
Differential Calculus of Vector Valued Functions

Functions of Several Variables
We are going to consider scalar valued and vector valued functions of several real
variables. For example,

z = fx, y, w = Fx, y, z, y = Gx1, x2, . . . , xn

V⃗ = v1x, y, zi⃗ + v2x, y, zj⃗ + v3x, y, zk⃗

Here x, y, x, y, z or x1, x2, . . . , xn denote the independent variables for the functions f, F
and G, and z, w, y and V⃗ are referred to as dependent variables. A real valued function like
z = fx, y, assigns a unique value to each point x, y of a set D of the plane called the
domain of the function. The set of values for fx, y as x, y ranges over all points in the
domain is called the range of the function f. For each x, y in D the function f assumes a
scalar value (i.e., the value is a real number) and f is therefore called a scalar valued
function or scalar field. The function V⃗ = v1x, y, zi⃗ + v2x, y, zj⃗ + v3x, y, zk⃗ assigns to each
point x, y, z in its domain a unique value v1, v2, v3 in 3 − space and since this value may be
interpreted as a vector, this function is referred to as a vector valued function or vector field
defined over its domain D.

Continuity
Let F denote a real or vector valued function of n real variables defined over domain D.We
say that F is continuous at the point P in D if, for each Q that is "close to P" , the value of
FQ is "close to" the value FP. The precise definition of this vague statement is the
following; F is continuous at the point P in D if, for every  > 0, there exists a δ > 0 such that
‖FP − FQ‖ <  whenever, ‖P − Q‖ < δ. If F is continuous at each point P in its domain
D, we say F is continuous on D.

Variation of a scalar field
Variations in the values of a real valued function of one variable are described in terms of its
derivative. For a function of more than a singe variable there are several analogues of the
derivative of a function of one variable. For example, let u⃗ = pi⃗ + qj⃗ + rk⃗ denote a unit vector
in R3 and let f = fx, y, z denote a scalar function defined on domain D with P = a, b, c a
point of D. Then if the following limit exists, it is defined to be the directional derivative of f at
P in the direction u⃗,

∇ u⃗fa, b, c = lim
h→0

fP + hu⃗ − fP
h

= lim
h→0

fa + ph, b + qh, c + rh − fa, b, c
h

Clearly the directional derivative can be defined for functions of n variables for n other than
3. In the special case that the unit vector is in the direction of one of the coordinate axes,
we refer to the derivative as the "partial derivative of f" with respect to that variable along
whose axis the unit vector is directed. That is,

if u⃗ = 1, 0, 0 ∇ u⃗f =
∂f
∂x

= ∂xf = the partial derivative of f with respect to x
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if u⃗ = 0, 1, 0 ∇ u⃗f =
∂f
∂y

= ∂yf = the partial derivative of f with respect to y

if u⃗ = 0, 0, 1 ∇ u⃗f =
∂f
∂z

= ∂zf = the partial derivative of f with respect to z

We will use the notations
∂f
∂x

= ∂xf = fx interchangeably to denote the partial derivative of f

with respect to x, with similar notations for the partial derivatives with respect to other
independent variables. A function that is continuous on D, together with all its partial
derivatives will be said to be a smooth function on D.

The Del operator
It is convenient for what follows to define the vector differential operator

∇⃗ = i⃗ ∂
∂x

+ j⃗ ∂
∂y

+ k⃗ ∂
∂z

and to refer to this as the "del" operator. Then the following operations are defined for
smooth scalar fields fx, y, z or smooth vector fields V⃗x, y, z:

a) ∇⃗f = i⃗
∂f
∂x

+ j⃗
∂f
∂y

+ k⃗
∂f
∂z

=" gradient of f"

b) ∇⃗ ⋅ V⃗ = ∂x,∂y,∂z ⋅ v1, v2, v3 = ∂v1

∂x
+ ∂v2

∂y
+ ∂v3

∂z
="divergence of V⃗"

c) ∇⃗ × V⃗ =

i⃗ j⃗ k⃗

∂x ∂y ∂z

v1 v2 v3

= i⃗∂yv3 − ∂zv2 − j⃗∂xv3 − ∂zv1 + k⃗∂xv2 − ∂yv1

="curl of V⃗"

Clearly this definition of the del operator as an operator on functions of three variables can
be generalized to an operator on functions of n variables for every n.

