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Outline

Introduction

Study light propagation in longitudinal (z) direction with an
optical lattice in transverse (x-y) plane

Systematic method to obtain tight binding approximations for
linear/NL lattices with uniform and nonuniform longitudinal
structure

Prototype: honeycomb (HC) photonic lattices

Uniform longitudinal structure: conical, elliptical, straightline
diffraction



Outline — con't

Lattices with non-uniform longitudinal structure: ‘topological
insulator’

Find linear topologically protected edge waves: they move
unidirectionally, do not scatter off defects

NL problem: find envelope edge solitons satisfying classical
1d-NLS eq; the solitons do no scatter from defects, corners;
propagate stably over very long distances

Conclusion

Refs: MJA, C. Curtis, YP Ma (2013-15); MJA, J. Cole
(2017-18)



Introduction

Investigations of optical lattices extensive
Paradigm — HC lattice: ‘Photonic Graphene' (PG)

Left: Uniform HC lattice: z direc’'n; Right: x-y plane : HC
lattice

Segev group 2007—conical diffrct'n; MJA, Y. Zhu, C. Curtis
constructed /studied TB models; found conical diffrct'n &
various interesting new NL nonlocal eqn’s in certain limits
(2009-13)



Introduction—con't

e Topological insulators/edge waves were theoretically
proposed /observed in magneto-optics, Wang et al 2008-09

e Such top’'l waves were found in photonics: HC lattice with
longitudinal helical variation, Rechtsman et al 2013

e MJA, YP Ma, C. Curtis (2013-15), studied TB model,
developed asymptotic description linear/NL under assumption
of rapid helical variation: top'l/non-top’l waves



Introduction—con't

e Leykam et al (2016) studied staggered square lattice with
helical variation and phase sh'fts between sublattices

e MJA, J. Cole (2017-18): systematic method to find TB
models in lattices with longitudinal structure

e Topological edge/interface/surface waves in physics — very
active field of research



Lattice NLS Equation

Maxwell's eq with paraxial approx. => NLS eq with ext pot’l

O ) n(x,y,z)
i =~ Vo ko S Ey 2y

where: kg is input wavenumber
ng is the bulk refractive index
An/ng is the change of index change relative to ng

v is NL index



Non-dimensional NLS Equation

Rescale to non-dimensional form

x=Ux',y=4y, z=27, ¢:\/P>*w'
where: / is the lattice scale; P.: peak input power
Find non-dim NLS eq, ’: dimensionless:
20 (V! VK, 2+ ol P =0
where z, = 2kol?, V =2k3(?(An/ng), o = 2vkol?P,
Drop ’ => normalized lattice NLS eq
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Typical Physical Scales

Exp’ts: input wavelength: A = 630nm

Bulk index: ng = 1.4 (silica)

=> input wavenumber ky = 2’;\”0 = 1.44 x 10"rad/m
0 =15um=> 2z, =2ko/> =6.5x10"3m

NL Index change: An/ng =7 x 10~*

=> V =2k2(?(An/ng) ~ 50;

Later will discuss ‘Tight Binding (TB) Approx’: V > 1



Periodic Optical Lattices

Investigate waves in periodic optical lattices in lattice NLS eq.
iz + V2 = V(r,2)¢ + oly[* =0

where V/(r,z): in transverse plane 2-d periodic with basis lattice
vectors: vy, V!

V(r+mvi+nvy,z)=V(r,z), mnelZ

Begin with uniform case: V(r,z) = V(r)



Lattices

Simple lattice: V/(r) has one min or ‘site’ in each unit cell; all sites
can be constructed from an initial site: e.g. below: left
rectangular lattice

Non-simple HC lattice-below right: two initial sites (“A & B")
determine the lattice

(a) Y




Linear problem

Linear problem: 1(r, z) = ¢(r)e~ "% with |p| < 1:

(V2= V(1) + n)¢ = 0
V/(r) is a 2-d periodic potential with lattice vectors: vy, vs

Bloch theory: '
plr;K) = €T U(r;K),

U(r; k) is periodic in r  and ¢(-, k), (k) are periodic in k with
‘dual’ lattice vectors: ki, ko

Dispersion relation: p = p(k)



Potential in TB Limit

Tight binding limit: when |V| > 1 we approx. the potential

V(r) = Zvo(r — V)

where Vp(r — v) is the approx. pot’l with minima at site v
Use

(V2 = Vo(r)) 6(r) = —E(r)
¢(r) called an ‘orbital’

