Wave Dynamics in Linear/Nonlinear Photonic Lattices and Topological Insulators

Mark J. Ablowitz
Department of Applied Mathematics
University of Colorado, Boulder
May 2018

Outline

- Introduction
- Study light propagation in longitudinal (z) direction with an optical lattice in transverse ($x-y$) plane
- Systematic method to obtain tight binding approximations for linear/NL lattices with uniform and nonuniform longitudinal structure
- Prototype: honeycomb (HC) photonic lattices
- Uniform longitudinal structure: conical, elliptical, straightline diffraction

Outline - con't

- Lattices with non-uniform longitudinal structure: 'topological insulator'
- Find linear topologically protected edge waves: they move unidirectionally, do not scatter off defects
- NL problem: find envelope edge solitons satisfying classical 1d-NLS eq; the solitons do no scatter from defects, corners; propagate stably over very long distances
- Conclusion

Refs: MJA, C. Curtis, YP Ma (2013-15); MJA, J. Cole (2017-18)

Introduction

- Investigations of optical lattices extensive
- Paradigm - HC lattice: ‘Photonic Graphene’ (PG)

Left: Uniform HC lattice: z direc'n; Right: $x-y$ plane : HC lattice

- Segev group 2007-conical diffrct'n; MJA, Y. Zhu, C. Curtis constructed/studied TB models; found conical diffrct'n \& various interesting new NL nonlocal eqn's in certain limits (2009-13)

Introduction-con't

- Topological insulators/edge waves were theoretically proposed/observed in magneto-optics, Wang et al 2008-09
- Such top'I waves were found in photonics: HC lattice with longitudinal helical variation, Rechtsman et al 2013
- MJA, YP Ma, C. Curtis (2013-15), studied TB model, developed asymptotic description linear/NL under assumption of rapid helical variation: top'l/non-top'l waves

Introduction-con't

- Leykam et al (2016) studied staggered square lattice with helical variation and phase sh'fts between sublattices
- MJA, J. Cole (2017-18): systematic method to find TB models in lattices with longitudinal structure
- Topological edge/interface/surface waves in physics - very active field of research

Lattice NLS Equation

Maxwell's eq with paraxial approx. $=>$ NLS eq with ext pot'l

$$
i \frac{\partial \psi}{\partial z}=-\frac{1}{2 k_{0}} \nabla^{2} \psi+k_{0} \frac{\Delta n(x, y, z)}{n_{0}} \psi-\gamma|\psi|^{2} \psi
$$

where: k_{0} is input wavenumber
n_{0} is the bulk refractive index
$\Delta n / n_{0}$ is the change of index change relative to n_{0}
γ is NL index

Non-dimensional NLS Equation

Rescale to non-dimensional form

$$
x=\ell x^{\prime}, y=\ell y^{\prime}, z=z_{*} z^{\prime}, \psi=\sqrt{P_{*}} \psi^{\prime}
$$

where: ℓ is the lattice scale; P_{*} : peak input power
Find non-dim NLS eq, ${ }^{\prime}$: dimensionless:

$$
i \frac{\partial \psi^{\prime}}{\partial z^{\prime}}+\left(\nabla^{\prime}\right)^{2} \psi^{\prime}-V\left(x^{\prime}, y^{\prime}, z^{\prime}\right) \psi^{\prime}+\sigma\left|\psi^{\prime}\right|^{2} \psi^{\prime}=0
$$

where $\quad z_{*}=2 k_{0} \ell^{2}, \quad V=2 k_{0}^{2} \ell^{2}\left(\Delta n / n_{0}\right), \quad \sigma=2 \gamma k_{0} \ell^{2} P_{*}$
Drop ${ }^{\prime}=>$ normalized lattice NLS eq

$$
i \frac{\partial \psi}{\partial z}+\nabla^{2} \psi-V(x, y, z) \psi+\sigma|\psi|^{2} \psi=0
$$

Typical Physical Scales

Exp'ts: input wavelength: $\lambda=630 \mathrm{~nm}$
Bulk index: $n_{0}=1.4$ (silica)
$=>$ input wavenumber $k_{0}=\frac{2 \pi n_{0}}{\lambda}=1.44 \times 10^{7} \mathrm{rad} / \mathrm{m}$
$\ell=15 \mu \mathrm{~m}=>\quad z_{*}=2 k_{0} \ell^{2}=6.5 \times 10^{-3} \mathrm{~m}$
NL Index change: $\Delta n / n_{0}=7 \times 10^{-4}$
$=>V=2 k_{0}^{2} \ell^{2}\left(\Delta n / n_{0}\right) \sim 50$;
Later will discuss 'Tight Binding (TB) Approx': V>>1

