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Outline

• Introduction

• Study light propagation in longitudinal (z) direction with an
optical lattice in transverse (x-y) plane

• Systematic method to obtain tight binding approximations for
linear/NL lattices with uniform and nonuniform longitudinal
structure

• Prototype: honeycomb (HC) photonic lattices

• Uniform longitudinal structure: conical, elliptical, straightline
diffraction



Outline – con’t

• Lattices with non-uniform longitudinal structure: ‘topological
insulator’

• Find linear topologically protected edge waves: they move
unidirectionally, do not scatter off defects

• NL problem: find envelope edge solitons satisfying classical
1d-NLS eq; the solitons do no scatter from defects, corners;
propagate stably over very long distances

• Conclusion

Refs: MJA, C. Curtis, YP Ma (2013–15); MJA, J. Cole
(2017–18)



Introduction

• Investigations of optical lattices extensive

• Paradigm – HC lattice: ‘Photonic Graphene’ (PG)

Left: Uniform HC lattice: z direc’n; Right: x-y plane : HC
lattice

• Segev group 2007–conical diffrct’n; MJA, Y. Zhu, C. Curtis
constructed/studied TB models; found conical diffrct’n &
various interesting new NL nonlocal eqn’s in certain limits
(2009-13)



Introduction–con’t

• Topological insulators/edge waves were theoretically
proposed/observed in magneto-optics, Wang et al 2008-09

• Such top’l waves were found in photonics: HC lattice with
longitudinal helical variation, Rechtsman et al 2013

• MJA, YP Ma, C. Curtis (2013–15), studied TB model,
developed asymptotic description linear/NL under assumption
of rapid helical variation: top’l/non-top’l waves



Introduction–con’t

• Leykam et al (2016) studied staggered square lattice with
helical variation and phase sh’fts between sublattices

• MJA, J. Cole (2017–18): systematic method to find TB
models in lattices with longitudinal structure

• Topological edge/interface/surface waves in physics – very
active field of research



Lattice NLS Equation

Maxwell’s eq with paraxial approx. => NLS eq with ext pot’l

i
∂ψ

∂z
= − 1

2k0
∇2ψ + k0

∆n(x , y , z)

n0
ψ − γ|ψ|2ψ

where: k0 is input wavenumber

n0 is the bulk refractive index

∆n/n0 is the change of index change relative to n0

γ is NL index



Non-dimensional NLS Equation

Rescale to non-dimensional form

x = `x ′ , y = `y ′ , z = z∗z
′ , ψ =

√
P∗ψ

′

where: ` is the lattice scale; P∗: peak input power

Find non-dim NLS eq, ′: dimensionless:

i
∂ψ′

∂z ′
+ (∇′)2ψ′ − V (x ′, y ′, z ′)ψ′ + σ|ψ′|2ψ′ = 0

where z∗ = 2k0`
2, V = 2k20 `

2(∆n/n0), σ = 2γk0`
2P∗

Drop ′ => normalized lattice NLS eq

i
∂ψ

∂z
+∇2ψ − V (x , y , z)ψ + σ|ψ|2ψ = 0



Typical Physical Scales

Exp’ts: input wavelength: λ = 630nm

Bulk index: n0 = 1.4 (silica)

=> input wavenumber k0 = 2πn0
λ = 1.44× 107rad/m

` = 15µm => z∗ = 2k0`
2 = 6.5× 10−3m

NL Index change: ∆n/n0 = 7× 10−4

=> V = 2k20 `
2(∆n/n0) ∼ 50;

Later will discuss ‘Tight Binding (TB) Approx’: V � 1



Periodic Optical Lattices

Investigate waves in periodic optical lattices in lattice NLS eq.

iψz +∇2ψ − V (r, z)ψ + σ|ψ|2ψ = 0

where V (r, z): in transverse plane 2-d periodic with basis lattice
vectors: v1, v2:

V (r + mv1 + nv2, z) = V (r, z), m, n ∈ Z

Begin with uniform case: V (r, z) = V (r)



