Band Degeneracies in $\pi / 2-$ Rotationally Invariant, Periodic Schrödinger Operators

Rachael Keller ${ }^{1}$

In Collaboration With:
J.L. Marzuola ${ }^{2}$ B. Osting ${ }^{3} \quad$ M.I. Weinstein ${ }^{4}$
${ }^{1}$ Department of Applied Physics and Applied Mathematics, Columbia University
${ }^{2}$ Department of Mathematics, University of North Carolina, Chapel Hill.
${ }^{3}$ Department of Mathematics, University of Utah.
${ }^{4}$ Department of Applied Physics and Applied Mathematics and Department of Mathematics, Columbia University.

Outline

(1) Introduction
(2) Background

- Floquet Theory
(3) Main Results
- Quadratic Touching of Dispersion Surfaces
- Dynamics of Wavepackets

4 Concluding Remarks
(5) Acknowledgments

Outline

(1) Introduction
(2) Background

- Floquet Theory
(3) Main Results
- Quadratic Touching of Dispersion Surfaces
- Dynamics of Wavepackets

4 Concluding Remarks
(5) Acknowledgments

Introduction

Schrödinger operators $H_{V}=-\Delta+V(\mathbf{x})$ are central to the mathematical description of waves in periodic media.

Wave propagation properties are encoded in band structure, the collection of dispersion surfaces and associated eigenmodes.
An important feature of band structure is existence of Dirac points.

Main features of Dirac points:
i.) Conical intersections of bands.
ii.) Wavepackets evolve according to a 2D Dirac equation.

Motivating Work

Tight binding (TB) models approximate band structure of the Schrödinger operator: $H_{V}^{\varepsilon}=-\Delta+\varepsilon V(\mathbf{x}), \varepsilon \nearrow \infty$.

Figure 1: Band Structures for Honeycomb Lattice Near Vertex $\mathbf{K}_{\star} \in \mathbb{R}^{2}$

Do Dirac points from TB model persist in the continuum, $|\varepsilon|<\infty$?
Charles Fefferman, James Lee-Thorp and Michael Weinstein showed Dirac points \mathbf{K}_{\star} persist for honeycomb [FW12; FLTW17].

$$
\mu\left(\mathbf{K}_{\star}+\kappa\right)-\mu\left(\mathbf{K}_{\star}\right) \approx \pm\left|\lambda_{\#}\right||\kappa| .
$$

Motivating Work

Q: Do Dirac points persist for integer lattice potentials, potentials that are \mathbb{Z}^{2}-periodic, $\pi / 2$-invariant?

(c) TB Lieb Bands

(d) Lieb Lattice

Specifically, in study of H_{V}^{ε} :
i.) Does a conical intersection of bands persist for $|\varepsilon|<\infty$?
ii.) Do wavepackets evolve according to a 2D Dirac equation?

Main Results

We show that the answer is no.

- Dispersion surfaces intersect quadratically at points \mathbf{M}_{\star}.
- Wavepackets spectrally concentrated about \mathbf{M}_{\star} evolve in large time according to coupled 2D Schrödinger equations.

Dispersion Curves for Integer Lattice Potential, $|\kappa| \ll 1$

Study the Floquet-Bloch eigenvalue problem on the integer lattice.

Outline

(1) Introduction
(2) Background

- Floquet Theory
(3) Main Results
- Quadratic Touching of Dispersion Surfaces
- Dynamics of Wavepackets

4 Concluding Remarks
(5) Acknowledgments

Preliminaries: Lattice Structure

- Period Lattice: $\mathbf{v} \in \Lambda=\mathbb{Z} \mathbf{v}_{1} \oplus \mathbb{Z} \mathbf{v}_{2}$,

$$
\mathbf{v}_{1}=\binom{1}{0} \text { and } \mathbf{v}_{2}=\binom{0}{1} .
$$

- Dual lattice: $\mathbf{k} \in \Lambda^{*}=\mathbb{Z} \mathbf{k}_{1} \oplus \mathbb{Z} \mathbf{k}_{2}$,

Figure 2: Shaded: Unit Cell in Λ

$$
\mathbf{k}_{1}=\binom{2 \pi}{0} \text { and } \mathbf{k}_{2}=\binom{0}{2 \pi} .
$$

- Brillouin zone $\mathcal{B} \equiv[-\pi, \pi]^{2}$ (unit cell \wedge^{*})
- Define $\pi / 2$-clockwise rotation matrix R :

$$
R=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)
$$

Figure 3: $\mathcal{B} \equiv[-\pi, \pi]^{2}$

Introduction of Floquet-Bloch Theory

Fix $\mathbf{k} \in \mathcal{B}$ and consider the Floquet-Bloch evp:

$$
\begin{align*}
& H_{V} \Phi(\mathbf{x})=\mu \Phi(\mathbf{x}), \mathbf{x} \in \mathbb{R}^{2} \\
& \Phi(\mathbf{x}+\mathbf{v})=e^{i \mathbf{k} \cdot \mathbf{v}} \Phi(\mathbf{x}), \mathbf{v} \in \Lambda \tag{1}
\end{align*}
$$

where $H_{V} \equiv-\Delta_{\mathbf{x}}+V$ and V is Λ-periodic.

Figure 4: $\mathcal{B}=[-\pi, \pi]^{2}$

- Solutions Φ exist:

$$
\Phi \in L_{\mathbf{k}}^{2} \equiv\left\{f \in L_{l o c}^{2}: f(\mathbf{x}+\mathbf{v})=e^{i \mathbf{k} \cdot \mathbf{v}} f(\mathbf{x}), \mathbf{v} \in \Lambda, \mathbf{x} \in \mathbb{R}^{2}\right\}
$$

- $\Phi \in L_{\mathbf{k}}^{2}$ can be written $\Phi=e^{i \mathbf{k} \cdot \mathbf{x}} \phi$, where ϕ is periodic in Λ.

Introduction of Floquet-Bloch Theory

Fix $\mathbf{k} \in \mathcal{B}$ and consider the Floquet-Bloch evp:

$$
\begin{align*}
& H_{V} \Phi(\mathbf{x})=\mu \Phi(\mathbf{x}), \mathbf{x} \in \mathbb{R}^{2} \\
& \Phi(\mathbf{x}+\mathbf{v})=e^{i \mathbf{k} \cdot \mathbf{v}} \Phi(\mathbf{x}), \mathbf{v} \in \Lambda \tag{1}
\end{align*}
$$

Figure 4: $\mathcal{B}=[-\pi, \pi]^{2}$

- Solutions Φ exist:

$$
\Phi \in L_{\mathbf{k}}^{2} \equiv\left\{f \in L_{l o c}^{2}: f(\mathbf{x}+\mathbf{v})=e^{i \mathbf{k} \cdot \mathbf{v}} f(\mathbf{x}), \mathbf{v} \in \Lambda, \mathbf{x} \in \mathbb{R}^{2}\right\}
$$

- $\Phi \in L_{\mathbf{k}}^{2}$ can be written $\Phi=e^{i \mathbf{k} \cdot \mathbf{x}} \phi$, where ϕ is periodic in Λ.

Equivalent periodic formulation of (1):

$$
\begin{aligned}
& H_{V}(\mathbf{k}) \phi(\mathbf{x} ; \mathbf{k})=\mu(\mathbf{k}) \phi(\mathbf{x} ; \mathbf{k}) \\
& \phi(\mathbf{x}+\mathbf{v} ; \mathbf{k})=\phi(\mathbf{x} ; \mathbf{k}), \mathbf{v} \in \Lambda,
\end{aligned}
$$

where $H_{V}(\mathbf{k})=-\left(\nabla_{\mathbf{x}}+i \mathbf{k}\right)^{2}+V(\mathbf{x})$ and $\mathbf{x} \in \mathbb{R}^{2} / \Lambda\left(\mathbb{R}^{2} / \mathbb{Z}^{2}\right)$.

