Wave Dynamics in Linear/Nonlinear Photonic Lattices and Topological Insulators

Mark J. Ablowitz

Department of Applied Mathematics University of Colorado, Boulder May 2018

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Outline

Introduction

- Study light propagation in longitudinal (z) direction with an optical lattice in transverse (x-y) plane
- Systematic method to obtain tight binding approximations for linear/NL lattices with uniform and nonuniform longitudinal structure
- Prototype: honeycomb (HC) photonic lattices
- Uniform longitudinal structure: conical, elliptical, straightline diffraction

Outline – con't

- Lattices with non-uniform longitudinal structure: 'topological insulator'
- Find linear topologically protected edge waves: they move unidirectionally, do not scatter off defects
- NL problem: find envelope edge solitons satisfying classical 1d-NLS eq; the solitons do no scatter from defects, corners; propagate stably over very long distances
- Conclusion

Refs: MJA, C. Curtis, YP Ma (2013–15); MJA, J. Cole (2017–18)

Introduction

- Investigations of optical lattices extensive
- Paradigm HC lattice: 'Photonic Graphene' (PG)

Left: Uniform HC lattice: *z* direc'n; Right: x-y plane : HC lattice

 Segev group 2007-conical diffrct'n; MJA, Y. Zhu, C. Curtis constructed/studied TB models; found conical diffrct'n & various interesting new NL nonlocal eqn's in certain limits (2009-13)

Introduction-con't

- Topological insulators/edge waves were theoretically proposed/observed in magneto-optics, Wang et al 2008-09
- Such top'l waves were found in photonics: HC lattice with longitudinal helical variation, Rechtsman et al 2013
- MJA, YP Ma, C. Curtis (2013–15), studied TB model, developed asymptotic description linear/NL under assumption of rapid helical variation: top'l/non-top'l waves

Introduction-con't

- Leykam et al (2016) studied staggered square lattice with helical variation and phase sh'fts between sublattices
- MJA, J. Cole (2017–18): systematic method to find TB models in lattices with longitudinal structure
- Topological edge/interface/surface waves in physics very active field of research

Lattice NLS Equation

Maxwell's eq with paraxial approx. = NLS eq with ext pot'l

$$i\frac{\partial\psi}{\partial z} = -\frac{1}{2k_0}\nabla^2\psi + k_0\frac{\Delta n(x,y,z)}{n_0}\psi - \gamma|\psi|^2\psi$$

where: k_0 is input wavenumber

 n_0 is the bulk refractive index

 $\Delta n/n_0$ is the change of index change relative to n_0

 γ is NL index

Non-dimensional NLS Equation

Rescale to non-dimensional form

$$x = \ell x'$$
, $y = \ell y'$, $z = z_* z'$, $\psi = \sqrt{P_*} \psi'$

where: ℓ is the lattice scale; P_* : peak input power Find non-dim NLS eq, ': dimensionless:

$$i\frac{\partial\psi'}{\partial z'} + (\nabla')^2\psi' - V(x', y', z')\psi' + \sigma|\psi'|^2\psi' = 0$$

where $z_* = 2k_0\ell^2$, $V = 2k_0^2\ell^2(\Delta n/n_0)$, $\sigma = 2\gamma k_0\ell^2 P_*$
Drop ' => normalized lattice NLS eq

$$i\frac{\partial\psi}{\partial z} + \nabla^2\psi - V(x, y, z)\psi + \sigma|\psi|^2\psi = 0$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Typical Physical Scales

Exp'ts: input wavelength: $\lambda = 630 nm$ Bulk index: $n_0 = 1.4$ (silica) => input wavenumber $k_0 = \frac{2\pi n_0}{\lambda} = 1.44 \times 10^7 rad/m$ $\ell = 15\mu m => z_* = 2k_0\ell^2 = 6.5 \times 10^{-3}m$ NL Index change: $\Delta n/n_0 = 7 \times 10^{-4}$ => $V = 2k_0^2\ell^2(\Delta n/n_0) \sim 50$; Later will discuss 'Tight Binding (TB) Approx': $V \gg 1$

・ロト・日本・日本・日本・日本・日本・日本

Periodic Optical Lattices

Investigate waves in periodic optical lattices in lattice NLS eq.