Periodic Optical Lattices

Investigate waves in periodic optical lattices in lattice NLS eq.

$$
i \psi_{z}+\nabla^{2} \psi-V(\mathbf{r}, z) \psi+\sigma|\psi|^{2} \psi=0
$$

where $V(\mathbf{r}, z)$: in transverse plane 2-d periodic with basis lattice vectors: $\mathbf{v}_{1}, \mathbf{v}_{2}$:

$$
V\left(\mathbf{r}+m \mathbf{v}_{1}+n \mathbf{v}_{2}, z\right)=V(\mathbf{r}, z), \quad m, n \in \mathbb{Z}
$$

Begin with uniform case: $V(\mathbf{r}, z)=V(\mathbf{r})$

Lattices

Simple lattice: $V(\mathbf{r})$ has one min or 'site' in each unit cell; all sites can be constructed from an initial site: e.g. below: left rectangular lattice

Non-simple HC lattice-below right: two initial sites ("A \& B") determine the lattice

Linear problem

Linear problem: $\quad \psi(\mathbf{r}, z)=\varphi(\mathbf{r}) e^{-i \mu z}$ with $|\varphi| \ll 1$:

$$
\left(\nabla^{2}-V(\mathbf{r})+\mu\right) \varphi=0
$$

$V(\mathbf{r})$ is a 2 -d periodic potential with lattice vectors: $\mathbf{v}_{1}, \mathbf{v}_{2}$
Bloch theory:

$$
\varphi(\mathbf{r} ; \mathbf{k})=e^{i \mathbf{k} \cdot \mathbf{r}} U(\mathbf{r} ; \mathbf{k})
$$

$U(\mathbf{r} ; \mathbf{k})$ is periodic in \mathbf{r} and $\varphi(\cdot, \mathbf{k}), \mu(\mathbf{k})$ are periodic in \mathbf{k} with 'dual' lattice vectors: $\mathbf{k}_{1}, \mathbf{k}_{2}$

Dispersion relation: $\mu=\mu(\mathbf{k})$

Potential in TB Limit

Tight binding limit: when $|V| \gg 1$ we approx. the potential

$$
V(\mathbf{r}) \approx \sum_{\mathbf{v}} V_{0}(\mathbf{r}-\mathbf{v})
$$

where $V_{0}(\mathbf{r}-\mathbf{v})$ is the approx. pot'I with minima at site \mathbf{v} Use

$$
\left(\nabla^{2}-V_{0}(\mathbf{r})\right) \phi(\mathbf{r})=-E \phi(\mathbf{r})
$$

$\phi(\mathbf{r})$ called an 'orbital'
$|V| \gg 1$: 'tight binding approx.' used widely in physics to study lattices; 'graphene' Wallace 1947

TB Envelope Dynamics

Simple lattices with $\mu(\mathbf{k})$ having a single dispersion relation branch

$$
\psi(\mathbf{r}, z, \mathbf{k}) \sim \sum_{\mathbf{v}} a_{\mathbf{v}}(z) \phi(\mathbf{r}-\mathbf{v}) e^{i \mathbf{k} \cdot \mathbf{v}}
$$

$a_{\mathrm{v}}(z)$ represents the Bloch wave envelope at the site S_{v}
$\phi(\mathbf{r})$ orbitals: rapidly decaying
RHS above approximates the 'Wannier functions'
Substitute ψ into lattice NLS, multiply by $\phi(\mathbf{r}-\mathbf{p})$ and integrate: find discrete NLS eq. at general values of \mathbf{k} in the Brillouin zone: DNLS(k)

DNLS(k) Eq.

Leading order eq. results from on-site and nearest neighbor interactions; Eq. reduces to $\operatorname{DNLS}(\mathbf{k})$ eq.

$$
\frac{d a_{\mathbf{p}}}{d z}+\sum_{<\mathbf{v}>} a_{\mathbf{p}+\mathbf{v}} C_{\mathbf{v}} e^{i \mathbf{k} \cdot \mathbf{v}}+\sigma g\left|a_{\mathbf{p}}\right|^{2} a_{\mathbf{p}}=0
$$

where $<\mathbf{v}>$ means the sum over \mathbf{v} only takes nearest neighbors; C_{v}, g are given in terms integrals over orbitals

Continuum limit from $\operatorname{DNLS}(\mathbf{k})$ yields 2-d $\operatorname{NLS}(\mathbf{k})$ eq

NLS(k) Eq.