Floquet Theory

Fix $\mathbf{k} \in \mathcal{B}$ and consider

$$
\begin{align*}
& H_{V}(\mathbf{k}) \phi(\mathbf{x})=\mu \phi(\mathbf{x}) \\
& \phi(\mathbf{x}+\mathbf{v})=\phi(\mathbf{x}), \mathbf{v} \in \Lambda \tag{2}
\end{align*}
$$

where $H_{V}(\mathbf{k})=-\left(\nabla_{\mathbf{x}}+i \mathbf{k}\right)^{2}+V(\mathbf{x})$.

- For each $\mathbf{k} \in \mathcal{B}$, problem (2) has a discrete set of eigenpairs:

$$
\left(\mu_{b}(\mathbf{k}), \phi_{b}(\mathbf{x} ; \mathbf{k})\right), b \in \mathbb{N}
$$

where $\left\{\phi_{b}(\mathbf{x} ; \mathbf{k})\right\}$ is complete and orthonormal in $L^{2}\left(\mathbb{R}^{2} / \Lambda\right)$, and the eigenvalues may be listed with multiplicity in order:

$$
\mu_{1}(\mathbf{k}) \leq \mu_{2}(\mathbf{k}) \leq \cdots \leq \mu_{b}(\mathbf{k}) \leq \cdots
$$

Floquet Theory

Fix $\mathbf{k} \in \mathcal{B}$ and consider

$$
\begin{align*}
& H_{V}(\mathbf{k}) \phi(\mathbf{x})=\mu \phi(\mathbf{x}) \tag{2}\\
& \phi(\mathbf{x}+\mathbf{v})=\phi(\mathbf{x}), \mathbf{v} \in \Lambda
\end{align*}
$$

where $H_{V}(\mathbf{k})=-\left(\nabla_{\mathbf{x}}+i \mathbf{k}\right)^{2}+V(\mathbf{x})$.

- For each $\mathbf{k} \in \mathcal{B}$, problem (2) has a discrete set of eigenpairs:

$$
\left(\mu_{b}(\mathbf{k}), \phi_{b}(\mathbf{x} ; \mathbf{k})\right), b \in \mathbb{N},
$$

where $\left\{\phi_{b}(\mathbf{x} ; \mathbf{k})\right\}$ is complete and orthonormal in $L^{2}\left(\mathbb{R}^{2} / \Lambda\right)$, and the eigenvalues may be listed with multiplicity in order:

$$
\mu_{1}(\mathbf{k}) \leq \mu_{2}(\mathbf{k}) \leq \cdots \leq \mu_{b}(\mathbf{k}) \leq \cdots
$$

- Eigenvalues $\mu_{b}(\mathbf{k})$ are called the dispersion relations of $H_{V}(\mathbf{k})$;
- The collection of dispersion relations is the band structure. The spectrum of H_{V} acting in $L^{2}\left(\mathbb{R}^{2}\right)$ is:

$$
\sigma\left(H_{V}\right)=\mu_{1}(\mathcal{B}) \cup \mu_{2}(\mathcal{B}) \cup \cdots \cup \mu_{b}(\mathcal{B}) \cup \cdots
$$

Floquet-Bloch Theory in Action: 1D

Figure 5: Band Structure $H=-d_{x}^{2}$, over $\mathcal{B}=[0,2 \pi]$, for $x \in[0,1]$.

- Colored lines: Bands of $H(k)=-\left(d_{x}+i k\right)^{2}$ sweep out real intervals.
- Black line: Recover the spectrum $(0, \infty)$ of $H^{(0)}=-d_{x}^{2}$.

Floquet-Bloch Theory in Action: 1D Dirac Point

Figure 6: Band Structure H_{V}^{ε} over $\mathcal{B}=[0,2 \pi]$, for $x \in[0,1]$.

(a) $\varepsilon V=40 \cos (2 \pi x)$.

(b) $\varepsilon V=10 \cos (4 \pi x)$.

- Left panel: Spectral gap opens for potential at across $\mathbf{k} \in \mathcal{B}$.
- Right panel: Spectral gap closes and bands intersect conically at a k-point. The k-point for which they intersect is the Dirac point.

Floquet-Bloch evp for $\Lambda=\mathbb{Z}^{2}$

Fix $\mathbf{k} \in \mathcal{B}$. Consider our Floquet-Bloch evp:

$$
\begin{aligned}
& H_{V}^{\varepsilon} \Phi(\mathbf{x})=\mu \Phi(\mathbf{x}), \mathbf{x} \in \mathbb{R}^{2} \\
& \Phi(\mathbf{x}+\mathbf{v})=e^{i \mathbf{k} \cdot \mathbf{v}} \Phi(\mathbf{x}), \quad \mathbf{v} \in \Lambda
\end{aligned}
$$

where $H_{V}^{\varepsilon} \equiv-\Delta_{\mathrm{x}}+\varepsilon V$ and V is admissible.
Figure 7: $\mathcal{B}=[-\pi, \pi]^{2}$

Definition (Admissible Potentials)

An admissible potential is a smooth function $V(\mathbf{x})$ satisfying:
(i.) \mathcal{P}-symmetry: $V(-\mathbf{x})=V(\mathbf{x})$;
(ii.) \mathcal{C}-symmetry: $\overline{V(\mathbf{x})}=V(\mathbf{x})$;
(iii.) \mathbb{Z}^{2}-periodicity: $V(\mathbf{x}+\mathbf{v})=V(\mathbf{x}), \mathbf{v} \in \mathbb{Z}^{2}$;
(iv.) $\pi / 2$-rotational invariance: With respect to an origin,

$$
\mathcal{R}[V](\mathbf{x}) \equiv V\left(R^{*} \mathbf{x}\right)=V(\mathbf{x}), \text { for all } \mathbf{x} \in \mathbb{R}^{2}
$$

Examples of Admissible Potentials

(a) V_{S} : Wells at Square Sites

(c) Square Lattice

(b) V_{L} : Wells at Lieb Sites

(d) Lieb Lattice

High Symmetry Quasi-momenta

The vertices of $\mathcal{B}, \mathbf{M}_{\star}$, are high-symmetry quasi-momenta.

$$
\mathbf{M}_{\star} \in\{(\pi, \pi),(\pi,-\pi),(-\pi,-\pi),(-\pi, \pi)\} .
$$

Floquet-Bloch evp:

$$
\begin{align*}
& H_{V}^{\varepsilon} \Phi(\mathbf{x})=\mu \Phi(\mathbf{x}) \\
& \Phi(\mathbf{x}+\mathbf{v})=e^{i \mathbf{M}_{\star} \cdot \mathbf{v}} \Phi(\mathbf{x}), \quad \mathbf{v} \in \Lambda \tag{3}
\end{align*}
$$

where V is admissible. Solution space:
Figure 8: $\mathcal{B}=[-\pi, \pi]^{2}$

$$
L_{\mathbf{M}_{\star}}^{2} \equiv\left\{f \in L_{l o c}^{2}: f(\mathbf{x}+\mathbf{v})=e^{i \mathbf{M}_{\star} \cdot \mathbf{v}} f(\mathbf{x}), \mathbf{v} \in \Lambda, \mathbf{x} \in \mathbb{R}^{2}\right\} .
$$

- $L_{\mathbf{M}_{\star}}^{2}$ is equivalent for all vertices \mathbf{M}_{\star} (high-symmetry).

$$
\begin{aligned}
& e^{i(\pi, \pi) \cdot(1,0)}=e^{i(\pi,-\pi) \cdot(1,0)}=\cdots \\
& e^{i(\pi, \pi) \cdot(0,1)}=e^{i(\pi,-\pi) \cdot(0,1)}=\cdots
\end{aligned}
$$

- Elicits a four-fold degenerate eval $\mu\left(\mathbf{M}_{\star}\right)=\left|\mathbf{M}_{\star}\right|^{2}$ for $H_{V}^{\varepsilon=0}$.
- Study (3) for $\mathbf{M}_{\star}=(\pi, \pi) \equiv \mathbf{M}$ wlog for any \mathbf{M}_{\star}.