V| > 1: ‘tight binding approx.’ used widely in physics to study
lattices; ‘graphene’ Wallace 1947



TB Envelope Dynamics

Simple lattices with (k) having a single dispersion relation branch

b2, k) ~ 3 a(2)o(r — v)el
v
ay(z) represents the Bloch wave envelope at the site S,
¢(r) orbitals: rapidly decaying
RHS above approximates the ‘Wannier functions’
Substitute 1 into lattice NLS, multiply by ¢(r — p) and integrate:

find discrete NLS eq. at general values of k in the Brillouin zone:
DNLS(k)



DNLS(k) E

Leading order eq. results from on-site and nearest neighbor
interactions; Eq. reduces to DNLS(k) e

—+ Zap+vC e™V + oglap|?ap = 0

where < v > means the sum over v only takes nearest neighbors;
G, g are given in terms integrals over orbitals

Continuum limit from DNLS(k) yields 2-d NLS(k) eq



NLS(k) Eq.

As a further limit, assume that the envelope a, varies slowly over v
with a scale R=vr, |v| <1 then

aprv~atuvv-Va+---

Find a continuous 2-d NLS(k) eq for a = a(R, Z)

Oda . = ~ 2 Cu o ~
/E +ivVu-Va+ 2,,,2,,;18%”“6’"’”3 + Ug\a\za =0

where 9, = %, Om = %; Vi plays the role of the group
velocity

For different k the dispersive terms may be elliptic, hyperbolic or
parabolic



Typical HC Lattice

Typical honeycomb (HC) lattice V/(r) from:
V(1) = Vo [efabrr 4 peobr it

where by = (0,1),by = (_7 —3);ib3 = (\[7 3)
Vo, ko, const. Vg > 0 is the lattice intensity;

7 corresponds to geometric lattice deformation (strain)
n =1 standard/perfect HC lattice



Typical HC=Intensity Plot

HC lattice in physical space: below (n = 1): intensity plot; local
minima form HC lattice

800
600
> 400
200
0
X



Typical HC-Dispersion Surface

Typical HC dispersion relation p(k) first two bands below:

Note: 1st, 2nd bands can touch at certain isolated points, called
Dirac points

Dirac points form sites of a hexagonal HC lattice in the k plane
dual lattice corresponding to the original potential lattice—i.e. have
HC structure in the k plane.



Honeycomb Lattices

Nonsimple honeycomb (HC) lattices also arise in the study of the
2d material Graphene

Material Graphene: ultra thin carbon material

First demonstrated exp't 2004; nobel prize 2010

Graphene exhibits important properties physically and
mathematically

Here we study: Photonic Graphene — photonic analogue of
graphene

Uniform /non-uniform lattices:
Segev's group: ('07-), MJA, Zhu,Curtis,Ma,Cole ('09-...),
Fefferman,Weinstein ('12-), ...



TB HC Envelope Evolution

For [V| >>1

b S a(2)dalr — e + 37 b(2)os(r — v

v

where the sum is over A, B lattice sites: v
(V2= Vi) ¢5(r) = —Ejo5(r); j=AB

¢;(r) orbitals; rapidly decaying

Substitute 1 into lattice NLS eq., multiply
¢j(r —p)e ®P; j= A B and integrate



Discrete HC System

Find discrete system

dap
d

.dby

+ L by + olap?ap =0

L™ bp = bp + p(bp-vy ™"V + byy,e”?)
,C+ap = ap + P(3p+v1 e:k-vl + aptv, e:k-vz)

p: deformation parameter (p = p(n)); p = 1 perfect hexagon
Rigorous analysis of TB: MJA, C. Curtis, Y. Zhu (2012)



Continuous NL Dirac System

When a, and by vary slowly with respect to v at Dirac point:
k = K find deformed NL Dirac (NLD) system in continuum limit:

i0;a+ (0x +iCOy )b+ alal?a=0
i0; b+ (—0x +iCd,)a+a|b?b=0

2__
where ¢ = \/4”3 1

When p =1,( =1 conical diffraction
1/2 < p < 1: elliptical diffraction
p — 1/2: straight line diffraction

When o = 0 above system reduces to (deformed) 2+1d wave eq.