$$i\psi_z + \nabla^2 \psi - V(\mathbf{r}, z)\psi + \sigma |\psi|^2 \psi = 0$$

where $V(\mathbf{r}, z)$: in transverse plane 2-d periodic with basis lattice vectors: $\mathbf{v}_1, \mathbf{v}_2$:

$$V(\mathbf{r} + m\mathbf{v}_1 + n\mathbf{v}_2, z) = V(\mathbf{r}, z), \quad m, n \in \mathbb{Z}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Begin with uniform case: $V(\mathbf{r}, z) = V(\mathbf{r})$

Lattices

Simple lattice: $V(\mathbf{r})$ has one min or 'site' in each unit cell; all sites can be constructed from an initial site: e.g. below: left rectangular lattice

Non-simple HC lattice–below right: two initial sites ("A & B") determine the lattice

Linear problem

Linear problem: $\psi(\mathbf{r},z) = \varphi(\mathbf{r})e^{-i\mu z}$ with $|\varphi| \ll 1$:

$$(\nabla^2 - V(\mathbf{r}) + \mu)\varphi = 0$$

 $V(\mathbf{r})$ is a 2-d periodic potential with lattice vectors: $\mathbf{v}_1, \mathbf{v}_2$ Bloch theory:

$$\varphi(\mathbf{r};\mathbf{k})=e^{i\mathbf{k}\cdot\mathbf{r}}U(\mathbf{r};\mathbf{k}),$$

 $U(\mathbf{r}; \mathbf{k})$ is periodic in \mathbf{r} and $\varphi(\cdot, \mathbf{k}), \mu(\mathbf{k})$ are periodic in \mathbf{k} with 'dual' lattice vectors: $\mathbf{k}_1, \mathbf{k}_2$

Dispersion relation: $\mu = \mu(\mathbf{k})$

Potential in TB Limit

Tight binding limit: when $|V| \gg 1$ we approx. the potential

$$V(\mathbf{r}) pprox \sum_{\mathbf{v}} V_0(\mathbf{r}-\mathbf{v})$$

where $V_0(\mathbf{r} - \mathbf{v})$ is the approx. pot'l with minima at site \mathbf{v} Use

$$\left(\nabla^2 - V_0(\mathbf{r})\right)\phi(\mathbf{r}) = -E\phi(\mathbf{r})$$

 $\phi(\mathbf{r})$ called an 'orbital'

 $|V| \gg 1:$ 'tight binding approx.' used widely in physics to study lattices; 'graphene' Wallace 1947

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

TB Envelope Dynamics

Simple lattices with $\mu(\mathbf{k})$ having a single dispersion relation branch

$$\psi(\mathbf{r},z,\mathbf{k})\sim\sum_{\mathbf{v}}a_{\mathbf{v}}(z)\phi(\mathbf{r}-\mathbf{v})e^{i\mathbf{k}\cdot\mathbf{v}}$$

 $a_{\mathbf{v}}(z)$ represents the Bloch wave envelope at the site $\mathcal{S}_{\mathbf{v}}$

 $\phi(\mathbf{r})$ orbitals: rapidly decaying

RHS above approximates the 'Wannier functions'

Substitute ψ into lattice NLS, multiply by $\phi(\mathbf{r} - \mathbf{p})$ and integrate:

find discrete NLS eq. at general values of ${\bf k}$ in the Brillouin zone: $\mathsf{DNLS}({\bf k})$

DNLS(k) Eq.

Leading order eq. results from on-site and nearest neighbor interactions; Eq. reduces to $\text{DNLS}(\mathbf{k})$ eq.

$$\frac{da_{\mathbf{p}}}{dz} + \sum_{\langle \mathbf{v} \rangle} a_{\mathbf{p}+\mathbf{v}} C_{\mathbf{v}} e^{i\mathbf{k}\cdot\mathbf{v}} + \sigma g |a_{\mathbf{p}}|^2 a_{\mathbf{p}} = 0$$

where $< \mathbf{v} >$ means the sum over \mathbf{v} only takes nearest neighbors; $C_{\mathbf{v}}, g$ are given in terms integrals over orbitals

Continuum limit from DNLS(k) yields 2-d NLS(k) eq

$NLS(\mathbf{k})$ Eq.