Lattices

Simple lattice: V (r) has one min or ‘site’ in each unit cell; all sites
can be constructed from an initial site: e.g. below: left
rectangular lattice

Non-simple HC lattice–below right: two initial sites (“A & B”)
determine the lattice



Linear problem

Linear problem: ψ(r, z) = ϕ(r)e−iµz with |ϕ| � 1:

(∇2 − V (r) + µ)ϕ = 0

V (r) is a 2-d periodic potential with lattice vectors: v1, v2

Bloch theory:
ϕ(r; k) = e ik·rU(r; k),

U(r; k) is periodic in r and ϕ(·, k), µ(k) are periodic in k with
‘dual’ lattice vectors: k1, k2

Dispersion relation: µ = µ(k)



Potential in TB Limit

Tight binding limit: when |V | � 1 we approx. the potential

V (r) ≈
∑
v

V0(r − v)

where V0(r − v) is the approx. pot’l with minima at site v

Use (
∇2 − V0(r)

)
φ(r) = −Eφ(r)

φ(r) called an ‘orbital’

|V | � 1: ‘tight binding approx.’ used widely in physics to study
lattices; ‘graphene’ Wallace 1947



TB Envelope Dynamics

Simple lattices with µ(k) having a single dispersion relation branch

ψ(r, z , k) ∼
∑
v

av(z)φ(r − v)e ik·v

av(z) represents the Bloch wave envelope at the site Sv

φ(r) orbitals: rapidly decaying

RHS above approximates the ‘Wannier functions’

Substitute ψ into lattice NLS, multiply by φ(r − p) and integrate:

find discrete NLS eq. at general values of k in the Brillouin zone:
DNLS(k)



DNLS(k) Eq.

Leading order eq. results from on-site and nearest neighbor
interactions; Eq. reduces to DNLS(k) eq.

dap
dz

+
∑
<v>

ap+vCve
ik·v + σg |ap|2ap = 0

where < v > means the sum over v only takes nearest neighbors;
Cv, g are given in terms integrals over orbitals

Continuum limit from DNLS(k) yields 2-d NLS(k) eq



NLS(k) Eq.

As a further limit, assume that the envelope av varies slowly over v
with a scale R = νr, |ν| � 1 then

ap+v ≈ a + νv · ∇̃a + · · ·

Find a continuous 2-d NLS(k) eq for a = a(R,Z )

i
∂a

∂z
+ iν∇̄µ · ∇̃a +

ν2

2

2∑
m,n=1

∂̄m,nµ∂̃m,na + σg |a|2a = 0

where ∂̃m = ∂
∂Rm

, ∂̄m = ∂
∂km

; ∇̄µ plays the role of the group
velocity

For different k the dispersive terms may be elliptic, hyperbolic or
parabolic



Typical HC Lattice

Typical honeycomb (HC) lattice V (r) from:

V (r) = V0

∣∣∣e ik0b1·r + ηe ik0b2·r + ηe ik0b3·r
∣∣∣2

where b1 = (0, 1),b2 = (−
√
3
2 ,−

1
2);b3 = (

√
3
2 ,−

1
2)

V0, k0, η const. V0 > 0 is the lattice intensity;

η corresponds to geometric lattice deformation (strain)
η = 1 standard/perfect HC lattice



Typical HC–Intensity Plot

HC lattice in physical space: below (η = 1): intensity plot; local
minima form HC lattice
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Typical HC–Dispersion Surface

Typical HC dispersion relation µ(k) first two bands below:

Note: 1st, 2nd bands can touch at certain isolated points, called
Dirac points

Dirac points form sites of a hexagonal HC lattice in the k plane
dual lattice corresponding to the original potential lattice–i.e. have
HC structure in the k plane.



Honeycomb Lattices

Nonsimple honeycomb (HC) lattices also arise in the study of the
2d material Graphene

Material Graphene: ultra thin carbon material

First demonstrated exp’t 2004; nobel prize 2010

Graphene exhibits important properties physically and
mathematically

Here we study: Photonic Graphene – photonic analogue of
graphene

Uniform/non-uniform lattices:
Segev’s group: (’07–), MJA, Zhu,Curtis,Ma,Cole (’09–...),
Fefferman,Weinstein (’12–), ...