Focus: Free Hamiltonian Lowest Eigenvalues

Figure 9: Numerical Dispersion Surfaces of $H^{(0)}=-\Delta$.

(a) Dispersion Surfaces

(b) 2D Cross Section

The first five dispersion surfaces are plotted over the BZ, $[-\pi, \pi]^{2}$.

- Four lowest bands touch at $\mu^{(0)}=|\mathbf{M}|^{2}=2 \pi^{2}$.
(High-symmetry quasimomenta and \mathcal{R}-invariance of H_{V}^{ε} with bc.)

Consequences of $\pi / 2-$ rotational invariance

Let $H_{V}^{\varepsilon} \equiv-\Delta_{\mathrm{x}}+\varepsilon V$ and V be admissible.

$$
\begin{align*}
& H_{V}^{\varepsilon} \Phi(\mathbf{x})=\mu \Phi(\mathbf{x}), \mathbf{x} \in \mathbb{R}^{2} \\
& \Phi(\mathbf{x}+\mathbf{v})=e^{i \mathbf{M} \cdot \mathbf{v}} \Phi(\mathbf{x}), \quad \mathbf{v} \in \Lambda . \tag{4}
\end{align*}
$$

Recall for a function f on $\mathbb{R}^{2}: \mathcal{R}[f](\mathbf{x}) \equiv f\left(R^{*} \mathbf{x}\right)$.

Proposition (L_{M}^{2} Decomposition by \mathcal{R})

(i) $\mathcal{R}^{4}=I d$ and is unitary on L_{M}^{2}. Thus,

$$
\mathcal{R}^{4} f=\sigma^{4} f=f, \quad \sigma \equiv\{+1,-1,+i,-i\} .
$$

(ii) The operators \mathcal{R} and H_{V} commute on L_{M}^{2}.
(iii) If $\Phi \in L_{M}^{2}$ solves (5) with eval $\mu, \mathcal{R}[\Phi]$ solves (5) with eval μ.

- Hence $\mathcal{R}^{j} \Phi=\sigma^{j} \Phi, j=0,1,2,3$, solves (5), where $\mathcal{R}^{j} \Phi \in L_{M}^{2}$.
(iv) \mathcal{R} decomposes $L_{\mathbf{M}}^{2}=L_{\mathbf{M},(+1)}^{2} \oplus L_{\mathbf{M},(-1)}^{2} \oplus L_{\mathbf{M},(+i)}^{2} \oplus L_{\mathbf{M},(-i)}^{2}$

$$
L_{\mathbf{M}, \sigma}^{2} \equiv L_{\mathbf{M}}^{2} \cap\{f \mid \mathcal{R} f=\sigma f\}
$$

Key Properties of H_{V}^{ε} for Admissible V

Let $H_{V}^{\varepsilon} \equiv-\Delta_{\mathrm{x}}+\varepsilon V$ and V be admissible.

$$
\begin{align*}
& H_{V}^{\varepsilon} \Phi(\mathbf{x})=\mu \Phi(\mathbf{x}), \mathbf{x} \in \mathbb{R}^{2} \\
& \Phi(\mathbf{x}+\mathbf{v})=e^{i \mathbf{M} \cdot \mathbf{v}} \Phi(\mathbf{x}), \quad \mathbf{v} \in \Lambda . \tag{5}
\end{align*}
$$

H_{V}^{ε} is $\pi / 2$-rotationally ($\mathcal{R}-$) invariant and $\mathcal{P} \circ \mathcal{C}$-symmetric.

- \mathcal{R} decomposes L_{M}^{2} by its eigenvalues $\sigma \equiv\{+1,-1,+i,-i\}$:

$$
L_{\mathbf{M}}^{2}=L_{\mathbf{M},(+1)}^{2} \oplus L_{\mathbf{M},(-1)}^{2} \oplus L_{\mathbf{M},(+i)}^{2} \oplus L_{\mathbf{M},(-i)}^{2}
$$

- $\mathcal{P} \circ \mathcal{C}$ symmetry of states: If $\Phi_{1} \in L_{\mathbf{M},(+i)}^{2}, \Phi_{2} \in L_{\mathrm{M},(-i)}^{2}$

$$
\Phi_{1}=\overline{\Phi_{2}(-\mathbf{x})}=(\mathcal{P} \circ \mathcal{C})\left[\Phi_{1}\right] .
$$

Perturbation by Admissible Potential

Perturbation by admissible V splits the 4D espace of $H^{(0)}$ into

- one 2-dimensional espace with eigenvalue $\mu_{S}^{\varepsilon}=\mu_{(\pm i)}^{\varepsilon}$ and
- two 1-dimensional espaces with eigenvalue $\mu_{(\pm 1)}^{\varepsilon}$.

(c) Dispersion Curves for $\mathrm{H}^{\varepsilon=0}$

(d) Dispersion Curves for $H_{V_{L}}^{\varepsilon=1}$

$$
" 4 \rightarrow 2+1+1 "
$$

The "sticking" of two evals is due to the $(\mathcal{P} \circ \mathcal{C})$-symmetry.

Outline

(1) Introduction
(2) Background

- Floquet Theory
(3) Main Results
- Quadratic Touching of Dispersion Surfaces
- Dynamics of Wavepackets

4 Concluding Remarks
(5) Acknowledgments

Main Theorem

Theorem (Quadratic touching of dispersion surfaces)

Let $H_{V}=-\Delta+V$, where V is an admissible potential. Assume:
H1) H_{V} has simple $\left(L_{M,+i}^{2}\right)$-eval μ_{S} with efunc $\Phi_{1}(\mathbf{x})$.
H2) H_{V} has simple $\left(L_{M,-i}^{2}\right)$-eval μ_{S} with efunc $\Phi_{2}=(\mathcal{P} \circ \mathcal{C})\left[\Phi_{1}\right]$.
H3) μ_{S} is neither an $L_{M,+1}^{2}$ nor an $L_{M,-1}^{2}$ eval of H_{V}.
Then, there exist dispersion curves $\mathbf{k} \mapsto \mu_{ \pm}(\mathbf{k})$ associated with H_{V}^{ε}, that are quadratic and $\pi / 2$-invariant locally in κ about \mathbf{M} :

$$
\begin{aligned}
& \mu_{ \pm}(\mathbf{M}+\kappa)-\mu_{S}= \\
& (1-\alpha)|\kappa|^{2}+Q_{6}(\kappa) \pm \sqrt{\left|\gamma\left(\kappa_{1}^{2}-\kappa_{2}^{2}\right)+2 \beta \kappa_{1} \kappa_{2}\right|^{2}+Q_{8}(\kappa)}
\end{aligned}
$$

$\mathcal{Q}_{n}=\mathcal{O}\left(|\kappa|^{n}\right)$ analytic in κ; and $\alpha=4 a_{1,1}^{1,1}, \beta=4 a_{1,2}^{1,2}, \gamma=4 a_{1,1}^{1,2}$, depend on the first partials of the $(\pm i)$ estates and resolvent $\mathcal{R}_{\mathbf{M}}$:

$$
a_{l, m}^{j_{1}, j_{2}}=\left\langle\partial_{x_{l}} \Phi_{j_{1}}, \mathcal{R}_{\mathbf{M}} \partial_{x_{m}} \Phi_{j_{2}}\right\rangle, I, m, j_{1}, j_{2} \in\{1,2\} .
$$