As a further limit, assume that the envelope a_v varies slowly over v with a scale $\mathbf{R} = \nu \mathbf{r}$, $|\nu| \ll 1$ then

$$a_{\mathbf{p}+\mathbf{v}} \approx a + \nu \mathbf{v} \cdot \tilde{\nabla} a + \cdots$$

Find a continuous 2-d NLS(\mathbf{k}) eq for $a = a(\mathbf{R}, Z)$

$$i\frac{\partial a}{\partial z} + i\nu\bar{\nabla}\mu\cdot\tilde{\nabla}a + \frac{\nu^2}{2}\sum_{m,n=1}^2\bar{\partial}_{m,n}\mu\tilde{\partial}_{m,n}a + \sigma g|a|^2a = 0$$

where $\tilde{\partial}_m = \frac{\partial}{\partial \mathbf{R}_m}$, $\bar{\partial}_m = \frac{\partial}{\partial k_m}$; $\bar{\nabla}\mu$ plays the role of the group velocity

For different ${\bf k}$ the dispersive terms may be elliptic, hyperbolic or parabolic

Typical HC Lattice

Typical honeycomb (HC) lattice $V(\mathbf{r})$ from:

$$V(\mathbf{r}) = V_0 \left| e^{ik_0 \mathbf{b}_1 \cdot \mathbf{r}} + \eta e^{ik_0 \mathbf{b}_2 \cdot \mathbf{r}} + \eta e^{ik_0 \mathbf{b}_3 \cdot \mathbf{r}} \right|^2$$

where $\mathbf{b}_1 = (0,1), \mathbf{b}_2 = (-\frac{\sqrt{3}}{2}, -\frac{1}{2}); \mathbf{b}_3 = (\frac{\sqrt{3}}{2}, -\frac{1}{2})$

 V_0, k_0, η const. $V_0 > 0$ is the lattice intensity;

 η corresponds to geometric lattice deformation (strain) $\eta=1~$ standard/perfect HC lattice

Typical HC–Intensity Plot

HC lattice in physical space: below ($\eta = 1$): intensity plot; local minima form HC lattice

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Х

Typical HC–Dispersion Surface

Typical HC dispersion relation $\mu(\mathbf{k})$ first two bands below:

Note: 1st, 2nd bands can touch at certain isolated points, called Dirac points

Dirac points form sites of a hexagonal HC lattice in the **k** plane dual lattice corresponding to the original potential lattice–i.e. have HC structure in the **k** plane.

Honeycomb Lattices

Nonsimple honeycomb (HC) lattices also arise in the study of the 2d material Graphene

Material Graphene: ultra thin carbon material

First demonstrated exp't 2004; nobel prize 2010

Graphene exhibits important properties physically and mathematically

Here we study: Photonic Graphene – photonic analogue of graphene

Uniform/non-uniform lattices:

Segev's group: ('07–), MJA, Zhu,Curtis,Ma,Cole ('09–...), Fefferman,Weinstein ('12–), ...

TB HC Envelope Evolution

For |V| >> 1

$$\psi \sim \sum_{\mathbf{v}} a_{\mathbf{v}}(z) \phi_A(\mathbf{r}-\mathbf{v}) e^{i\mathbf{k}\cdot\mathbf{v}} + \sum_{\mathbf{v}} b_{\mathbf{v}}(z) \phi_B(\mathbf{r}-\mathbf{v}) e^{i\mathbf{k}\cdot\mathbf{v}}$$

where the sum is over A, B lattice sites: **v**

$$\left(\nabla^2 - V_j(\mathbf{r})\right)\phi_j(\mathbf{r}) = -E_j\phi_j(\mathbf{r}); \quad j = A, B$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 $\phi_j(\mathbf{r})$ orbitals; rapidly decaying

Substitute ψ into lattice NLS eq., multiply $\phi_j(\mathbf{r} - \mathbf{p})e^{-i\mathbf{k}\cdot\mathbf{p}}$; j = A, B and integrate