TB HC Envelope Evolution

For |V | >> 1

ψ ∼
∑
v

av(z)φA(r − v)e ik·v +
∑
v

bv(z)φB(r − v)e ik·v

where the sum is over A,B lattice sites: v(
∇2 − Vj(r)

)
φj(r) = −Ejφj(r); j = A,B

φj(r) orbitals; rapidly decaying

Substitute ψ into lattice NLS eq., multiply
φj(r − p)e−ik·p; j = A,B and integrate



Discrete HC System

Find discrete system

i
dap
dz

+ L−bp + σ|ap|2ap = 0

i
dbp
dz

+ L+ap + σ|bp|2bp = 0

L−bp = bp + ρ(bp−v1e
−ik·v1 + bp−v2e

−ik·v2)

L+ap = ap + ρ(ap+v1e
ik·v1 + ap+v2e

ik·v2)

ρ: deformation parameter (ρ = ρ(η)); ρ = 1 perfect hexagon

Rigorous analysis of TB: MJA, C. Curtis, Y. Zhu (2012)



Continuous NL Dirac System

When av and bv vary slowly with respect to v at Dirac point:
k = K find deformed NL Dirac (NLD) system in continuum limit:

i∂z a + (∂x + iζ∂y )b + σ|a|2a = 0

i∂z b + (−∂x + iζ∂y )a + σ|b|2b = 0

where ζ =
√

4ρ2−1
3

When ρ = 1, ζ = 1 conical diffraction
1/2 < ρ < 1: elliptical diffraction
ρ→ 1/2: straight line diffraction

When σ = 0 above system reduces to (deformed) 2+1d wave eq.



Conical Diffraction

Below: simulations of lattice NLS and NLD: ρ = 1
Top Fig. lattice NLS

Bottom Fig. NLD system (‘a’ envelope)
IC: a is a unit Gaussian and b = 0

(c)(b)(a)

(d) (e) (f)

z = 0 z = z1 > 0 z = z2 > z1

NLD system yields conical diffraction–as seen in lattice NLS eq.
conical diffraction observed (Sgev gp 2007)



Elliptical Diffraction–NLD

NLD: The rings in the conical diffraction are elliptic if ρ 6= 1,

where the ratio of axes is ζ =
√

4ρ2−1
3 .

Below 2 elliptic rings when (a) ρ = 0.8 (b) ρ = 0.6

(a) (b)



Deformation–con’t

• Critical behavior when ρ ∼ 1/2

• |2ρ− 1| � 1 find approximate ‘straight-line’ diffraction; weak
transverse variation

• Various small parameters – different balances lead to different
eqs: β = 2ρ− 1, NL: ε, sl varying envelope: ν

• Find numerous new nonlocal nonlinear equations

MJA, Y. Zhu 2013



Deformation Eq: ‘NLSKZ’

When ε ∼ ν2, 0� ν2 � β

a ∼ νF , θ = x − z ; Z = ν2z :

∂θ
(
∂ZF − σi |F |2F

)
+ ∂2yF = 0 NLSKZ

This nonlocal eq is similar is spirit to
‘KZ’ eq. Khokhlov & Zabolotskaya 1969:

∂θ(∂tu + u∂θu) + ∂2yu = 0 KZ



Conclusions–so far

• NL waves in lattice NLS in strong potential/TB limit
investigated MJA, Curtis, Zhu (’09–13)

• Simple lattices: discrete and continuous NLS systems

• HC lattices: n’bhd of Dirac points find discrete and
continuous NL Dirac (NLD) systems