Conical Diffraction

Below: simulations of lattice NLS and NLD: p =1
Top Fig. lattice NLS

Bottom Fig. NLD system (‘a’ envelope)
IC: ais a unit Gaussian and b=20

/\
- O
O

z=0 z=z21>0 z=2>2z

NLD system yields conical diffraction—as seen in lattice NLS eq.
conical diffraction observed (Sgev gp 2007)



Elliptical Diffraction-NLD

NLD: The rings in the conical diffraction are elliptic if p # 1,

: . 2
where the ratio of axes is { = 4p3 L

Below 2 elliptic rings when (a) p=0.8 (b) p=10.6




Deformation—con't

e Critical behavior when p ~ 1/2

e |2p — 1| <« 1 find approximate ‘straight-line’ diffraction; weak
transverse variation

e Various small parameters — different balances lead to different
eqs: B =2p—1, NL: ¢, sl varying envelope: v

e Find numerous new nonlocal nonlinear equations

MJA, Y. Zhu 2013



Deformation Eq: ‘NLSKZ'

When e ~ 12, 012 < f3

a~vF, 0=x—2z Z=1%z:
99 (0zF — oilF|’F) + 0F =0  NLSKZ

This nonlocal eq is similar is spirit to
‘KZ' eq. Khokhlov & Zabolotskaya 1969:

69(6tu+u69u)+6§u:0 KZ



Conclusions—so far

NL waves in lattice NLS in strong potential /TB limit
investigated  MJA, Curtis, Zhu ('09-13)

Simple lattices: discrete and continuous NLS systems

HC lattices: n'bhd of Dirac points find discrete and
continuous NL Dirac (NLD) systems

NLD exhibits conical-elliptical diffraction when 1/2 < p <1

When p — 1/2 find straight line diffraction; find new reduced
asymptotic eq



Longitudinally Varying Waveguides

Introduce longitudinally varying waveguides on both sublattice
sites; LNLS:

02 = =V + V(r,2)p — [ ¥
Introduce longitudinally varying waveguides (Rechtsman et al '13)
X' =x—hm(z2), yy=y—m(z2), 2=z

h(z) = (h1(z), ha(z)): ‘path function'— typically periodic in z

=g




Longitudinally Varying Waveguides—con't

Transform LNLS eq. with
¥ — Y exp [//0 \Ap(g)ng] with Ap(z) = —h'(z)

find lattice NLS with a pseudo-field: Ap(z): in transfromed
coordinates

10,0 = —(V + iBp(2))*0 + V(r) — v [ ¥

TB approx with pseudo-field Ap = Ap(z) yields:



TB with Pseudo-Field: Discrete System

.damn(2)

: dz

dbmn(z)
dz

+ e"d'AP(E,b)m,, + a|am,,|2amn =0

i + e*"d'A"(EJFa)m,, + o\bmn\2bmn =0

where

(E_b)mn = bmn + p(bm—lm—le_ie1 + bm+1,n—le_i02)

_ 61 i0>
(£+3)mn = amn t+ p(am+1,n+le’ + dm—1,n+1€ )

and §; = (d —v;) - Ap(z), j=1,2, p deformation, dis a vector
between adj. horiz. sites, above use m, n row, column format



Zig-Zag-Arm Chair Edges

Zig-Zag (ZZ): Left Right;

Armchair: Top, Bottom



BCs — Linear Floquet Bands

Assume Ay(z) is periodic; e.g. Ap(z) = k(sin Qz,cosQz)
Look for solutions of the form

amn(z) = an(z;w)eimw , bmn(z) = bn(z; w)eim‘*’ ,

Find linear difference eq with periodic coef; use Floquet thy:
f(z4 T) = e @2 f(z), T=21/Q

a(w) Floquet coef; also called the edge dispersion relation



Linear Problem—Dispersion Relations

Dispersion relations (helical waveguides): thin curves are 'bulk’
modes; lines in the gap are edge modes:

— =
—

T
= & - >

Left Fig: Toplogical Floquet insulator (Segev gp '13)
Right Fig: allows left and right going waves

In general: number of intersections: Z with o =0 Z=0,1,2
(0 <w <) left figZ =1 (topological)
right fig Z = 2 (nontopological)



Analysis: Rapidly Varying Helical lattice

Let: amp = ape™, byn = bpe™  find

i0ya, + /A (bn+ py*bp—1) + a\a,,]2a,, =0
i0,b, + e 'Pe (3, + pyani1) + o|bnl?by =0

where v = v(w, Ap(2))

Take: A, periodic & rapidly varying

A = Ap(2).Je] < 1

e.g. Ap = k(sin %, cos 2): 'helical waveguides’

Expt's Segev gp (2013)