Discrete HC System

Find discrete system

$$i\frac{da_{\mathbf{p}}}{dz} + \mathcal{L}^{-}b_{\mathbf{p}} + \sigma|a_{\mathbf{p}}|^{2}a_{\mathbf{p}} = 0$$
$$i\frac{db_{\mathbf{p}}}{dz} + \mathcal{L}^{+}a_{\mathbf{p}} + \sigma|b_{\mathbf{p}}|^{2}b_{\mathbf{p}} = 0$$

$$\mathcal{L}^{-}b_{\mathbf{p}} = b_{\mathbf{p}} + \rho(b_{\mathbf{p}-\mathbf{v}_{1}}e^{-i\mathbf{k}\cdot\mathbf{v}_{1}} + b_{\mathbf{p}-\mathbf{v}_{2}}e^{-i\mathbf{k}\cdot\mathbf{v}_{2}})$$
$$\mathcal{L}^{+}a_{\mathbf{p}} = a_{\mathbf{p}} + \rho(a_{\mathbf{p}+\mathbf{v}_{1}}e^{i\mathbf{k}\cdot\mathbf{v}_{1}} + a_{\mathbf{p}+\mathbf{v}_{2}}e^{i\mathbf{k}\cdot\mathbf{v}_{2}})$$

 ρ : deformation parameter ($\rho = \rho(\eta)$); $\rho = 1$ perfect hexagon Rigorous analysis of TB: MJA, C. Curtis, Y. Zhu (2012)

Continuous NL Dirac System

When a_v and b_v vary slowly with respect to v at Dirac point: $\mathbf{k} = K$ find deformed NL Dirac (NLD) system in continuum limit:

$$i\partial_z a + (\partial_x + i\zeta\partial_y)b + \sigma |a|^2 a = 0$$

$$i\partial_z b + (-\partial_x + i\zeta\partial_y)a + \sigma |b|^2 b = 0$$

where $\zeta = \sqrt{\frac{4\rho^2 - 1}{3}}$ When $\rho = 1, \zeta = 1$ conical diffraction $1/2 < \rho < 1$: elliptical diffraction $\rho \rightarrow 1/2$: straight line diffraction

When $\sigma = 0$ above system reduces to (deformed) 2+1d wave eq.

Conical Diffraction

Below: simulations of lattice NLS and NLD: $\rho=1$ Top Fig. lattice NLS

Bottom Fig. NLD system ('a' envelope) IC: *a* is a unit Gaussian and b = 0

$$z = 0$$
 $z = z_1 > 0$ $z = z_2 > z_1$

NLD system yields conical diffraction-as seen in lattice NLS eq. conical diffraction observed (Sgev gp 2007)

Elliptical Diffraction-NLD

NLD: The rings in the conical diffraction are elliptic if $\rho \neq 1$, where the ratio of axes is $\zeta = \sqrt{\frac{4\rho^2 - 1}{3}}$. Below 2 elliptic rings when (a) $\rho = 0.8$ (b) $\rho = 0.6$

Deformation-con't

- Critical behavior when $ho \sim 1/2$
- + $|2\rho-1|\ll 1$ find approximate 'straight-line' diffraction; weak transverse variation
- Various small parameters different balances lead to different eqs: $\beta = 2\rho 1$, NL: ε , sl varying envelope: ν

• Find numerous new nonlocal nonlinear equations

MJA, Y. Zhu 2013

Deformation Eq: 'NLSKZ'

When
$$\varepsilon \sim \nu^2$$
, $0 \ll \nu^2 \ll \beta$
 $a \sim \nu F$, $\theta = x - z$; $Z = \nu^2 z$:

$$\partial_{\theta} \left(\partial_{Z} F - \sigma i |F|^{2} F \right) + \partial_{y}^{2} F = 0$$
 NLSKZ

This nonlocal eq is similar is spirit to 'KZ' eq. Khokhlov & Zabolotskaya 1969:

$$\partial_{\theta}(\partial_t u + u \partial_{\theta} u) + \partial_y^2 u = 0$$
 KZ

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Conclusions-so far

- NL waves in lattice NLS in strong potential/TB limit investigated MJA, Curtis, Zhu ('09–13)
- Simple lattices: discrete and continuous NLS systems
- HC lattices: n'bhd of Dirac points find discrete and continuous NL Dirac (NLD) systems
- NLD exhibits conical-elliptical diffraction when $1/2 < \rho \leq 1$
- When $\rho \rightarrow 1/2$ find straight line diffraction; find new reduced asymptotic eq