Focus: Local Behavior about Vertices \mathbf{M}_{\star}

Dispersion curves quadratic and $\pi / 2$-invariant:

$$
\begin{aligned}
& \mu_{ \pm}\left(\mathbf{M}_{\star}+\kappa\right)-\mu_{S} \approx \\
& \quad(1-\alpha)|\kappa|^{2} \pm\left|\gamma\left(\kappa_{1}^{2}-\kappa_{2}^{2}\right)+2 \beta \kappa_{1} \kappa_{2}\right| .
\end{aligned}
$$

Lieb Lattice TB
Continuum Dispersion Curves

(e) $\frac{\pi}{4}$-line about \mathbf{M} (f) $\frac{15 \pi}{16}$-line about \mathbf{M}

$$
\alpha=4 a_{1,1}^{1,1}, \beta=4 a_{1,2}^{1,2}, \gamma=4 a_{1,1}^{1,2}, \text { are given by } a_{l, m}^{j_{1}, j_{2}}=\left\langle\partial_{x_{l}} \Phi_{j_{1}}, \mathcal{R}_{\mathbf{M}} \partial_{x_{m}} \Phi_{j_{2}}\right\rangle .
$$

Comparison to Honeycomb

For honeycomb: Conical singularity persists for $|\varepsilon|<\infty$:

$$
\mu_{ \pm}\left(\mathbf{K}_{\star}+\kappa\right)-\mu\left(\mathbf{K}_{\star}\right) \approx \pm\left|\lambda_{\#}\right||\kappa| .
$$

For Lieb/square: Conical singularity does not persist for $|\varepsilon|<\infty$.

$$
\begin{aligned}
& \mu_{ \pm}\left(\mathbf{M}_{\star}+\kappa\right)-\mu_{S} \approx \\
& \quad(1-\alpha)|\kappa|^{2} \pm\left|\gamma\left(\kappa_{1}^{2}-\kappa_{2}^{2}\right)+2 \beta \kappa_{1} \kappa_{2}\right|
\end{aligned}
$$

Lieb Lattice TB
Continuum Dispersion Curves

(g) $\frac{\pi}{4}$-line about \mathbf{M} (h) $\frac{15 \pi}{16}$-line about \mathbf{M}

Conditions for Quadratic Touching

Let $V_{m_{1}, m_{2}}$ denote the (m_{1}, m_{2}) Fourier coefficient of V.

Theorem (Small ε behavior)

Assume $V_{11} \neq V_{00}$. For ε small, the $4 D$ espace of $H_{V}^{\varepsilon=0}$ perturbs to
(i.) $A 2 D$ eigenspace $\mathbb{X}_{i} \subset L_{M, i}^{2}$ and $\mathbb{X}_{-i} \subset L_{\mathbb{M},-i}^{2}$ with corresponding multiplicity-two eval μ_{S}^{ε}, given by:

$$
\mu_{S}^{\varepsilon}=|\mathbf{M}|^{2}+\varepsilon\left(V_{0,0}-V_{1,1}\right)+\mathcal{O}\left(\varepsilon^{2}\right)
$$

(ii.) Two $1 D$ espaces $\mathbb{X}_{ \pm 1} \subset L_{\mathbf{M}, \pm 1}^{2}$ with distinct evals $\mu_{(\pm 1)}^{\varepsilon}$, where

$$
\mu_{(\pm 1)}^{\varepsilon}=|\mathbf{M}|^{2}+\varepsilon\left(V_{0,0} \pm 2 V_{0,1}+V_{1,1}\right)+\mathcal{O}\left(\varepsilon^{2}\right)
$$

Theorem (Generic ε behavior)

Except for a discrete set of $\varepsilon \in \mathbb{R}$, the Hamiltonian H_{V}^{ε} has two touching dispersion curves locally about the \mathbf{M}-point given by:

$$
\mu_{ \pm}^{\varepsilon}(\mathbf{M}+\kappa)-\mu_{S}^{\varepsilon} \approx\left(1-\alpha^{\varepsilon}\right)|\kappa|^{2} \pm\left|\gamma^{\varepsilon}\left(\kappa_{1}^{2}-\kappa_{2}^{2}\right)+2 \beta^{\varepsilon} \kappa_{1} \kappa_{2}\right|
$$

Proof Sketch: Lyapunov Schmidt Reduction Analysis

Consider small perturbation $|\kappa| \ll 1$ about the \mathbf{M}-point:

$$
\left\{\begin{array}{l}
H_{V}(\mathbf{M}+\kappa) \phi=\mu(\mathbf{M}+\kappa) \phi \tag{6}\\
\phi(\mathbf{x}+\mathbf{v})=\phi(\mathbf{x}), \mathbf{v} \in \Lambda, \quad \mathbf{x} \in \mathbb{R}^{2}
\end{array}\right.
$$

where $H_{V}(\mathbf{k})=\left(-\left(\nabla_{\mathbf{x}}+i(\mathbf{k})\right)^{2}+V(\mathbf{x})\right)$ and V is admissible.

- Ansatz of solution for (6):

$$
\begin{gathered}
\mu=\mu(\mathbf{M}+\kappa)=\mu_{S}+\mu^{(1)} ; \\
\phi=\phi(\mathbf{x} ; \mathbf{M}+\kappa)=\phi^{(0)}+\phi^{(1)} ; \\
\phi^{(0)} \in \operatorname{kernel}\left(H(\mathbf{M})-\mu_{S} I\right), \quad \phi^{(1)} \perp \operatorname{kernel}\left(H(\mathbf{M})-\mu_{S} I\right)
\end{gathered}
$$

- Substitute ansatz into (6) and obtain system ${ }^{1} \mathcal{M}\left(\mu^{(1)}, \kappa\right)$.
- Seek $\mu^{(1)}$ satisfying

$$
\operatorname{det}\left[\mathcal{M}\left(\mu^{(1)}, \kappa\right)\right]=0
$$

${ }^{1}$ Those interested can view details validating this ansatz in our paper online. $\overline{\equiv \underline{\underline{B}}}$

Proof Sketch: Lyapunov-Schmidt Reduction

- \mathcal{M} can be decomposed into linear and higher order terms:

$$
\mathcal{M}\left(\mu^{(1)}, \kappa\right) \equiv \mathcal{M}^{(0)}\left(\mu^{(1)}, \kappa\right)+\mathcal{M}^{(1)}\left(\mu^{(1)}, \kappa\right)
$$

Linear-termed $\mathcal{M}^{(0)}\left(\mu^{(1)}, \kappa\right) \equiv$

$$
\left(\begin{array}{cc}
\mu^{(1)}-\kappa \cdot \kappa+\left\langle\Phi_{1}, 2 i \kappa \cdot \nabla \Phi_{1}\right\rangle & \left\langle\Phi_{1}, 2 i \kappa \cdot \nabla \Phi_{2}\right\rangle \\
\left\langle\Phi_{2}, 2 i \kappa \cdot \nabla \Phi_{1}\right\rangle & \mu^{(1)}-\kappa \cdot \kappa+\left\langle\Phi_{2}, 2 i \kappa \cdot \nabla \Phi_{2}\right\rangle
\end{array}\right),
$$

and $\mathcal{M}^{(1)}\left(\mu^{(1)}, \kappa\right) \equiv$

$$
4\left(\begin{array}{cc}
\left\langle\kappa \cdot \nabla_{\mathbf{x}} \Phi_{1}, \mathcal{R}_{\mathbf{M}}\left(\kappa \cdot \nabla_{\mathbf{x}} \Phi_{1}\right)\right\rangle & \left\langle\kappa \cdot \nabla_{\mathbf{x}} \Phi_{1}, \mathcal{R}_{\mathbf{M}}\left(\kappa \cdot \nabla_{\mathbf{x}} \Phi_{2}\right)\right\rangle \\
\left\langle\kappa \cdot \nabla_{\mathbf{x}} \Phi_{2}, \mathcal{R}_{\mathbf{M}}\left(\kappa \cdot \nabla_{\mathbf{x}} \Phi_{1}\right)\right\rangle & \left\langle\kappa \cdot \nabla_{\mathbf{x}} \Phi_{\mathbf{2}}, \mathcal{R}_{\mathbf{M}}\left(\kappa \cdot \nabla_{\mathbf{x}} \Phi_{2}\right)\right\rangle
\end{array}\right)
$$

where $\mathcal{R}_{\mathbf{M}}$ is the resolvent operator associated with μ_{S}.