As a further limit, assume that the envelope a_{v} varies slowly over \mathbf{v} with a scale $\mathbf{R}=\nu \mathbf{r}, \quad|\nu| \ll 1$ then

$$
a_{\mathbf{p}+\mathbf{v}} \approx a+\nu \mathbf{v} \cdot \tilde{\nabla} a+\cdots
$$

Find a continuous 2-d NLS(k) eq for $a=a(\mathbf{R}, Z)$

$$
i \frac{\partial a}{\partial z}+i \nu \bar{\nabla} \mu \cdot \tilde{\nabla} a+\frac{\nu^{2}}{2} \sum_{m, n=1}^{2} \bar{\partial}_{m, n} \mu \tilde{\partial}_{m, n} a+\sigma g|a|^{2} a=0
$$

where $\tilde{\partial}_{m}=\frac{\partial}{\partial \mathbf{R}_{m}}, \quad \bar{\partial}_{m}=\frac{\partial}{\partial k_{m}} ; \quad \bar{\nabla} \mu$ plays the role of the group velocity

For different \mathbf{k} the dispersive terms may be elliptic, hyperbolic or parabolic

Typical HC Lattice

Typical honeycomb (HC) lattice $V(\mathbf{r})$ from:

$$
V(\mathbf{r})=V_{0}\left|e^{i k_{0} \mathbf{b}_{1} \cdot \mathbf{r}}+\eta e^{i k_{0} \mathbf{b}_{2} \cdot \mathbf{r}}+\eta e^{i k_{0} \mathbf{b}_{3} \cdot \mathbf{r}}\right|^{2}
$$

where $\quad \mathbf{b}_{1}=(0,1), \mathbf{b}_{2}=\left(-\frac{\sqrt{3}}{2},-\frac{1}{2}\right) ; \mathbf{b}_{3}=\left(\frac{\sqrt{3}}{2},-\frac{1}{2}\right)$
V_{0}, k_{0}, η const. $\quad V_{0}>0$ is the lattice intensity;
η corresponds to geometric lattice deformation (strain)
$\eta=1$ standard/perfect HC lattice

Typical HC-Intensity Plot

HC lattice in physical space: below $(\eta=1)$: intensity plot; local minima form HC lattice

Typical HC-Dispersion Surface

Typical HC dispersion relation $\mu(\mathbf{k})$ first two bands below:

Note: 1st, 2nd bands can touch at certain isolated points, called Dirac points

Dirac points form sites of a hexagonal HC lattice in the \mathbf{k} plane dual lattice corresponding to the original potential lattice-i.e. have HC structure in the \mathbf{k} plane.

Honeycomb Lattices

Nonsimple honeycomb (HC) lattices also arise in the study of the 2d material Graphene

Material Graphene: ultra thin carbon material
First demonstrated exp't 2004; nobel prize 2010
Graphene exhibits important properties physically and mathematically

Here we study: Photonic Graphene - photonic analogue of graphene
Uniform/non-uniform lattices:
Segev's group: ('07-), MJA, Zhu,Curtis,Ma, Cole ('09-...), Fefferman, Weinstein ('12-), ...

TB HC Envelope Evolution

For $|V| \gg 1$

$$
\psi \sim \sum_{\mathbf{v}} a_{\mathbf{v}}(z) \phi_{A}(\mathbf{r}-\mathbf{v}) e^{i \mathbf{k} \cdot \mathbf{v}}+\sum_{\mathbf{v}} b_{\mathbf{v}}(z) \phi_{B}(\mathbf{r}-\mathbf{v}) e^{i \mathbf{k} \cdot \mathbf{v}}
$$

where the sum is over A, B lattice sites: \mathbf{v}

$$
\left(\nabla^{2}-V_{j}(\mathbf{r})\right) \phi_{j}(\mathbf{r})=-E_{j} \phi_{j}(\mathbf{r}) ; \quad j=A, B
$$

$\phi_{j}(\mathbf{r})$ orbitals; rapidly decaying
Substitute ψ into lattice NLS eq., multiply $\phi_{j}(\mathbf{r}-\mathbf{p}) e^{-i \mathbf{k} \cdot \mathbf{p}} ; \quad j=A, B$ and integrate