Longitudinally Varying Waveguides

Introduce longitudinally varying waveguides on both sublattice sites; LNLS:

$$i\partial_z \psi = -\nabla^2 \psi + V(\mathbf{r}, z)\psi - \gamma |\psi|^2 \psi$$

Introduce longitudinally varying waveguides (Rechtsman et al '13)

$$x' = x - h_1(z), y' = y - h_2(z), z' = z$$

 $\mathbf{h}(z) = (h_1(z), h_2(z))$: 'path function'- typically periodic in z

Longitudinally Varying Waveguides-con't

Transform LNLS eq. with

$$\psi \rightarrow \psi \exp\left[i \int_0^z |\mathbf{A}_{\mathbf{p}}(\xi)|^2 d\xi\right]$$
 with $\mathbf{A}_{\mathbf{p}}(z) = -\mathbf{h}'(z)$

find lattice NLS with a pseudo-field: $\mathbf{A}_{\mathbf{p}}(z)$: in **transfromed** coordinates

$$i\partial_{z}\psi = -(\nabla + i\mathbf{A}_{\mathbf{p}}(z))^{2}\psi + V(\mathbf{r})\psi - \gamma |\psi|^{2}\psi$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

TB approx with pseudo-field $\mathbf{A}_{\mathbf{p}} = \mathbf{A}_{\mathbf{p}}(z)$ yields:

TB with Pseudo-Field: Discrete System

$$i\frac{da_{mn}(z)}{dz} + e^{i\mathbf{d}\cdot\mathbf{A}_{\mathbf{p}}}(\mathcal{L}_{-}b)_{mn} + \sigma|a_{mn}|^{2}a_{mn} = 0$$
$$i\frac{db_{mn}(z)}{dz} + e^{-i\mathbf{d}\cdot\mathbf{A}_{\mathbf{p}}}(\mathcal{L}_{+}a)_{mn} + \sigma|b_{mn}|^{2}b_{mn} = 0$$

where

$$(\mathcal{L}_{-}b)_{mn} = b_{mn} + \rho(b_{m-1,n-1}e^{-i\theta_1} + b_{m+1,n-1}e^{-i\theta_2})$$
$$(\mathcal{L}_{+}a)_{mn} = a_{mn} + \rho(a_{m+1,n+1}e^{i\theta_1} + a_{m-1,n+1}e^{i\theta_2})$$

and $\theta_j = (\mathbf{d} - \mathbf{v_j}) \cdot \mathbf{A_p}(z)$, j = 1, 2, ρ deformation, **d** is a vector between adj. horiz. sites, above use m, n row, column format

Zig-Zag-Arm Chair Edges

Zig-Zag (ZZ): Left Right; Armchair: Top, Bottom

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

BCs – Linear Floquet Bands

Assume $\mathbf{A}_{\mathbf{p}}(z)$ is periodic; e.g. $\mathbf{A}_{\mathbf{p}}(z) = \kappa(\sin \Omega z, \cos \Omega z)$ Look for solutions of the form

$$a_{mn}(z) = a_n(z;\omega)e^{im\omega}$$
, $b_{mn}(z) = b_n(z;\omega)e^{im\omega}$,

Find linear difference eq with periodic coef; use Floquet thy:

$$f(z+T) = e^{-i\alpha(\omega)z}f(z), \quad T = 2\pi/\Omega$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 $\alpha(\omega)$ Floquet coef; also called the edge dispersion relation

Linear Problem–Dispersion Relations

Dispersion relations (helical waveguides): thin curves are 'bulk' modes; lines in the gap are **edge modes**:

Left Fig: **Toplogical Floquet insulator** (Segev gp '13) Right Fig: allows left and right going waves In general: number of intersections: \mathcal{I} with $\alpha = 0$ $\mathcal{I} = 0, 1, 2$ $(0 \le \omega < \pi)$ left fig $\mathcal{I} = 1$ (topological) right fig $\mathcal{I} = 2$ (nontopological)