Symmetries Imply Vanishing Linear Terms

Linear-termed $\mathcal{M}^{(0)}\left(\mu^{(1)}, \kappa\right) \equiv$
$\left(\begin{array}{cc}\mu^{(1)}-\kappa \cdot \kappa+\left\langle\Phi_{1}, 2 i \kappa \cdot \nabla \Phi_{1}\right\rangle & \left\langle\Phi_{1}, 2 i \kappa \cdot \nabla \Phi_{2}\right\rangle \\ \left\langle\Phi_{2}, 2 i \kappa \cdot \nabla \Phi_{1}\right\rangle & \mu^{(1)}-\kappa \cdot \kappa+\left\langle\Phi_{2}, 2 i \kappa \cdot \nabla \Phi_{2}\right\rangle\end{array}\right)$,

Proposition (Vanishing linear-in- κ terms)

If smooth functions f_{1} and f_{2} on \mathbb{R}^{2} are \mathcal{R}-invariant,

$$
\left\langle f_{1}, \nabla f_{2}\right\rangle_{L^{2}(\Omega)}=\mathbf{0}
$$

In particular, for $j_{1}, j_{2} \in\{1,2\},\left\langle\Phi_{j_{1}}, \nabla \Phi_{j_{2}}\right\rangle_{L^{2}(\Omega)}=\mathbf{0}$.

- For admissible (e.g. Lieb and square) potential:

$$
\mathcal{M}^{(0)}\left(\mu^{(1)}, \kappa\right)=\left(\begin{array}{cc}
\mu^{(1)}-\kappa \cdot \kappa & 0 \\
0 & \mu^{(1)}-\kappa \cdot \kappa
\end{array}\right)
$$

and we progress to quadratic-in- κ terms.

Symmetries Imply Vanishing Linear Terms

Linear-termed $\mathcal{M}^{(0)}\left(\mu^{(1)}, \kappa\right) \equiv$
$\left(\begin{array}{cc}\mu^{(1)}-\kappa \cdot \kappa+\left\langle\Phi_{1}, 2 i \kappa \cdot \nabla \Phi_{1}\right\rangle & \left\langle\Phi_{1}, 2 i \kappa \cdot \nabla \Phi_{2}\right\rangle \\ \left\langle\Phi_{2}, 2 i \kappa \cdot \nabla \Phi_{1}\right\rangle & \mu^{(1)}-\kappa \cdot \kappa+\left\langle\Phi_{2}, 2 i \kappa \cdot \nabla \Phi_{2}\right\rangle\end{array}\right)$,

Proposition (Vanishing linear-in- κ terms)

If smooth functions f_{1} and f_{2} on \mathbb{R}^{2} are \mathcal{R}-invariant,

$$
\left\langle f_{1}, \nabla f_{2}\right\rangle_{L^{2}(\Omega)}=\mathbf{0} .
$$

In particular, for $j_{1}, j_{2} \in\{1,2\},\left\langle\Phi_{j_{1}}, \nabla \Phi_{j_{2}}\right\rangle_{L^{2}(\Omega)}=\mathbf{0}$.

- Key point of departure from honeycomb potentials:

$$
\mathcal{M}_{h}^{(0)}(\nu ; \kappa)=\left(\begin{array}{cc}
\nu & -\overline{\lambda_{\#}} \times\left(\kappa_{1}+i \kappa_{2}\right) \\
-\lambda_{\#} \times\left(\kappa_{1}-i \kappa_{2}\right) & \nu
\end{array}\right)
$$

where $\mathcal{M}_{h}^{(0)}$ is the linear-in- κ matrix for honeycomb potentials.

Simplifying and Solving $\operatorname{det}\left[\mathcal{M}\left(\mu^{(1)}, \kappa\right)\right]=0$

Using rotational symmetries, one can show:

$$
\mathcal{M}\left(\mu^{(1)}, \kappa\right)=\left(\begin{array}{cc}
\mu^{(1)}-\kappa \cdot \kappa+\alpha\left(\kappa_{1}^{2}+\kappa_{2}^{2}\right) & \gamma\left(\kappa_{1}^{2}-\kappa_{2}^{2}\right)+2 \beta \kappa_{1} \kappa_{2} \\
\bar{\gamma}\left(\kappa_{1}^{2}-\kappa_{2}^{2}\right)+2 \bar{\beta} \kappa_{1} \kappa_{2} & \mu^{(1)}-\kappa \cdot \kappa+\alpha\left(\kappa_{1}^{2}+\kappa_{2}^{2}\right)
\end{array}\right)
$$

where $\alpha=4 a_{1,1}^{1,1}, \beta=4 a_{1,2}^{1,2}, \gamma=4 a_{1,1}^{1,2}$, are inner products

$$
a_{l, m}^{j_{1}, j_{2}}=\left\langle\partial_{x_{l}} \Phi_{j_{1}}, \mathcal{R}_{\mathbf{M}} \partial_{x_{m}} \Phi_{j_{2}}\right\rangle .
$$

Careful residue analysis with Rouché's Theorem yield the result:

$$
\begin{aligned}
& \mu_{ \pm}(\mathbf{M}+\kappa)-\mu_{S}= \\
& (1-\alpha)|\kappa|^{2}+Q_{6}(\kappa) \pm \sqrt{\left|\gamma\left(\kappa_{1}^{2}-\kappa_{2}^{2}\right)+2 \beta \kappa_{1} \kappa_{2}\right|^{2}+Q_{8}(\kappa)} .
\end{aligned}
$$

Main Theorem

Theorem (Quadratic touching of dispersion surfaces)

Let $H_{V}=-\Delta+V$, where V is an admissible potential. Assume:
H1) H_{V} has simple $\left(L_{M,+i}^{2}\right)$-eval μ_{S} with efunc $\Phi_{1}(\mathbf{x})$.
H2) H_{V} has simple $\left(L_{M,-i}^{2}\right)$-eval μ_{S} with efunc $\Phi_{2}=(\mathcal{P} \circ \mathcal{C})\left[\Phi_{1}\right]$.
H3) μ_{S} is neither an $L_{M,+1}^{2}$ nor an $L_{M,-1}^{2}$ eval of H_{V}.
Then, there exist dispersion curves $\mathbf{k} \mapsto \mu_{ \pm}(\mathbf{k})$ associated with H_{V}^{ε}, that are quadratic and $\pi / 2$-invariant locally in κ about \mathbf{M} :

$$
\begin{aligned}
& \mu_{ \pm}(\mathbf{M}+\kappa)-\mu_{S}= \\
& (1-\alpha)|\kappa|^{2}+Q_{6}(\kappa) \pm \sqrt{\left|\gamma\left(\kappa_{1}^{2}-\kappa_{2}^{2}\right)+2 \beta \kappa_{1} \kappa_{2}\right|^{2}+Q_{8}(\kappa)}
\end{aligned}
$$