Example 1
1. For fx, y, z = x2 + y2 + z2, we have ∇⃗f = 2xi⃗ + 2yj⃗ + 2zk⃗ and for gx, y, z = x2 + y2 + z2 we
find

∂xg = 1
2 x

2 + y2 + z2−1/22x = x
x2 + y2 + z2

etc

Then ∇⃗g = 1

x2+y2+z2
xi⃗ + yj⃗ + zk⃗

Note that if we let r⃗ denote the radial vector, r⃗ = xi⃗ + yj⃗ + zk⃗, then ‖r⃗‖ = x2 + y2 + z2 equals
the length of r⃗ and both of the functions f and g are functions of the scalar R = ‖r⃗‖; i.e.
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fR = R2 and gR = R. Then

∇⃗f = 2r⃗ = 2R r⃗
R

and ∇⃗g = r⃗
R

.

More generally, for F = FR, a scalar function of R,we have ∇⃗F = F ′R u⃗r where u⃗r = r⃗
R

is

a unit vector in the direction of r⃗.

2. For V⃗x, y, z = xi⃗ + yj⃗ + zk⃗ = r⃗, we compute divV⃗ = ∇⃗ ⋅ V⃗ = ∂xx + ∂yy + ∂zz = 3.

For W⃗ =
xi⃗ + yj⃗ + zk⃗

x2 + y2 + z2
= 1

R r⃗, we compute

∂x
x

x2 + y2 + z2
=

x2 + y2 + z2 − x2x2 + y2 + z2−1/2

x2 + y2 + z2 = 1
R

− x2

R3

∂y
y

x2 + y2 + z2
= 1

R
−

y2

R3 ∂z
z

x2 + y2 + z2
= 1

R
− z2

R3

Then divW⃗ = 3
R

−
x2 + y2 + z2

R3 = 2
R

3. For V⃗x, y, z = xi⃗ + yj⃗ + zk⃗ = r⃗,

∇⃗ × V⃗ = curlV⃗ =

i⃗ j⃗ k⃗

∂x ∂y ∂z

x y z

= 0

Note also that div V⃗ = 1 + 1 + 1 = 3. Here V⃗ is an example of a "radial field"; i.e., the vector
flow emanates out of the origin.
For W⃗ = Ω⃗ × r⃗ where Ω⃗ = w1, w2, w3 is a constant vector,

W⃗ = Ω⃗ × r⃗ =

i⃗ j⃗ k⃗

w1 w2 w3

x y z

= i⃗w2z − w3y + j⃗w3x − w1z + k⃗w1y − w2x

The vector field W⃗ describes the velocity field for a rigid body rotation about the axis Ω⃗ with
angular speed equal to Ω⃗ = w1

2 + w2
2 + w3

2 . In this case, we compute curlW⃗ = 2Ω⃗ and

div W⃗ = 0.

Each of the quantities ∇⃗f = grad f, ∇⃗ ⋅ V⃗ = div V⃗, and ∇⃗ × V⃗ = curl V⃗ has physical meaning.
The meanings for the divergence and curl must wait until necessary vector integration
results have been derived. However, the meaning of the gradient is contained in the
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following theorem.

Theorem 1- Let f = fx, y, z denote a smooth scalar field defined over D in R3.Then

a) For a smooth curve C :

x = xt

y = yt

z = zt

a ≤ t ≤ b, the rate of change of f along C is

given by

df
dt

= ∇⃗f ⋅ V⃗ = ∇⃗f ⋅ T⃗ ds
dt

where V⃗ = x ′t, y ′t, z′t

ds
dt

= V⃗ = x ′t2 + y ′t2 + z′t2

and T⃗ = 1
V⃗

V⃗ =unit tangent vector to C

b) For every unit vector u⃗, the directional derivative of f in the direction u⃗ is given by

∇uf = ∇⃗f ⋅ u⃗

c) At each point P in D, f increases most rapidly in the direction of ∇⃗f and decreases
most rapidly in the opposite direction, −∇⃗f.

d) At each interior point of D where f has a relative max or min, we have ∇⃗fP = 0⃗

e) Let S denote a level surface for f (i.e. S = x, y, z| fx, y, z = constant  Then at

each point P of S, the vector ∇⃗fP is normal to the surface.