Analysis: Rapidly Varying Helical lattice

Let:
$$a_{mn} = a_n e^{im\omega}, b_{mn} = b_n e^{im\omega}$$
 find

$$i\partial_z a_n + e^{i\mathbf{d}\cdot\mathbf{A}_p} \left(b_n + \rho\gamma^* b_{n-1} \right) + \sigma |a_n|^2 a_n = 0$$

$$i\partial_z b_n + e^{-i\mathbf{d}\cdot\mathbf{A}_p} \left(a_n + \rho\gamma a_{n+1} \right) + \sigma |b_n|^2 b_n = 0$$

where $\gamma = \gamma(\omega, \mathbf{A_p}(\mathbf{z}))$

Take: A_p periodic & rapidly varying

$$\begin{split} \mathbf{A}_{\mathbf{p}} &= \mathbf{A}_{\mathbf{p}}(\frac{z}{\varepsilon}), |\varepsilon| \ll 1; \\ \text{e.g. } \mathbf{A}_{\mathbf{p}} &= \kappa(\sin\frac{z}{\varepsilon}, \cos\frac{z}{\varepsilon}): \text{ 'helical waveguides'} \\ \text{Expt's Segev gp (2013)} \end{split}$$

Edge Modes: ZZ

Multiple scales: $a_n = a_n(z,\zeta); \ b_n = b_n(z,\zeta); \ \zeta = \frac{z}{\varepsilon}; \ \partial_z = \frac{1}{\varepsilon}\partial_\zeta + \partial_z$ Expand a_n, b_n in powers of ε ;

Apply BCs (ZZ) find Edge Modes (ZZ) (exp decay):

$$a_n \sim 0, \ \ b_n \sim C(z,\omega)r^n, \ \ |r| = |r(\omega,
ho, \mathbf{A_p})| < 1$$

Linear problem (first order):

$$C(z,\omega) = C_0 \exp\left(-i\alpha(\omega)z\right),$$

 C_0 const. $\alpha(\omega) \equiv \alpha(\omega, \rho; \mathbf{A_p})$: 'dispersion relation' (Floquet coef): obtain explicit formulae

Typical Edge Mode

 $b_{mn} \sim C_m e^{(i\omega_0 m - i\alpha(\omega_0)z)} r^n$

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Nonlinear Edge Wave Envelope Evolution Eq

Discrete edge mode: $a_{mn} \sim 0$

$$b_{mn} \sim C(z,y)e^{i\omega_0m}r^n, \ |r| < 1$$

where slowly varying $(|
u|\ll 1)$ edge mode envelope satisfies

$$i\partial_Z C = \alpha_0 C - i\alpha'_0 \nu C_y - \frac{\alpha''_0}{2} \nu^2 C_{yy} + \frac{i\alpha''_0}{6} \nu^3 C_{yyy} - \alpha_{nl,0} |C|^2 C + \cdots$$

where $\alpha_0 = \alpha(\omega_0), \alpha'_0 = \partial_\omega \alpha(\omega_0)$, etc.
May transform to standard NLS

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

If $\mathbf{A_p} = \mathbf{0}$ then $\alpha = \mathbf{0}$: stationary mode

Typical Linear Edge Wave Evolution

Left: Linear discrete; Right linear Schrödinger (LS) eq Fig (a-b): $\rho = 1$: Topological Floquet Insulator: $\alpha'_0 \neq 0$; $\alpha_0'' = 0$, $\alpha_0''' \neq 0$, $\mathcal{I} = 1$ Fig. (c-d): $\rho = 0.4$: at $\alpha'_0 = 0$; $\alpha_0'' \neq 0$: $\mathcal{I} = 2$ (nontopological)

Recall: Dispersion Relations of Linear Problem

Dispersion relations (helical waveguides): thin curves are 'bulk' modes; lines in the gap are **edge modes**:

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Typical NL Edge Wave Evolution

Here: $\alpha'_0 \neq 0$; $\alpha_0'' \neq 0$, $\alpha_0''' = 0$ Fig: $\rho = 1$ Solitons

Continuous theory agrees with discrete eq.