• NLD exhibits conical-elliptical diffraction when 1/2 < ρ ≤ 1

• When ρ→ 1/2 find straight line diffraction; find new reduced
asymptotic eq



Longitudinally Varying Waveguides

Introduce longitudinally varying waveguides on both sublattice
sites; LNLS:

i∂zψ = −∇2ψ + V (r, z)ψ − γ |ψ|2 ψ

Introduce longitudinally varying waveguides (Rechtsman et al ’13 )

x ′ = x − h1(z), y ′ = y − h2(z), z ′ = z

h(z) = (h1(z), h2(z)): ‘path function’– typically periodic in z



Longitudinally Varying Waveguides–con’t

Transform LNLS eq. with

ψ → ψ exp

[
i

∫ z

0
|Ap(ξ)|2dξ

]
with Ap(z) = −h′(z)

find lattice NLS with a pseudo-field: Ap(z): in transfromed
coordinates

i∂zψ = −(∇+ iAp(z))2ψ + V (r)ψ − γ |ψ|2 ψ

TB approx with pseudo-field Ap = Ap(z) yields:



TB with Pseudo-Field: Discrete System

i
damn(z)

dz
+ e id·Ap(L−b)mn + σ|amn|2amn = 0

i
dbmn(z)

dz
+ e−id·Ap(L+a)mn + σ|bmn|2bmn = 0

where

(L−b)mn = bmn + ρ(bm−1,n−1e
−iθ1 + bm+1,n−1e

−iθ2)

(L+a)mn = amn + ρ(am+1,n+1e
iθ1 + am−1,n+1e

iθ2)

and θj = (d− vj) · Ap(z), j = 1, 2, ρ deformation, d is a vector
between adj. horiz. sites, above use m, n row, column format



Zig-Zag-Arm Chair Edges

Zig-Zag (ZZ): Left Right; Armchair: Top, Bottom



BCs – Linear Floquet Bands

Assume Ap(z) is periodic; e.g. Ap(z) = κ(sin Ωz , cos Ωz)
Look for solutions of the form

amn(z) = an(z ;ω)e imω , bmn(z) = bn(z ;ω)e imω ,

Find linear difference eq with periodic coef; use Floquet thy:

f (z + T ) = e−iα(ω)z f (z), T = 2π/Ω

α(ω) Floquet coef; also called the edge dispersion relation



Linear Problem–Dispersion Relations

Dispersion relations (helical waveguides): thin curves are ‘bulk’
modes; lines in the gap are edge modes:

α

ω π0
−2.5

0

2.5

α

ω π0
−1.5

0

1.5

ρ = 1 ρ = 0.4

Left Fig: Toplogical Floquet insulator (Segev gp ’13)

Right Fig: allows left and right going waves

In general: number of intersections: I with α = 0 I = 0, 1, 2
(0 ≤ ω < π) left fig I = 1 (topological)

right fig I = 2 (nontopological)



Analysis: Rapidly Varying Helical lattice

Let: amn = ane
imω, bmn = bne

imω find

i∂zan + e id·Ap (bn + ργ∗bn−1) + σ|an|2an = 0

i∂zbn + e−id·Ap (an + ργan+1) + σ|bn|2bn = 0

where γ = γ(ω,Ap(z))

Take: Ap periodic & rapidly varying

Ap = Ap( zε ), |ε| � 1;

e.g. Ap = κ(sin z
ε , cos z

ε): ‘helical waveguides’

Expt’s Segev gp (2013)



Edge Modes: ZZ

Multiple scales:
an = an(z , ζ); bn = bn(z , ζ); ζ = z

ε ; ∂z = 1
ε∂ζ + ∂z

Expand an, bn in powers of ε;

Apply BCs (ZZ) find Edge Modes (ZZ) (exp decay):

an ∼ 0, bn ∼ C (z , ω)rn, |r | = |r(ω, ρ,Ap)| < 1

Linear problem (first order):

C (z , ω) = C0 exp (−iα(ω)z) ,

C0 const. α(ω) ≡ α(ω, ρ;Ap): ‘dispersion relation’ (Floquet
coef): obtain explicit formulae



Typical Edge Mode

bmn ∼ Cme
(iω0m−iα(ω0)z)rn



Nonlinear Edge Wave Envelope Evolution Eq

Discrete edge mode: amn ∼ 0

bmn ∼ C (z , y)e iω0mrn, |r | < 1

where slowly varying (|ν| � 1) edge mode envelope satisfies

i∂ZC = α0C − iα′0νCy −
α′′0
2
ν2Cyy +

iα′′′0
6
ν3Cyyy −αnl ,0|C |2C + · · ·

where α0 = α(ω0), α′0 = ∂ωα(ω0), etc.