$\mathcal{Q}_{n}=\mathcal{O}\left(|\kappa|^{n}\right)$ analytic in κ; and $\alpha=4 a_{1,1}^{1,1}, \beta=4 a_{1,2}^{1,2}, \gamma=4 a_{1,1}^{1,2}$, depend on the first partials of the $(\pm i)$ estates and resolvent $\mathcal{R}_{\mathbf{M}}$:

$$
a_{l, m}^{j_{1}, j_{2}}=\left\langle\partial_{x_{l}} \Phi_{j_{1}}, \mathcal{R}_{\mathbf{M}} \partial_{x_{m}} \Phi_{j_{2}}\right\rangle, I, m, j_{1}, j_{2} \in\{1,2\} .
$$

Corollary: Time Evolution of Wavepackets

Consider the time-dependent Schrödinger equation (TDSE):

$$
i \partial_{t} \psi(\mathbf{x}, t)=\left(-\Delta_{\mathbf{x}}+V(\mathbf{x})\right) \psi(\mathbf{x}, t)
$$

Corollary (Dynamics of Wavepackets)

Solutions to the TDSE with initial condition wavepackets:

$$
\psi(\mathbf{x}, 0)=C_{10}(\mathbf{X}) \Phi_{1}(\mathbf{x})+C_{20}(\mathbf{X}) \Phi_{2}(\mathbf{x})
$$

where $\mathbf{X} \equiv \delta \mathbf{x}=\left(X_{1}, X_{2}\right)$ and $C_{j 0}(\mathbf{X}), j=1,2$ in Schwartz class, evolve for large time according to a coupled system of 2D
Schrödinger equations ($T=\delta^{2} t, \mathbf{X}_{1}=\delta \mathbf{x}$):

$$
i \partial_{T}=C_{p}=-\Delta \mathbf{x}_{1} C_{p}+4 \sum_{q=1}^{2} \sum_{r, s=1}^{2} a_{r, s}^{p, q} \frac{\partial^{2} C_{q}}{\partial X_{1 r} \partial X_{1 s}}, \quad p=1,2,
$$

where $a_{r, s}^{p, q}$ are the inner products from before:

$$
a_{r, s}^{p, q}=\left\langle\partial_{x_{r}} \Phi_{p}, \mathcal{R}_{\mathbf{M}} \partial_{x_{s}} \Phi_{q}\right\rangle .
$$

Proof Sketch: Multiple Scale Analysis

Ansatz dependent on multiple spatial and temporal scales $(\delta \ll 1)$:

$$
\psi^{\delta}=e^{-i \mu_{s} t} \sum_{j \geq 0} \delta^{j} \psi_{j}(\mathbf{x} ; \overrightarrow{\mathbf{X}}, \vec{T})
$$

where $\overrightarrow{\mathbf{X}}=\left(\mathbf{X}_{1}, \mathbf{X}_{2}\right)=\left(\delta \mathbf{x}, \delta^{2} \mathbf{x}\right) ; \vec{T}=\left(T_{1}, T_{2}\right)=\left(\delta t, \delta^{2} t\right)$.
Hierarchy of Equations:

$$
\begin{array}{rlrl}
\mathcal{O}\left(\delta^{0}\right): & & \left(\mu_{S}-H_{V}\right) \psi_{0}= & ; \\
\mathcal{O}\left(\delta^{1}\right): & & \left(\mu_{S}-H_{V}\right) \psi_{1}= & -\left(i \partial_{T_{1}}+2 \nabla_{\mathbf{x}} \cdot \nabla_{\mathbf{x}_{1}}\right) \psi_{0} ; \\
\mathcal{O}\left(\delta^{2}\right): & & \left(\mu_{S}-H_{V}\right) \psi_{2}= & -\left(i \partial_{T_{2}}+2 \nabla_{\mathbf{x}} \cdot \nabla_{\mathbf{x}_{2}}+\Delta_{\mathbf{x}_{1}}\right) \psi_{0} \\
& & -\left(i \partial_{T_{1}}+2 \nabla_{\mathbf{x}} \cdot \nabla_{\mathbf{x}_{1}}\right) \psi_{1}
\end{array}
$$

- $\mathcal{O}\left(\delta^{0}\right)$ equation has solutions $\Phi_{1} \in L_{\mathbf{M},(+i)}^{2}, \Phi_{2} \in L_{\mathbf{M},(-i)}^{2}$.

$$
\psi_{0}=C_{1}(\overrightarrow{\mathbf{X}}, \vec{T}) \Phi_{1}(\mathbf{x})+C_{2}(\overrightarrow{\mathbf{X}}, \vec{T}) \Phi_{2}(\mathbf{x})
$$

$C_{1}(\overrightarrow{\mathbf{X}}, \vec{T})$ and $C_{2}(\overrightarrow{\mathbf{X}}, \vec{T})$ are to be determined.

Proof Sketch: Multiple Scale Analysis

Ansatz dependent on multiple spatial and temporal scales $(\delta \ll 1)$:

$$
\psi^{\delta}=e^{-i \mu_{S} t} \sum_{j \geq 0} \delta^{j} \psi_{j}(\mathbf{x} ; \overrightarrow{\mathbf{X}}, \vec{T})
$$

where $\overrightarrow{\mathbf{X}}=\left(\mathbf{X}_{1}, \mathbf{X}_{2}\right)=\left(\delta \mathbf{x}, \delta^{2} \mathbf{x}\right) ; \vec{T}=\left(T_{1}, T_{2}\right)=\left(\delta t, \delta^{2} t\right)$.
Hierarchy of Equations:

$$
\begin{aligned}
\mathcal{O}\left(\delta^{0}\right): & \left(\mu_{S}-H_{V}\right) \psi_{0}=0 ; \\
\mathcal{O}\left(\delta^{1}\right): & \left(\mu_{S}-H_{V}\right) \psi_{1}= \\
\mathcal{O}\left(\delta^{2}\right): & \left(\mu_{S}-H_{V}\right) \psi_{2}= \\
& \left.-\left(i \partial_{T_{1}}+2 \nabla_{\mathbf{x}} \cdot \nabla_{\mathbf{x}_{1}}\right) \psi_{\mathbf{x}} \cdot \nabla_{\mathbf{x}_{2}}+\Delta \mathbf{x}_{1}\right) \psi_{0} \\
& -\left(i \partial_{T_{1}}+2 \nabla_{\mathbf{x}} \cdot \nabla_{\mathbf{x}_{1}}\right) \psi_{1} .
\end{aligned}
$$

- Key feature for admissible (Lieb/square) potential:

$$
\left\langle\Phi_{p}, \nabla_{\mathbf{x}} \Phi_{q}\right\rangle=\mathbf{0} ; \quad p, q=1,2
$$

$\mathcal{O}\left(\delta^{1}\right)$ problem is solvable:

$$
\psi_{1}(\mathbf{x}+\mathbf{v} ; \overrightarrow{\mathbf{X}}, \vec{T})=2 \mathcal{R}_{\mathbf{M}} \sum_{q=1}^{2} \nabla_{\mathbf{x}_{1}} C_{q}\left(\mathbf{X}_{1}, \mathbf{X}_{2}, T_{2}\right) \cdot \nabla_{\mathbf{x}} \Phi_{q}(\mathbf{x})
$$

Proof Sketch: Multiple Scale Expansion Key Points

We have :