Discrete HC System

Find discrete system

$$
\begin{aligned}
& i \frac{d a_{\mathbf{p}}}{d z}+\mathcal{L}^{-} b_{\mathbf{p}}+\sigma\left|a_{\mathbf{p}}\right|^{2} a_{\mathbf{p}}=0 \\
& i \frac{d b_{\mathbf{p}}}{d z}+\mathcal{L}^{+} a_{\mathbf{p}}+\sigma\left|b_{\mathbf{p}}\right|^{2} b_{\mathbf{p}}=0
\end{aligned}
$$

$$
\begin{aligned}
& \mathcal{L}^{-} b_{\mathbf{p}}=b_{\mathbf{p}}+\rho\left(b_{\mathbf{p}-\mathbf{v}_{1}} e^{-i \mathbf{k} \cdot \mathbf{v}_{1}}+b_{\mathbf{p}-\mathbf{v}_{2}} e^{-i \mathbf{k} \cdot \mathbf{v}_{2}}\right) \\
& \mathcal{L}^{+} a_{\mathbf{p}}=a_{\mathbf{p}}+\rho\left(a_{\mathbf{p}+\mathbf{v}_{1}} e^{i \mathbf{k} \cdot \mathbf{v}_{1}}+a_{\mathbf{p}+\mathbf{v}_{2}} e^{i \mathbf{k} \cdot \mathbf{v}_{2}}\right)
\end{aligned}
$$

ρ : deformation parameter $(\rho=\rho(\eta))$; $\rho=1$ perfect hexagon Rigorous analysis of TB: MJA, C. Curtis, Y. Zhu (2012)

Continuous NL Dirac System

When a_{v} and b_{v} vary slowly with respect to \mathbf{v} at Dirac point: $\mathbf{k}=K$ find deformed NL Dirac (NLD) system in continuum limit:

$$
\begin{aligned}
& i \partial_{z} a+\left(\partial_{x}+i \zeta \partial_{y}\right) b+\sigma|a|^{2} a=0 \\
& i \partial_{z} b+\left(-\partial_{x}+i \zeta \partial_{y}\right) a+\sigma|b|^{2} b=0
\end{aligned}
$$

where $\zeta=\sqrt{\frac{4 \rho^{2}-1}{3}}$
When $\rho=1, \zeta=1$ conical diffraction
$1 / 2<\rho<1$: elliptical diffraction
$\rho \rightarrow 1 / 2$: straight line diffraction
When $\sigma=0$ above system reduces to (deformed) $2+1$ d wave eq.

Conical Diffraction

Below: simulations of lattice NLS and NLD: $\rho=1$
Top Fig. lattice NLS
Bottom Fig. NLD system ('a' envelope) IC: a is a unit Gaussian and $b=0$

$$
z=0 \quad z=z_{1}>0 \quad z=z_{2}>z_{1}
$$

NLD system yields conical diffraction-as seen in lattice NLS eq. conical diffraction observed (Sgev gp 2007)

Elliptical Diffraction-NLD

NLD: The rings in the conical diffraction are elliptic if $\rho \neq 1$, where the ratio of axes is $\zeta=\sqrt{\frac{4 \rho^{2}-1}{3}}$.
Below 2 elliptic rings when
(a) $\rho=0.8$
(b) $\rho=0.6$

Deformation-con't

- Critical behavior when $\rho \sim 1 / 2$
- $|2 \rho-1| \ll 1$ find approximate 'straight-line' diffraction; weak transverse variation
- Various small parameters - different balances lead to different eqs: $\beta=2 \rho-1$, NL: ε, sl varying envelope: ν
- Find numerous new nonlocal nonlinear equations

MJA, Y. Zhu 2013

Deformation Eq: ‘NLSKZ'

When $\varepsilon \sim \nu^{2}, \quad 0 \ll \nu^{2} \ll \beta$
$a \sim \nu F, \theta=x-z ; \quad Z=\nu^{2} z$:

$$
\partial_{\theta}\left(\partial_{z} F-\sigma i|F|^{2} F\right)+\partial_{y}^{2} F=0 \quad \text { NLSKZ }
$$

This nonlocal eq is similar is spirit to 'KZ' eq. Khokhlov \& Zabolotskaya 1969:

$$
\partial_{\theta}\left(\partial_{t} u+u \partial_{\theta} u\right)+\partial_{y}^{2} u=0 \quad \mathrm{KZ}
$$

Conclusions-so far

- NL waves in lattice NLS in strong potential/TB limit investigated MJA, Curtis, Zhu ('09-13)
- Simple lattices: discrete and continuous NLS systems
- HC lattices: n'bhd of Dirac points find discrete and continuous NL Dirac (NLD) systems
- NLD exhibits conical-elliptical diffraction when $1 / 2<\rho \leq 1$
- When $\rho \rightarrow 1 / 2$ find straight line diffraction; find new reduced asymptotic eq

Longitudinally Varying Waveguides

Introduce longitudinally varying waveguides on both sublattice sites; LNLS:

$$
i \partial_{z} \psi=-\nabla^{2} \psi+V(\mathbf{r}, z) \psi-\gamma|\psi|^{2} \psi
$$