Proof- (a) Suppose wt = fxt, yt, zt. Then the chain rule implies

dw
dt

=
∂f
∂x

dx
dt

+
∂f
∂y

dy
dt

+
∂f
∂z

dz
dt

= ∇⃗f ⋅ V⃗ where V⃗ = x ′t, y ′t, z′t

Since V⃗ is known to be tangent to C at each point of C,

V⃗ = 1
V⃗

V⃗ V⃗ = T⃗ ds
dt

b By definition ∇ u⃗fa, b, c = lim
h→0

fP + hu⃗ − fP
h

= lim
h→0

fa + u1h, b + u2h, c + u3h − fa, b, c
h

The mean value theorem for derivatives asserts that for λ1,λ2,λ3 such that 0 < λ j < h,
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fP + hu⃗ = fP + ∂xfa + λ1u1, b, cu1h + ∂yfa, b + λ2u2, cu2h + ∂xfa, b, c + λ3u3u3h

Then lim
h→0

fP + hu⃗ − fP
h

= ∂xfa + λ1u1, b, cu1 + ∂yfa, b + λ2u2, cu2 + ∂xfa, b, c + λ3u3u3

i.e., ∇ u⃗fa, b, c = ∇⃗fa, b, c ⋅ u⃗

(c) Since ∇ u⃗fa, b, c = ∇⃗fa, b, c ⋅ u⃗ = ∇⃗fa, b, c ‖u⃗‖cosθ

it is clear that − ∇⃗fa, b, c ≤ |∇ u⃗fa, b, c| ≤ ∇⃗fa, b, c ;

i.e.

∇ u⃗fa, b, c = ∇⃗fa, b, c when θ = 0 i. e. , u⃗‖∇⃗fa, b, c

= − ∇⃗fa, b, c when θ = π i. e. , u⃗‖−∇⃗fa, b, c

Then ∇⃗fa, b, c is in the direction of most rapid increase for f at P = a, b, c, while −∇⃗fa, b, c
is in the direction that f is most rapidly decreasing.

(d) Suppose fx, y, z has an interior extreme point at P = a, b, c. Then g1x = fx, b, c has
an interior extreme point at x = a, which means g1

′ x = ∂xfx, b, c = 0 at x = a. Similarly,
∂yfa, y, c = 0 at y = b and ∂zfa, b, z = 0 at z = c. But then
∇⃗fa, b, c = ∂xfa, b, ci⃗ + ∂yfa, b, cj⃗ + ∂zfa, b, ck⃗ = 0⃗

(e) Let S = x, y, z| fx, y, z = A for A a constant and for P a point of S, let C denote a
curve in S passing through P. Then V⃗ = x ′t, y ′t, z′t is tangent to C, which is to say, V⃗
lies in the plane that is tangent to S at P. Since f is constant on S, f is constant on C and it
follows from (a) that

df
dt

= ∇⃗f ⋅ V⃗ = 0 i. e. ∇⃗f ⊥ V⃗ at P

Since this holds for any C lying in S and passing through P, ∇⃗f must, in fact, be normal to
the plane that is tangent to S at P, which is the same as being normal to S.

Identities
Just as there are rules for the derivative of sums and products of differentiable functions of
one variable, there are similar rules for applying the del operator to sums and various
products of scalar and vector fields.