May transform to standard NLS

If Ap = 0 then α = 0: stationary mode



Typical Linear Edge Wave Evolution

z

m

|b
m0

(z)|: 2D discrete
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Left: Linear discrete; Right linear Schrödinger (LS) eq
Fig (a-b): ρ = 1: Topological Floquet Insulator:
α′0 6= 0;α0

′′ = 0, α0
′′′ 6= 0, I = 1

Fig. (c-d): ρ = 0.4: at α′0 = 0;α0
′′ 6= 0: I = 2 (nontopological)



Recall: Dispersion Relations of Linear Problem

Dispersion relations (helical waveguides): thin curves are ‘bulk’
modes; lines in the gap are edge modes:

α

ω π0
−2.5

0

2.5

α

ω π0
−1.5

0

1.5

ρ = 1 ρ = 0.4



Typical NL Edge Wave Evolution

z

m

|b
m0

(z)|: 1D NLS
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Here: α′0 6= 0;α0
′′ 6= 0, α0

′′′ = 0
Fig: ρ = 1 Solitons

Continuous theory agrees with discrete eq.

NL problem inherits Topological Insulator properties



Typical Linear Edge Wave Evolution–Defects

Fig: propagation across defect: left to right

Top fig: Topological mode – wave propagates unidirectionally
without losing significant power (ρ = 1, ω = π/2, αnl = 0)

Bottom fig: Nontopological mode – wave reflects, broadens/loses
significant power (ρ = 0.4, ω = π/2, αnl = 0)



NL Edge Wave Propagation Around Defects

Fig: NL propagation across defect: left to right

NL topological edge wave (ρ = 1, α′′0 > 0, αnl 6= 0)) propagates
without losing significant power

NL edge solitons: unidirectional, propagates across defects



Bounded Photonic Graphene

Zig-Zag (ZZ): Left Right; Armchair: Top, Bottom



Mode Propagation–Linear

Linear propagation ρ = 1 : topological case; different points on
the dispersion curve
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Left: Linear ω = π/2 Right: Linear ω = 7π/12
α′′ = 0, α′′′ 6= 0 α′′ 6= 0



Mode Propagation–NL

NL propagation ρ = 1 : topological case:; different points on the
dispersion curve
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Left: NL ω = π/2 Right: NL ω = 7π/12: NLS eq
α′′ = 0, α′′′ 6= 0 α′′ 6= 0



General Longitudinal Variation

Typical case nonsimple lattice with two sublattices

V1 = V1(r − h1(z)), V2 = V2(r − h2(z))

in nb’hd of sublattices 1, 2 and hj(z), j = 1, 2 are prescribed
(smooth) functions

Simple case, helical variation

hj(z) = ηj

(
cos

(
z

εj
+ χj

)
, sin

(
z

εj
+ χ̃j

))
, j = 1, 2



Rotating frame

Move to coordinate frame co-moving with with the V1(r, z)
sublattice,

r′ = r − h1(z) , z ′ = z

which after the phase transformation

ψ = ψ′ exp

[
−i
∫ z

0
|A(ξ)|2dξ

]
with A(z) = −h1′(z)

find lattice NLS with a pseudo-field A(z) -dropping ′:

i∂zψ + (∇+ iA(z))2ψ − V (r, z)ψ + σ |ψ|2 ψ = 0

V1(r , z) = V1(r), V2(r , z) = V2(r −∆h21(z)), near sites 1, 2 with

∆h21(z) = h2(z)− h1(z)