Introduce longitudinally varying waveguides (Rechtsman et al '13)

$$
x^{\prime}=x-h_{1}(z), y^{\prime}=y-h_{2}(z), z^{\prime}=z
$$

$\mathbf{h}(z)=\left(h_{1}(z), h_{2}(z)\right)$: 'path function'- typically periodic in z

Longitudinally Varying Waveguides-con't

Transform LNLS eq. with

$$
\psi \rightarrow \psi \exp \left[i \int_{0}^{z}\left|\mathbf{A}_{\mathbf{p}}(\xi)\right|^{2} d \xi\right] \text { with } \mathbf{A}_{\mathbf{p}}(z)=-\mathbf{h}^{\prime}(z)
$$

find lattice NLS with a pseudo-field: $\mathbf{A}_{\mathbf{p}}(z)$: in transfromed coordinates

$$
i \partial_{z} \psi=-\left(\nabla+i \mathbf{A}_{\mathbf{p}}(z)\right)^{2} \psi+V(\mathbf{r}) \psi-\gamma|\psi|^{2} \psi
$$

TB approx with pseudo-field $\mathbf{A}_{\mathbf{p}}=\mathbf{A}_{\mathbf{p}}(z)$ yields:

TB with Pseudo-Field: Discrete System

$$
\begin{array}{r}
i \frac{d a_{m n}(z)}{d z}+e^{i d \cdot A_{\mathbf{p}}}\left(\mathcal{L}_{-} b\right)_{m n}+\sigma\left|a_{m n}\right|^{2} a_{m n}=0 \\
i \frac{d b_{m n}(z)}{d z}+e^{-i \mathbf{d} \cdot \mathbf{A}_{\mathbf{p}}}\left(\mathcal{L}_{+} a\right)_{m n}+\sigma\left|b_{m n}\right|^{2} b_{m n}=0
\end{array}
$$

where

$$
\begin{aligned}
& \left(\mathcal{L}_{-} b\right)_{m n}=b_{m n}+\rho\left(b_{m-1, n-1} e^{-i \theta_{1}}+b_{m+1, n-1} e^{-i \theta_{2}}\right) \\
& \left(\mathcal{L}_{+} a\right)_{m n}=a_{m n}+\rho\left(a_{m+1, n+1} e^{i \theta_{1}}+a_{m-1, n+1} e^{i \theta_{2}}\right)
\end{aligned}
$$

and $\theta_{j}=\left(\mathbf{d}-\mathbf{v}_{\mathbf{j}}\right) \cdot \mathbf{A}_{\mathbf{p}}(z), \quad j=1,2, \quad \rho$ deformation, \mathbf{d} is a vector between adj. horiz. sites, above use m, n row, column format

Zig-Zag-Arm Chair Edges

Zig-Zag (ZZ): Left Right; Armchair: Top, Bottom

BCs - Linear Floquet Bands

Assume $\mathbf{A}_{\mathbf{p}}(z)$ is periodic; e.g. $\mathbf{A}_{\mathbf{p}}(z)=\kappa(\sin \Omega z, \cos \Omega z)$ Look for solutions of the form

$$
a_{m n}(z)=a_{n}(z ; \omega) e^{i m \omega}, \quad b_{m n}(z)=b_{n}(z ; \omega) e^{i m \omega}
$$

Find linear difference eq with periodic coef; use Floquet thy:

$$
f(z+T)=e^{-i \alpha(\omega) z} f(z), \quad T=2 \pi / \Omega
$$

$\alpha(\omega)$ Floquet coef; also called the edge dispersion relation

Linear Problem-Dispersion Relations

Dispersion relations (helical waveguides): thin curves are 'bulk' modes; lines in the gap are edge modes:

$\rho=1$

$\rho=0.4$

Left Fig: Toplogical Floquet insulator (Segev gp '13)
Right Fig: allows left and right going waves
In general: number of intersections: \mathcal{I} with $\alpha=0 \quad \mathcal{I}=0,1,2$
$(0 \leq \omega<\pi) \quad$ left fig $\mathcal{I}=1$ (topological)
right fig $\mathcal{I}=2$ (nontopological)