- $\psi_{0}=C_{1}(\overrightarrow{\mathbf{X}}, \vec{T}) \Phi_{1}(\mathbf{x})+C_{2}(\overrightarrow{\mathbf{X}}, \vec{T}) \Phi_{2}(\mathbf{x}) ;$
- $\psi_{1}(\mathbf{x}+\mathbf{v} ; \overrightarrow{\mathbf{X}}, \vec{T})=2 \mathcal{R}_{\mathbf{M}} \sum_{q=1}^{2} \quad \nabla_{\mathbf{x}_{1}} C_{q}\left(\mathbf{X}_{1}, \mathbf{X}_{2}, T_{2}\right) \cdot \nabla_{\mathbf{x}} \Phi_{q}(\mathbf{x})$.

$$
\begin{aligned}
\mathcal{O}\left(\delta^{2}\right): \quad\left(\mu_{S}-H_{V}\right) \psi_{2}= & -\left(i \partial_{T_{2}}+2 \nabla_{\mathbf{x}} \cdot \nabla_{\mathbf{X}_{2}}+\Delta \mathbf{x}_{1}\right) \psi_{0} \\
& -\left(i \partial_{T_{1}}+2 \nabla_{\mathbf{x}} \cdot \nabla_{\mathbf{x}_{1}}\right) \psi_{1}
\end{aligned}
$$

- Solvability for $\mathcal{O}\left(\delta^{2}\right)$ problem leads to the result:

$$
i \partial_{T} C_{p}=-\Delta \mathbf{x}_{1} C_{p}+4 \sum_{q=1}^{2} \sum_{r, s=1}^{2} a_{r, s}^{p, q} \frac{\partial^{2} C_{q}}{\partial X_{1 r} \partial X_{1 s}}, \quad p=1,2
$$

where $a_{r, s}^{p, q}$ are the inner products from before:

$$
a_{r, s}^{p, q}=\left\langle\partial_{x_{r}} \Phi_{p}, \mathcal{R}_{\mathbf{M}} \partial_{x_{s}} \Phi_{q}\right\rangle
$$

Outline

(1) Introduction
(2) Background

- Floquet Theory
(3) Main Results
- Quadratic Touching of Dispersion Surfaces
- Dynamics of Wavepackets

4 Concluding Remarks
(5) Acknowledgments

Summary: Integer Lattice "Schrödinger Point"

Conical singularity does not exist/persist for finite potential.

- Quadratic, $\pi / 2$-invariant touching of dispersion surfaces

$$
\mu_{ \pm}(\mathbf{M}+\kappa)-\mu_{S} \approx(1-\alpha)|\kappa|^{2} \pm\left|\gamma\left(\kappa_{1}^{2}-\kappa_{2}^{2}\right)+2 \beta \kappa_{1} \kappa_{2}\right|
$$

- Evolution of spectrally-concentrated wavepackets are governed by 2D Schrödinger equation on scales $T=\delta^{2} t$ and $\mathbf{X}=\delta \mathbf{x}$:

$$
i \partial_{T} C_{p}=-\Delta_{\mathbf{x}} C_{p}+4 \sum_{q=1}^{2} \sum_{r, s=1}^{2} a_{r, s}^{p, q} \frac{\partial^{2} C_{q}}{\partial X_{r} \partial X_{s}}, p=1,2
$$

TB Dispersion Lieb
Dispersion Curves for Admissible Potential Near M

Summary: Integer Lattice "Schrödinger Point"

Conical singularity does not exist/persist for finite potential.

- Quadratic, $\pi / 2$-invariant touching of dispersion surfaces

$$
\mu_{ \pm}(\mathbf{M}+\kappa)-\mu_{S} \approx(1-\alpha)|\kappa|^{2} \pm\left|\gamma\left(\kappa_{1}^{2}-\kappa_{2}^{2}\right)+2 \beta \kappa_{1} \kappa_{2}\right|
$$

- Evolution of spectrally-concentrated wavepackets are governed by 2D Schrödinger equation on scales $T=\delta^{2} t$ and $\mathbf{X}=\delta \mathbf{x}$:

$$
i \partial_{T} C_{p}=-\Delta_{\mathbf{x}} C_{p}+4 \sum_{q=1}^{2} \sum_{r, s=1}^{2} a_{r, s}^{p, q} \frac{\partial^{2} C_{q}}{\partial X_{r} \partial X_{s}}, p=1,2
$$

Honeycomb potentials: Conical singularity persists

$$
\mu_{ \pm}\left(\mathbf{K}_{\star}+\kappa\right)-\mu\left(\mathbf{K}_{\star}\right) \approx \pm\left|\lambda_{\#}\right||\kappa| .
$$

Wavepackets governed by 2D Dirac equation ${ }^{2}, T=\delta t$ and $\mathbf{X}=\delta \mathbf{x}$

$$
\begin{aligned}
& \partial_{T} C_{1}(\mathbf{X}, T)=\lambda_{\#}\left(\partial_{X_{1}}+i \partial_{X_{2}}\right) C_{2}(\mathbf{X}, T) \\
& \partial_{T} C_{2}(\mathbf{X}, T)=\lambda_{\#}\left(\partial_{X_{1}}-i \partial_{X_{2}}\right) C_{1}(\mathbf{X}, T)
\end{aligned}
$$

[^0]
Summary: Integer Lattice "Schrödinger Point"

Conical singularity does not exist/persist for finite potential.

- Quadratic, $\pi / 2$-invariant touching of dispersion surfaces

$$
\mu_{ \pm}(\mathbf{M}+\kappa)-\mu_{S} \approx(1-\alpha)|\kappa|^{2} \pm\left|\gamma\left(\kappa_{1}^{2}-\kappa_{2}^{2}\right)+2 \beta \kappa_{1} \kappa_{2}\right|
$$

Corollary (Additional symmetries imply vanishing of terms.)

Assume hypotheses of Theorem 4. Assume further that with respect to the origin of coordinates, $\mathbf{x}_{c}=0$, we have, in addition, that V is reflection invariant in the following sense:
$V\left(x_{1}, x_{2}\right)=V\left(x_{2}, x_{1}\right)$. Then,
$\mu_{ \pm}(\mathbf{M}+\kappa)-\mu_{S}=(1-\alpha)|\kappa|^{2}+Q_{6}(\kappa) \pm \sqrt{\left|2 \beta \kappa_{1} \kappa_{2}\right|^{2}+Q_{8}(\kappa)}$.

Outline

(1) Introduction
(2) Background

- Floquet Theory
(3) Main Results
- Quadratic Touching of Dispersion Surfaces
- Dynamics of Wavepackets

4 Concluding Remarks
(5) Acknowledgments

Acknowledgments

We thank the US National Science Foundation and Simons Foundation for supporting this research.

Thanks to Mikael Rechtsman and Charles Fefferman for very stimulating discussions! Mikael Rechtsman also provided very helpful advice on numerical spectral calculations.

Thank you!

This research was supported in part by US National Science Foundation Graduate Research Fellowship Grant No. DGE-1144155 and DGE 16-44869 (RTK); Grants DMS-1312874 and NSF CAREER Grant DMS-1352353 (JLM); DMS 16-19755 (BO); DMS-1412560, DMS-1620418 and NSF RNMS Grant \#11-07444 (Ki-Net) (RTK\&MIW), and a Simons Foundation Math + X Investigator Award \#376319 (MIW).
C. L. Fefferman, J. P. Lee-Thorp, and M. I. Weinstein. "Honeycomb Schrödinger operators in the strong binding regime". Commun. Pure Appl. Math. arXiv preprint arXiv:1610.04930 (2017). DOI: https://doi.org/10.1002\%2Fcpa. 21735.
C. L. Fefferman and M. I. Weinstein. "Honeycomb Lattice Potentials and Dirac Points". J. Amer. Math. Soc. 25.4 (2012), pp. 1169-1220. Doi: 10.1090/s0894-0347-2012-00745-0.
C. L. Fefferman and M. I. Weinstein. "Wave packets in honeycomb structures and two-dimensional Dirac equations". Communications in Mathematical Physics 326.1 (2014), pp. 251-286. DOI: 10.1007/s00220-013-1847-2.
D Guzmán-Silva, C Mejía-Cortés, M. Bandres, M. Rechtsman, S Weimann, S Nolte, M Segev, A Szameit, and R. Vicencio. "Experimental observation of bulk and edge transport in photonic Lieb lattices". New Journal of Physics 16.6 (2014), p. 063061. DOI: 10.1088/1367-2630/16/6/063061.
P. Kuchment. "An overview of periodic elliptic operators". Bulletin of the American Mathematical Society 53.3 (2016), pp. 343-414. DOI: 10.1090/bull/1528.