NL HC Representation

In non-dim NLS eq using HC lattice with |V | >> 1 substitute

ψ(r, z) ∼
∑
v

[av (z)φ1,v (r, z) + bv (z)φ2,v (r, z)]

where (
∇2 − Ṽj(r, z)

)
φj ,v (r, z) = −Ejφj ,v (r, z); j = 1, 2

φj ,v are termed orbitals

Substitute ψ into NLS eq. with pseudo-field, multiply
φj(r − p)e−ik·p; j = 1, 2 and integrate



Discrete HC System

i
damn

dz
+ e iϕ(z) (L−(z)b)mn + σ|amn|2amn = 0

i
dbmn

dz
+ e−iϕ(z) (L+(z)a)mn + σ|bmn|2bmn = 0

(L−(z)b)mn =L0(z)bmn + L1(z)bm−1,n−1e
−iθ1(z) + L2(z)bm+1,n−1e

−iθ2(z),

(L+(z)a)mn =L̃0(z)amn + L̃1(z)am+1,n+1e
iθ1(z) + L̃2(z)am−1,n+1e

iθ2(z),

where ϕ(z), θj(z), Lj(z), L̃j(z) ∈ R, j = 1, 2, 3 known



Typical Rotation Patterns for Sublattices

• Same rotation, same or different radii:

h2(z) = Rah1(z) = Raη
(

cos
(z
ε

)
, sin

(z
ε

))
• π-Phase offset rotation

h2(z) = h1(z + επ) = −η
(

cos
(z
ε

)
, sin

(z
ε

))
• Different frequencies

hj(z) = η

(
cos

(
z

εj

)
, sin

(
z

εj

))
, j = 1, 2



BCs – Linear Floquet Bands

Look for solutions of the form

amn(z) = an(z ;ω)e imω , bmn(z) = bn(z ;ω)e imω

Find linear difference eq with periodic coef; Floquet thy:

f (z + T ) = e−iα(ω)z f (z)



HC Floquet Bands

HC lattice linear band structure–typical parameters

A B C

Fig A: same freq, same radii
Fig B: same freq, different radii (R2 = R1/2)
Fig C: diff freq (1/ε2 = ω2 = 2ω1 = 1/ε1), same radii



HC Floquet Bands –con’t

HC lattice linear band structure–typical parameters
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Figs A & B: π offset, same rotation

Fig B vs Fig A: radius η2 > η1



Linear HC Edge Mode Dynamics

Fig Above: Same rotation, same radii

Fig Above: π offset, different radii



Adiabatic HC Lattice

Take HC lattice, uniform rotation, and A = A(Z ), where Z = εz

In lattice system: an = an(z ,Z ), bn = bn(z ,Z )

Multiple scales asymptotics (ZZ BC):

an ∼ 0; bn ∼ C (Z , ω)bSn (Z )

where bSn (Z ) = {rn(Z ); |r | < 1; r = r(ω, ρ;A(Z )), n ≥ 0}
In general edge mode existence (|r | < 1) depends on ω, ρ,Z

Modes can ‘disintegrate’ under evolution

Can find an NLS type eq for envelope C whose coef. depend on Z

Numerics: discrete and continuous models: very good agreement



Conclusion–Topological Edge States

Photonic lattices with longitudinal variation

• Systematic method to find tight binding (TB) discrete eqs for
same rotation and complex longitudinally driven lattices;
special case: honeycomb lattices

• Find Floquet bands; they indicate topological/nontopological
edge waves

• Topological waves: no backscatter, propagate stably around
defects, corners



Conclusion: HC Edge States

Same rotation:

• Construct asymptotic theory for rapid helical variation

• Envelope of edge modes satisfy standard NLS eq

• NLS solitons topological case: unidirectional, propagate stably
around defects, corners; ‘solitons inherit topological properties’

Generalized longitudinal rotation

• Find TB eq; Floquet bands, large number of new/novel
topological modes

• Can do this for many lattices: HC, staggered sq, Lieb,
Kagome...

Ref.: MJA, C. Curtis, Y-P Ma 2013-15; MJA, J. Cole: 2017-18