Analysis: Rapidly Varying Helical lattice

Let: $\quad a_{m n}=a_{n} e^{i m \omega}, b_{m n}=b_{n} e^{i m \omega} \quad$ find

$$
\begin{aligned}
& i \partial_{z} a_{n}+e^{i \mathbf{d} \cdot \mathbf{A}_{\mathbf{p}}}\left(b_{n}+\rho \gamma^{*} b_{n-1}\right)+\sigma\left|a_{n}\right|^{2} a_{n}=0 \\
& i \partial_{z} b_{n}+e^{-i \mathbf{d} \cdot \mathbf{A}_{\mathbf{p}}}\left(a_{n}+\rho \gamma a_{n+1}\right)+\sigma\left|b_{n}\right|^{2} b_{n}=0
\end{aligned}
$$

where $\gamma=\gamma\left(\omega, \mathbf{A}_{\mathbf{p}}(\mathbf{z})\right)$
Take: $\quad \mathbf{A}_{\boldsymbol{p}}$ periodic \& rapidly varying

$$
\mathbf{A}_{\mathbf{p}}=\mathbf{A}_{\mathbf{p}}\left(\frac{z}{\varepsilon}\right),|\varepsilon| \ll 1
$$

e.g. $\mathbf{A}_{\mathbf{p}}=\kappa\left(\sin \frac{\mathbf{z}}{\varepsilon}, \cos \frac{\mathbf{z}}{\varepsilon}\right)$: 'helical waveguides'

Expt's Segev gp (2013)

Edge Modes: ZZ

Multiple scales:
$a_{n}=a_{n}(z, \zeta) ; \quad b_{n}=b_{n}(z, \zeta) ; \zeta=\frac{z}{\varepsilon} ; \quad \partial_{z}=\frac{1}{\varepsilon} \partial_{\zeta}+\partial_{z}$
Expand a_{n}, b_{n} in powers of ε;
Apply BCs (ZZ) find Edge Modes (ZZ) (exp decay):

$$
a_{n} \sim 0, \quad b_{n} \sim C(z, \omega) r^{n}, \quad|r|=\left|r\left(\omega, \rho, \mathbf{A}_{\mathbf{p}}\right)\right|<1
$$

Linear problem (first order):

$$
C(z, \omega)=C_{0} \exp (-i \alpha(\omega) z)
$$

C_{0} const. $\quad \alpha(\omega) \equiv \alpha\left(\omega, \rho ; \mathbf{A}_{\mathbf{p}}\right)$: 'dispersion relation' (Floquet coef): obtain explicit formulae

Typical Edge Mode

Nonlinear Edge Wave Envelope Evolution Eq

Discrete edge mode: $a_{m n} \sim 0$

$$
b_{m n} \sim C(z, y) e^{i \omega_{0} m} r^{n},|r|<1
$$

where slowly varying $(|\nu| \ll 1)$ edge mode envelope satisfies
$i \partial_{z} C=\alpha_{0} C-i \alpha_{0}^{\prime} \nu C_{y}-\frac{\alpha_{0}^{\prime \prime}}{2} \nu^{2} C_{y y}+\frac{i \alpha_{0}^{\prime \prime \prime}}{6} \nu^{3} C_{y y y}-\alpha_{n \prime, 0}|C|^{2} C+\cdots$
where $\alpha_{0}=\alpha\left(\omega_{0}\right), \alpha_{0}^{\prime}=\partial_{\omega} \alpha\left(\omega_{0}\right)$, etc.
May transform to standard NLS
If $\mathbf{A}_{\mathbf{p}}=\mathbf{0}$ then $\alpha=0$: stationary mode

Typical Linear Edge Wave Evolution

Left: Linear discrete; Right linear Schrödinger (LS) eq
Fig (a-b): $\rho=1$: Topological Floquet Insulator:
$\alpha_{0}^{\prime} \neq 0 ; \alpha_{0}{ }^{\prime \prime}=0, \alpha_{0}{ }^{\prime \prime \prime} \neq 0, \mathcal{I}=1$
Fig. (c-d): $\rho=0.4$: at $\alpha_{0}^{\prime}=0 ; \alpha_{0}{ }^{\prime \prime} \neq 0: \mathcal{I}=2$ (nontopological)

Recall: Dispersion Relations of Linear Problem

Dispersion relations (helical waveguides): thin curves are 'bulk' modes; lines in the gap are edge modes:

$$
\rho=1
$$

$\rho=0.4$

Typical NL Edge Wave Evolution

Here: $\alpha_{0}^{\prime} \neq 0 ; \alpha_{0}{ }^{\prime \prime} \neq 0, \alpha_{0}{ }^{\prime \prime \prime}=0$
Fig: $\rho=1$ Solitons
Continuous theory agrees with discrete eq.
NL problem inherits Topological Insulator properties

Typical Linear Edge Wave Evolution-Defects

Fig: propagation across defect: left to right
Top fig: Topological mode - wave propagates unidirectionally without losing significant power ($\rho=1, \omega=\pi / 2, \alpha_{n \prime}=0$)
Bottom fig: Nontopological mode - wave reflects, broadens/loses significant power $\left(\rho=0.4, \omega=\pi / 2, \alpha_{n l}=0\right)$