NL problem inherits Topological Insulator properties

Typical Linear Edge Wave Evolution–Defects

Fig: propagation across defect: left to right

Top fig: Topological mode – wave propagates unidirectionally without losing significant power ($\rho = 1, \omega = \pi/2, \alpha_{nl} = 0$) Bottom fig: Nontopological mode – wave reflects, broadens/loses significant power ($\rho = 0.4, \omega = \pi/2, \alpha_{nl} = 0$)

NL Edge Wave Propagation Around Defects

Fig: NL propagation across defect: left to right

NL topological edge wave ($\rho = 1, \alpha_0'' > 0, \alpha_{nl} \neq 0$)) propagates without losing significant power

NL edge solitons: unidirectional, propagates across defects

Bounded Photonic Graphene

Zig-Zag (ZZ): Left Right; Armchair: Top, Bottom

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Mode Propagation–Linear

Linear propagation $\ \rho = 1$: topological case; different points on the dispersion curve

Mode Propagation-NL

NL propagation $\rho = 1$: topological case:; different points on the dispersion curve

General Longitudinal Variation

Typical case nonsimple lattice with two sublattices

$$V_1 = V_1(\mathbf{r} - \mathbf{h}_1(z)), \ \ V_2 = V_2(\mathbf{r} - \mathbf{h}_2(z))$$

in nb'hd of sublattices 1,2 and $\mathbf{h}_j(z)$, j = 1, 2 are prescribed (smooth) functions

Simple case, helical variation

$$\mathbf{h}_j(z) = \eta_j \left(\cos \left(\frac{z}{\varepsilon_j} + \chi_j \right), \ \sin \left(\frac{z}{\varepsilon_j} + \tilde{\chi}_j \right) \right), \ j = 1, 2$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Rotating frame

Move to coordinate frame co-moving with with the $V_1(\mathbf{r}, z)$ sublattice,

$$\mathbf{r}' = \mathbf{r} - \mathbf{h}_1(z)$$
 , $z' = z$

which after the phase transformation

$$\psi = \psi' \exp\left[-i \int_0^z |\mathbf{A}(\xi)|^2 d\xi\right]$$
 with $\mathbf{A}(z) = -\mathbf{h_1}'(z)$

find lattice NLS with a pseudo-field $\mathbf{A}(z)$ -dropping ':

$$i\partial_z \psi + (\nabla + i\mathbf{A}(z))^2 \psi - V(\mathbf{r}, z)\psi + \sigma |\psi|^2 \psi = 0$$

 $V_1(r, z) = V_1(\mathbf{r}), \quad V_2(r, z) = V_2(\mathbf{r} - \Delta \mathbf{h}_{21}(z)), \text{ near sites } 1, 2 \text{ with}$
 $\Delta \mathbf{h}_{21}(z) = \mathbf{h}_2(z) - \mathbf{h}_1(z)$

NL HC Representation

In non-dim NLS eq using HC lattice with $\left|V\right|>>1$ substitute

$$\psi(\mathbf{r},z) \sim \sum_{\mathbf{v}} \left[a_{\mathbf{v}}(z)\phi_{1,\mathbf{v}}(\mathbf{r},z) + b_{\mathbf{v}}(z)\phi_{2,\mathbf{v}}(\mathbf{r},z) \right]$$

where

$$\left(\nabla^2 - \tilde{V}_j(\mathbf{r}, z)\right)\phi_{j,\nu}(\mathbf{r}, z) = -E_j\phi_{j,\nu}(\mathbf{r}, z); \ \ j = 1, 2$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 $\phi_{j,v}$ are termed orbitals

Substitute ψ into NLS eq. with pseudo-field, multiply $\phi_j(\mathbf{r} - \mathbf{p})e^{-i\mathbf{k}\cdot\mathbf{p}}; \quad j = 1, 2$ and integrate

Discrete HC System

$$i\frac{da_{mn}}{dz} + e^{i\varphi(z)} \left(\mathcal{L}_{-}(z)b\right)_{mn} + \sigma |a_{mn}|^2 a_{mn} = 0$$
$$i\frac{db_{mn}}{dz} + e^{-i\varphi(z)} \left(\mathcal{L}_{+}(z)a\right)_{mn} + \sigma |b_{mn}|^2 b_{mn} = 0$$

$$(\mathcal{L}_{-}(z)b)_{mn} = L_{0}(z)b_{mn} + L_{1}(z)b_{m-1,n-1}e^{-i\theta_{1}(z)} + L_{2}(z)b_{m+1,n-1}e^{-i\theta_{2}(z)}$$

$$(\mathcal{L}_{+}(z)a)_{mn} = \tilde{\mathcal{L}}_{0}(z)a_{mn} + \tilde{\mathcal{L}}_{1}(z)a_{m+1,n+1}e^{i\theta_{1}(z)} + \tilde{\mathcal{L}}_{2}(z)a_{m-1,n+1}e^{i\theta_{2}(z)},$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

where $arphi(z), heta_j(z), L_j(z), \widetilde{L}_j(z) \in \mathbb{R}, \; j=1,2,3$ known

