

ρ < 0 by complex conjugation;

3. For each ρ and ω sum up series
∞∑
k=0

k∑
m=−k

bm,k(ρ)Y k
m(ω) and

compute the inverse Fourier transform to get

̂̃
∂

∂τ
Rf (τ, ω);

4. Anti-differentiate
∂̃

∂τ
Rf (τ, ω) to find R̃f (τ, ω);

5. Compute Rf (τ, ω) by extracting the correct values of R̃f (τ, ω)
within the intervals prescribed by the theorem presented above.
This algorithm is fast: the total complexity is O(m4) flops for an
m ×m ×m grid (vs. O(m5) for filtration/backprojection)
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Simulation, spherical geometry, 3D

j

0.5p p

1

2

0

0

t
0.80

0.40

0.00

-0.40

-0.80

j

0.5p p

1

2

0

0

t
0.80

0.40

0.00

-0.40

-0.80

j

0.5p p

1

2

0

0

t
0.80

0.40

0.00

-0.40

-0.80
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g̃(...)
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Exact Rf (τ, ω(θ0, ϕ)), θ0 ≈ 69◦ Step 4: R̃f (τ, ω(θ0, ϕ)) Step 5: error in Rf (...)
Relative L∞ error is 3.E-4; with 50% noisy data relative L2 error is 0.8%.
Reconstruction of f (x) from 50% noisy data has relative L2 error of 9%.
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Some discussion

The proposed technique is somewhat sub-optimal: generally, Ω0

could have larger support, still with injectivity/stability.

Good news: our approach is quite general. And this is the only
explicit result for open and bounded acquisition surfaces.

More good news: we rely on the scattering problem by closed
surfaces. For such surfaces there is a significant body of work on
finding the density of singular layers and/or solving the scattering
problem.

Bad news: our technique is only as explicit as the densities we find.

Fortunately, for certain surfaces this can be done analytically as in
the circular/spherical cases.

Ngoc Do University of Arizona TAT/PAT with reduced data



Thank you!
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