NL Edge Wave Propagation Around Defects

Fig: NL propagation across defect: left to right
NL topological edge wave ($\left.\rho=1, \alpha_{0}^{\prime \prime}>0, \alpha_{n l} \neq 0\right)$) propagates without losing significant power

NL edge solitons: unidirectional, propagates across defects

Bounded Photonic Graphene

Zig-Zag (ZZ): Left Right; Armchair: Top, Bottom

Mode Propagation-Linear

Linear propagation $\rho=1$: topological case; different points on the dispersion curve

Left: Linear $\omega=\pi / 2$

$$
\alpha^{\prime \prime}=0, \alpha^{\prime \prime \prime} \neq 0
$$

Right: Linear $\omega=7 \pi / 12$
$\alpha^{\prime \prime} \neq 0$

Mode Propagation-NL

NL propagation $\rho=1$: topological case:; different points on the dispersion curve

Left: NL $\omega=\pi / 2$ $\alpha^{\prime \prime}=0, \alpha^{\prime \prime \prime} \neq 0$

Right: NL $\omega=7 \pi / 12$: NLS eq $\alpha^{\prime \prime} \neq 0$

General Longitudinal Variation

Typical case nonsimple lattice with two sublattices

$$
V_{1}=V_{1}\left(\mathbf{r}-\mathbf{h}_{1}(z)\right), \quad V_{2}=V_{2}\left(\mathbf{r}-\mathbf{h}_{2}(z)\right)
$$

in nb'hd of sublattices 1,2 and $\mathbf{h}_{j}(z), j=1,2$ are prescribed (smooth) functions
Simple case, helical variation

$$
\mathbf{h}_{j}(z)=\eta_{j}\left(\cos \left(\frac{z}{\varepsilon_{j}}+\chi_{j}\right), \sin \left(\frac{z}{\varepsilon_{j}}+\tilde{\chi}_{j}\right)\right), j=1,2
$$

Rotating frame

Move to coordinate frame co-moving with with the $V_{1}(\mathbf{r}, z)$ sublattice,

$$
\mathbf{r}^{\prime}=\mathbf{r}-\mathbf{h}_{1}(z) \quad, \quad z^{\prime}=z
$$

which after the phase transformation

$$
\psi=\psi^{\prime} \exp \left[-i \int_{0}^{z}|\mathbf{A}(\xi)|^{2} d \xi\right] \text { with } \mathbf{A}(z)=-\mathbf{h}_{1}^{\prime}(z)
$$

find lattice NLS with a pseudo-field $\mathbf{A}(z)$-dropping ':

$$
i \partial_{z} \psi+(\nabla+i \mathbf{A}(z))^{2} \psi-V(\mathbf{r}, z) \psi+\sigma|\psi|^{2} \psi=0
$$

$V_{1}(r, z)=V_{1}(\mathbf{r}), \quad V_{2}(r, z)=V_{2}\left(\mathbf{r}-\Delta \mathbf{h}_{21}(z)\right)$, near sites 1,2 with
$\Delta h_{21}(z)=h_{2}(z)-h_{1}(z)$

NL HC Representation

In non-dim NLS eq using HC lattice with $|V| \gg 1$ substitute

$$
\psi(\mathbf{r}, z) \sim \sum_{v}\left[a_{v}(z) \phi_{1, v}(\mathbf{r}, z)+b_{v}(z) \phi_{2, v}(\mathbf{r}, z)\right]
$$

where

$$
\left(\nabla^{2}-\tilde{V}_{j}(\mathbf{r}, z)\right) \phi_{j, v}(\mathbf{r}, z)=-E_{j} \phi_{j, v}(\mathbf{r}, z) ; \quad j=1,2
$$

$\phi_{j, v}$ are termed orbitals
Substitute ψ into NLS eq. with pseudo-field, multiply $\phi_{j}(\mathbf{r}-\mathbf{p}) e^{-i \mathbf{k} \cdot \mathbf{p}} ; \quad j=1,2$ and integrate