Edge Modes: ZZ

Multiple scales:
an=an(2,Q); bn=bn(2,(); (=%; 9,=10.+0;

e

Expand a,, b, in powers of ¢;

Apply BCs (ZZ) find Edge Modes (ZZ) (exp decay):
dn ~ Oa bn ~ C(Z,U.))I’n, ‘I" = |r(wapv AP)| <1
Linear problem (first order):

C(z,w) = Gexp (—ia(w)z),

Co const.  a(w) = a(w, p; Ap): ‘dispersion relation’ (Floquet
coef): obtain explicit formulae



Typical Edge Mode

0.8
[yl *°
0.4

0.2

10 50 m

Bmn ~ Cpeliwom=ia(wo)z) pn



Nonlinear Edge Wave Envelope Evolution Eq

Discrete edge mode: a;, ~ 0

bmnN C(Zay) lwom " |r| <1

where slowly varying (|v| < 1) edge mode envelope satisfies

1/ "

oY i 4 )
—701/2ny+?01/ Coy — nio|CI7C -

i07C = apC —iagrC,
where o = a(wp), oy = dax(wp), etc.
May transform to standard NLS

If Ap = 0 then a = 0: stationary mode



Typical Linear Edge Wave Evolution

(a) )

Ib  (z)l: 2D discrete b (z): IDLS
1000

m 80

(d)
Left: Linear discrete; Right linear Schrddinger (LS) eq
Fig (a-b): p = 1: Topological Floquet Insulator:

ap #0,a0”" =0,0" #0,Z=1
Fig. (c-d): p =0.4: at oy = 0; 9" # 0: Z = 2 (nontopological)




Recall: Dispersion Relations of Linear Problem

Dispersion relations (helical waveguides): thin curves are ‘bulk’
modes; lines in the gap are edge modes:




Typical NL Edge Wave Evolution

Ib_(z)l: IDNLS

Here: ag # 0;a0” # 0,00"” =0
Fig: p=1 Solitons

Continuous theory agrees with discrete eq.

NL problem inherits Topological Insulator properties



Typical Linear Edge Wave Evolution—Defects

z =258 z=279 z =400
10 10 10
-
5 ' 5 5
} ~
0 0 0 =
-98 -50 0 -98 -50 0 -98 -50 0
z=239 z =260 z =360

10

5

0
-98

= 10 10
5 5
> —
0 " 0 4
50 0 98 50 0 98 50 0
m m m

Fig: propagation across defect: left to right

Top fig: Topological mode — wave propagates unidirectionally
without losing significant power (p = 1,w = /2, apy = 0)
Bottom fig: Nontopological mode — wave reflects, broadens/loses
significant power (p = 0.4,w = 7/2, apy = 0)



NL Edge Wave Propagation Around Defects

z=180

Lo N B O ®

Lo M oA O ®

Fig: NL propagation across defect: left to right

NL topological edge wave (p = 1, > 0, appy # 0)) propagates
without losing significant power

NL edge solitons: unidirectional, propagates across defects



Bounded Photonic Graphene

Zig-Zag (ZZ): Left Right;

Armchair: Top, Bottom



Mode Propagation—Linear

Linear propagation p = 1 : topological case; different points on
the dispersion curve

0=1/2,6=0,p=1 ©=71/12,6=0,p=1

8 loops e 6 loops —L-80

-100 -50

3o

Left: Linear w = /2 Right: Linear w = 77/12
Oé// — O, a/l/ ?é O a// # 0



Mode Propagation—NL

NL propagation p = 1: topological case:; different points on the
dispersion curve

©=1/2,6=0.002,p=1 ©=77/12,6=0.002,p=1

| —IC —IC
8 loops — 180 8 loops —L-80

Left: NL w = 7/2 Right: NL w = 77/12: NLS eq
Ol” — O,O/H # 0 OZ// # 0



General Longitudinal Variation

Typical case nonsimple lattice with two sublattices

V1 = Vl(r — hl(Z)), V2 = Vg(r — hz(Z))

in nb’hd of sublattices 1,2 and h;(z), j = 1,2 are prescribed
(smooth) functions

Simple case, helical variation

hi(z) =7 <cos (Z +Xj) , sin (Z +)"(j)> , j=1,2
€j €j



Rotating frame

Move to coordinate frame co-moving with with the Vi(r, z)

sublattice,
=r—hy(z) , 2=z

which after the phase transformation
b= exp [—f / |A<s)2da] with A(z) = —hy'(2)
0
find lattice NLS with a pseudo-field A(z) -dropping ’:

10,0 + (V + iA2))* — V(r2)y + o [¢]> ¢ =0

Vi(r,z) = Vi(r), Va(r,z) = Vao(r — Ahyi(2)), near sites 1,2 with
Ahy1(z) = hy(z) — hy(2)



NL HC Representation

In non-dim NLS eq using HC lattice with |V/| >> 1 substitute

Z [av ¢1 v ) bv(z)¢2,v(rvz)]

where
(V2= Vi(r.2)) d1(r.2) = =G0k 2); =12

¢j,v are termed orbitals

Substitute 1 into NLS eq. with pseudo-field, multiply
¢j(r —p)e ®P; j=1,2 and integrate



Discrete HC System

I% + ei@(Z) (»Cf(z)b)mn + O-‘amn|2am” =0
V4

.dbmn
j—mn

d + e~i¢l?) (£+(Z)a)mn + U|bmn|2bmn =0
Iz

(ﬁ_(Z)b)mn :LO(Z)bmn + Ll(z)bm—l,n—le_iel(z) + L2(Z)bm+1,n—le_i92(z}

(£+(2)3) iy =Lo(2)amn + L1(2)am 1,016 + Lo(2)am-1,041626),

where ¢(2),0;(z), Lj(z2), Zj(z) eR, j=1,2,3 known



Typical Rotation Patterns for Sublattices

e Same rotation, same or different radii:

V4

ho(2) = R (2) = Ron (cos (Z) . sin (2))

3

e m-Phase offset rotation
hao(z) =hi(z+em) =—n (cos (g) , sin (g))

e Different frequencies

r-a(en(z). (). -2



BCs — Linear Floquet Bands

Look for solutions of the form

amn(2) = an(z;w)e™ | bmn(2) = bp(z;w)e™

Find linear difference eq with periodic coef; Floquet thy:

f(z+ T) = e @)z ()



HC Floquet Bands

HC lattice linear band structure—typical parameters

same rot. 4 same phase, diff. radii same radii., diff. freq.

Fig A: same freq, same radii
Fig B: same freq, different radii (R, = R1/2)
Fig C: diff freq (1/e2 = wy = 2wy = 1/e1), same radii



HC Floquet Bands —con't

HC lattice linear band structure—typical parameters

w-offset, p =1 )

w-offset, n = n, > 1,

4 4
2 2
2 2
-4 -4
/2 0 /2 /2 0
A B

Figs A & B: 7 offset, same rotation
Fig B vs Fig A: radius 2 > m1



Linear HC Edge Mode Dynamics

) |bm0(z)|, same rot.

; ——max|b,, |
z 05
maxfa_ |
-50 0 50 100 0 50 100
m

Fig Above: Same rotation, same radii

|b,.o(2)l, m-offset a4 @), Toffset

—max|p_|
06 mn

0.4 max a|

&
3
o
@
3
&
3
o

50 0 2 4 6

Fig Above: 7 offset, different radii



Adiabatic HC Lattice

Take HC lattice, uniform rotation, and A = A(Z), where Z = ¢z
In lattice system: a, = ap(z,Z), b, = bp(z,Z)

Multiple scales asymptotics (ZZ BC):

an~0; by~ C(Z,w)b3(2)
where b (Z) = {r"(2); |rl<1; r=r(w,p;A(Z)), n>0}
In general edge mode existence (|r| < 1) depends on w, p, Z

Modes can ‘disintegrate’ under evolution

Can find an NLS type eq for envelope C whose coef. depend on Z

Numerics: discrete and continuous models: very good agreement



Conclusion—Topological Edge States

Photonic lattices with longitudinal variation

e Systematic method to find tight binding (TB) discrete eqs for
same rotation and complex longitudinally driven lattices;
special case: honeycomb lattices

e Find Floquet bands; they indicate topological /nontopological
edge waves

e Topological waves: no backscatter, propagate stably around
defects, corners



Conclusion: HC Edge States

Same rotation:
e Construct asymptotic theory for rapid helical variation
e Envelope of edge modes satisfy standard NLS eq

e NLS solitons topological case: unidirectional, propagate stably
around defects, corners; ‘solitons inherit topological properties’

Generalized longitudinal rotation

e Find TB eq; Floquet bands, large number of new/novel
topological modes

e Can do this for many lattices: HC, staggered sq, Lieb,
Kagome...

Ref.: MJA, C. Curtis, Y-P Ma 2013-15; MJA, J. Cole: 2017-18