Typical Rotation Patterns for Sublattices

• Same rotation, same or different radii:

$$\mathbf{h}_2(z) = R_a \mathbf{h}_1(z) = R_a \eta \left(\cos \left(\frac{z}{\varepsilon} \right), \sin \left(\frac{z}{\varepsilon} \right) \right)$$

• π -Phase offset rotation

$$\mathbf{h}_2(z) = \mathbf{h}_1(z + \varepsilon \pi) = -\eta \left(\cos \left(\frac{z}{\varepsilon} \right), \sin \left(\frac{z}{\varepsilon} \right) \right)$$

• Different frequencies

$$\mathbf{h}_j(z) = \eta \left(\cos \left(\frac{z}{\varepsilon_j} \right), \ \sin \left(\frac{z}{\varepsilon_j} \right) \right), \ j = 1, 2$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

BCs – Linear Floquet Bands

Look for solutions of the form

$$a_{mn}(z) = a_n(z;\omega)e^{im\omega}$$
, $b_{mn}(z) = b_n(z;\omega)e^{im\omega}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Find linear difference eq with periodic coef; Floquet thy:

$$f(z+T) = e^{-i\alpha(\omega)z}f(z)$$

HC Floquet Bands

HC lattice linear band structure-typical parameters

A B C

Fig A: same freq, same radii Fig B: same freq, different radii ($R_2 = R_1/2$) Fig C: diff freq ($1/\varepsilon_2 = \omega_2 = 2\omega_1 = 1/\varepsilon_1$), same radii

HC Floquet Bands -con't

HC lattice linear band structure-typical parameters

А

В

(日)、

э.

Figs A & B: π offset, same rotation Fig B vs Fig A: radius $\eta_2 > \eta_1$

Linear HC Edge Mode Dynamics

Fig Above: Same rotation, same radii

Fig Above: π offset, different radii

▲□▶ ▲圖▶ ★ 臣▶ ★ 臣▶ = 臣 = の Q @

Adiabatic HC Lattice

Take HC lattice, uniform rotation, and $\mathbf{A} = \mathbf{A}(Z)$, where $Z = \varepsilon z$ In lattice system: $a_n = a_n(z, Z)$, $b_n = b_n(z, Z)$ Multiple scales asymptotics (ZZ BC):

$$a_n \sim 0; \quad b_n \sim C(Z, \omega) b_n^S(Z)$$

where $b_n^S(Z) = \{r^n(Z); |r| < 1; r = r(\omega, \rho; \mathbf{A}(Z)), n \ge 0\}$ In general edge mode existence (|r| < 1) depends on ω, ρ, Z Modes can 'disintegrate' under evolution Can find an NLS type eq for envelope C whose coef. depend on Z Numerics: discrete and continuous models: very good agreement

Conclusion–Topological Edge States

Photonic lattices with longitudinal variation

- Systematic method to find tight binding (TB) discrete eqs for same rotation and complex longitudinally driven lattices; special case: honeycomb lattices
- Find Floquet bands; they indicate topological/nontopological edge waves
- Topological waves: no backscatter, propagate stably around defects, corners

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Conclusion: HC Edge States

Same rotation:

- Construct asymptotic theory for rapid helical variation
- Envelope of edge modes satisfy standard NLS eq
- NLS solitons topological case: unidirectional, propagate stably around defects, corners; 'solitons inherit topological properties'

Generalized longitudinal rotation

- Find TB eq; Floquet bands, large number of new/novel topological modes
- Can do this for many lattices: HC, staggered sq, Lieb, Kagome...

Ref.: MJA, C. Curtis, Y-P Ma 2013-15; MJA, J. Cole: 2017-18