M Niță, B Ostahie, and A Aldea. "Spectral and transport properties of the two-dimensional Lieb lattice". Physical Review B 87.12 (2013), p. 125428. DOI: $10.1103 /$ physrevb 87.125428.
C. Weeks and M. Franz. "Topological insulators on the Lieb and perovskite lattices". Physical Review B 82.8 (2010), p. 085310. DOI:
10.1103/physrevb. 82.085310.

Characterization for ε Small Behavior

Let $V_{m_{1}, m_{2}}$ denotes the $\left(m_{1}, m_{2}\right)$ Fourier coefficient of V.

Proposition (Small ε behavior)

For ε sufficiently small, the $4 D$ eigenspace of $H^{\varepsilon=0}$ perturbs to one $2 D$ and two $1 D$ eigenspaces that are characterized:

- A multiplicity-two eval μ_{S}^{ε} is of geometric multiplicity 2, with a $2 D$ eigenspace $\mathbb{X}_{i} \subset L_{\mathbf{M}, i}^{2}$ and $\mathbb{X}_{-i} \subset L_{\mathbf{M},-i}^{2}$, and is given by:

$$
\begin{equation*}
\mu_{S}^{\varepsilon}=|\mathbf{M}|^{2}+\varepsilon\left(V_{0,0}-V_{1,1}\right)+\mathcal{O}\left(\varepsilon^{2}\right) \tag{8}
\end{equation*}
$$

- The distinct evals $\mu_{(+1)}^{\varepsilon}$ and $\mu_{(-1)}^{\varepsilon}$ are of geometric multiplicity 1 , with $1 D$ espaces $\mathbb{X}_{ \pm 1} \subset L_{M, \pm 1}^{2}$, given by:

$$
\begin{equation*}
\mu_{(\pm 1)}^{\varepsilon}=|\mathbf{M}|^{2}+\varepsilon\left(V_{0,0} \pm 2 V_{0,1}+V_{1,1}\right)+\mathcal{O}\left(\varepsilon^{2}\right) \tag{9}
\end{equation*}
$$

Example of Ordering for Small Amplitude Potential

Figure 10: Eigenvalue ordering, up to $\mathcal{O}(\varepsilon): \mu_{-1}^{\varepsilon}<\mu_{+i}^{\varepsilon}=\mu_{-i}^{\varepsilon}<\mu_{1}^{\varepsilon}$.

(a) Plot of Potential V_{L}

(b) Dispersion curves for $H_{V_{L}}^{\varepsilon=1}$

Fourier coefficients, $V_{m, n}$

m / n	0	1
0	0.2242	0.0681
1	0.0681	-0.0620

Predicted dispersion relation $\mu(\mathbf{k}), \mathbf{k}=\mathbf{M}+\kappa$

$$
\begin{aligned}
\mu_{-1}^{\varepsilon}(\mathbf{k}) \approx\left(V_{0,0}-2 V_{0,1}+V_{1,1}\right) \varepsilon & \approx 0.0260 \varepsilon \\
\mu_{ \pm i}^{\varepsilon}(\mathbf{k}) \approx\left(V_{0,0}-V_{1,1}\right) \varepsilon & \approx 0.2862 \varepsilon \\
\mu_{+1}^{\varepsilon}(\mathbf{k}) \approx\left(V_{0,0}+2 V_{0,1}+V_{1,1}\right) \varepsilon & \approx 0.2985 \varepsilon
\end{aligned}
$$

Physical Motivation: Lieb lattice

- Schrödinger operator: $H_{\varepsilon V}=-\Delta+\varepsilon V(\mathbf{x}), \varepsilon \in \mathbb{R}$.
- Tight-binding model $(\varepsilon \nearrow \infty)$ approximates low-lying modes
- TB model for the Lieb lattice, \mathbb{Z}^{2} lattice with 3 atomic sites, is

The TB model approximates the band structure of lattices by superimposing potential wells centered at each atomic site.

$$
\left(\begin{array}{c}
\Psi_{B}^{(m, n)}+\Psi_{B}^{(m, n+1)} \\
\Psi_{A}^{(m, n)}+\Psi_{C}^{(m, n)}+\Psi_{C}^{(m-1, n)}+\Psi_{A}^{(m, n-1)} \\
\Psi_{B}^{(m, n)}+\Psi_{B}^{(m+1, n)}
\end{array}\right)=E\left(\begin{array}{l}
\Psi_{A}^{(m, n)} \\
\Psi_{B}^{(m, n)} \\
\Psi_{C}^{(m, n)}
\end{array}\right)
$$

This system has band structure (Figure ??):

$$
E_{0}(\mathbf{k})=0, E_{ \pm}\left(k_{1}, k_{2}\right)= \pm \sqrt{4+2 \cos k_{1}+2 \cos k_{2}} .
$$

Physical Motivation: Lieb lattice

- Schrödinger operator: $H_{\varepsilon V}=-\Delta+\varepsilon V(\mathbf{x}), \varepsilon \in \mathbb{R}$.
- Tight-binding model $(\varepsilon \nearrow \infty)$ approximates low-lying modes
- TB model for the Lieb lattice, \mathbb{Z}^{2} lattice with 3 atomic sites, is

The TB model approximates the band structure of lattices by superimposing potential wells centered at each atomic site.

$$
\left(\begin{array}{c}
\Psi_{B}^{(m, n)}+\Psi_{B}^{(m, n+1)} \\
\Psi_{A}^{(m, n)}+\Psi_{C}^{(m, n)}+\Psi_{C}^{(m-1, n)}+\Psi_{A}^{(m, n-1)} \\
\Psi_{B}^{(m, n)}+\Psi_{B}^{(m+1, n)}
\end{array}\right)=E\left(\begin{array}{l}
\Psi_{A}^{(m, n)} \\
\Psi_{B}^{(m, n)} \\
\Psi_{C}^{(m, n)}
\end{array}\right)
$$

This system has band structure (Figure ??):

$$
E_{0}(\mathbf{k})=0, E_{ \pm}\left(k_{1}, k_{2}\right)= \pm \sqrt{4+2 \cos k_{1}+2 \cos k_{2}}
$$

- Does the three-band intersection persist for finite-depth potential wells?
- Does the conical behavior persist for finite-depth potential wells? (Do we have a Dirac Point?)

Questions and Answers

Questions:

- Does the three-band intersection persist for finite-depth potential wells?
- Does the conical behavior persist for finite-depth potential wells? (Dirac point?)

TB Dispersion Curves Lieb

Questions and Answers

Questions:

TB Dispersion Curves Lieb

- Does the three-band intersection persist for finite-depth potential wells?
- Does the conical behavior persist for finite-depth potential wells? (Dirac point?)

We show that the answer is no to all questions.

i. The three-band flat + conical behavior does not persist.
ii. Instead of conically, bands intersect with mixed-signature:

Dispersion curves along $\mathbf{k}=\mathbf{M} \pm \lambda_{0}(\cos \theta, \sin \theta)^{T}, \lambda_{0} \in \mathbb{R}$.

[^0]: ${ }^{2}$ [FW14]