Discrete HC System

$$
\begin{aligned}
& i \frac{d a_{m n}}{d z}+e^{i \varphi(z)}\left(\mathcal{L}_{-}(z) b\right)_{m n}+\sigma\left|a_{m n}\right|^{2} a_{m n}=0 \\
& i \frac{d b_{m n}}{d z}+e^{-i \varphi(z)}\left(\mathcal{L}_{+}(z) a\right)_{m n}+\sigma\left|b_{m n}\right|^{2} b_{m n}=0
\end{aligned}
$$

$$
\left(\mathcal{L}_{-}(z) b\right)_{m n}=L_{0}(z) b_{m n}+L_{1}(z) b_{m-1, n-1} e^{-i \theta_{1}(z)}+L_{2}(z) b_{m+1, n-1} e^{-i \theta_{2}(z)}
$$

$$
\left(\mathcal{L}_{+}(z) a\right)_{m n}=\tilde{L}_{0}(z) a_{m n}+\tilde{L}_{1}(z) a_{m+1, n+1} e^{i \theta_{1}(z)}+\tilde{L}_{2}(z) a_{m-1, n+1} e^{i \theta_{2}(z)},
$$ where $\varphi(z), \theta_{j}(z), L_{j}(z), \tilde{L}_{j}(z) \in \mathbb{R}, j=1,2,3$ known

Typical Rotation Patterns for Sublattices

- Same rotation, same or different radii:

$$
\mathbf{h}_{2}(z)=R_{a} \mathbf{h}_{1}(z)=R_{a} \eta\left(\cos \left(\frac{z}{\varepsilon}\right), \sin \left(\frac{z}{\varepsilon}\right)\right)
$$

- π-Phase offset rotation

$$
\mathbf{h}_{2}(z)=\mathbf{h}_{1}(z+\varepsilon \pi)=-\eta\left(\cos \left(\frac{z}{\varepsilon}\right), \sin \left(\frac{z}{\varepsilon}\right)\right)
$$

- Different frequencies

$$
\mathbf{h}_{j}(z)=\eta\left(\cos \left(\frac{z}{\varepsilon_{j}}\right), \sin \left(\frac{z}{\varepsilon_{j}}\right)\right), j=1,2
$$

BCs - Linear Floquet Bands

Look for solutions of the form

$$
a_{m n}(z)=a_{n}(z ; \omega) e^{i m \omega}, \quad b_{m n}(z)=b_{n}(z ; \omega) e^{i m \omega}
$$

Find linear difference eq with periodic coef; Floquet thy:

$$
f(z+T)=e^{-i \alpha(\omega) z} f(z)
$$

HC Floquet Bands

HC lattice linear band structure-typical parameters

Fig A: same freq, same radii
Fig B : same freq, different radii $\left(R_{2}=R_{1} / 2\right)$
Fig C : diff freq $\left(1 / \varepsilon_{2}=\omega_{2}=2 \omega_{1}=1 / \varepsilon_{1}\right)$, same radii

HC Floquet Bands -con't

HC lattice linear band structure-typical parameters

A
Figs A \& B: π offset, same rotation
Fig B vs Fig A : radius $\eta_{2}>\eta_{1}$

Linear HC Edge Mode Dynamics

Fig Above: Same rotation, same radii

Fig Above: π offset, different radii

Adiabatic HC Lattice

Take HC lattice, uniform rotation, and $\mathbf{A}=\mathbf{A}(Z)$, where $Z=\varepsilon z$
In lattice system: $a_{n}=a_{n}(z, Z), b_{n}=b_{n}(z, Z)$
Multiple scales asymptotics (ZZ BC):

$$
a_{n} \sim 0 ; \quad b_{n} \sim C(Z, \omega) b_{n}^{S}(Z)
$$

where

$$
b_{n}^{S}(Z)=\left\{r^{n}(Z) ; \quad|r|<1 ; \quad r=r(\omega, \rho ; \mathbf{A}(Z)), n \geq 0\right\}
$$

In general edge mode existence $(|r|<1)$ depends on ω, ρ, Z
Modes can 'disintegrate' under evolution
Can find an NLS type eq for envelope C whose coef. depend on Z
Numerics: discrete and continuous models: very good agreement

Conclusion-Topological Edge States

Photonic lattices with longitudinal variation

- Systematic method to find tight binding (TB) discrete eqs for same rotation and complex longitudinally driven lattices; special case: honeycomb lattices
- Find Floquet bands; they indicate topological/nontopological edge waves
- Topological waves: no backscatter, propagate stably around defects, corners

Conclusion: HC Edge States

Same rotation:

- Construct asymptotic theory for rapid helical variation
- Envelope of edge modes satisfy standard NLS eq
- NLS solitons topological case: unidirectional, propagate stably around defects, corners; 'solitons inherit topological properties'
Generalized longitudinal rotation
- Find TB eq; Floquet bands, large number of new/novel topological modes
- Can do this for many lattices: HC, staggered sq, Lieb, Kagome...
Ref.: MJA, C. Curtis, Y-P Ma 2013-15; MJA, J. Cole: 2017-18