Theorem 2- Let f and g denote smooth scalar fields on domain D in R3 and let V⃗ and W⃗
denote smooth vector fields on D.

a) ∇⃗f + g = ∇⃗f + ∇⃗g; i.e., gradf + g = grad f + grad g

b) ∇⃗ ⋅ V⃗ + W⃗ = ∇⃗ ⋅ V⃗ + ∇⃗ ⋅ W⃗; i.e. div V⃗ + W⃗ = divV⃗ + divW⃗
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c) ∇⃗ × V⃗ + W⃗ = ∇⃗ × V⃗ + ∇⃗ × W⃗; i.e. curl V⃗ + W⃗ = curlV⃗ + curlW⃗

d) ∇⃗fg = g ∇⃗f + f ∇⃗g;

e) ∇⃗Ffx, y, z = F ′f ∇⃗f for F a smooth function of one variable

f) ∇⃗ ⋅ f V⃗ = grad f ⋅ V⃗ + f div V⃗

g) ∇⃗ × f V⃗ = grad f × V⃗ + f curl V⃗

These rules can be seen to hold by using the definitions of the operations together with the
product or chain rules for differentiation.

In addition to the rules for the del operator acting on sums and products, there are rules
for combining the various operations with the del operator.

Theorem 3-Let f denote a sufficiently smooth scalar field on domain D in R3 and let V⃗
denote a similarly smooth vector field on D. Then grad f and curl V⃗ are vector fields so the
following operations are defined:

div ∇⃗f = ∇⃗ ⋅ ∇⃗f and div curl V⃗ = ∇⃗ ⋅ ∇⃗ × V⃗

curl ∇⃗f = ∇⃗ × ∇⃗f and curl curl V⃗ = ∇⃗ × ∇⃗ × V⃗

Similarly, div V⃗ is a scalar field so grad div V⃗ = ∇⃗ ∇⃗ ⋅ V⃗ is a defined operation. We have
the following identities

a) ∇⃗ ⋅ grad f = divgrad f = ∇2f = ∂xxf + ∂yyf + ∂zzf

b) curl curl V⃗ = grad div V⃗ − ∇⃗ ⋅ ∇⃗ V⃗

c) div curl V⃗ = 0

d) curl grad f = 0⃗

Example 2-

1. Consider fx, y, z = 1
x2 + y2 + z2

= 1
R

, where R = ‖r⃗‖ for r⃗ = xi⃗ + yj⃗ + zk⃗.

Then from problem 1.1, we have ∇⃗f = −1
R2

r⃗
R

= −
xi⃗ + yj⃗ + zk⃗

R3

and ∂x
x

R3 = R3 − 3x2R
R3 , ∂y

y
R3 =

R3 − 3y2R
R3 , ∂z

z
R3 = R3 − 3z2R

R3

Therefore,

divgrad f = −
R3 − 3x2 + y2 + z2R

R3 = 0
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A smooth function f that satisfies divgrad f = ∇2f = 0 at each point of a domain D is said to
be harmonic in D.

2. For smooth vector field V⃗ = v1x, y, zi⃗ + v2x, y, zj⃗ + v3x, y, zk⃗,

∇⃗ × V⃗ = curlV⃗ =

i⃗ j⃗ k⃗

∂x ∂y ∂z

v1 v2 v3

= i⃗∂yv3 − ∂zv2 + j⃗∂zv1 − ∂xv3 + k⃗∂xv2 − ∂yv1

Then ∇⃗ × ∇⃗ × V⃗ =

i⃗ j⃗ k⃗

∂x ∂y ∂z

∂yv3 − ∂zv2 ∂zv1 − ∂xv3 ∂xv2 − ∂yv1

=

= i⃗∂y∂xv2 − ∂yv1 − ∂z∂zv1 − ∂xv3 − j⃗∂x∂xv2 − ∂yv1 − ∂z∂yv3 − ∂zv2

+ k⃗∂x∂zv1 − ∂xv3 − ∂y∂yv3 − ∂zv2

= i⃗∂x∂xv1 + ∂yv2 + ∂zv3 − ∇2v1  + j⃗∂y∂xv1 + ∂yv2 + ∂zv3 − ∇2v2 

+ k⃗∂z∂xv1 + ∂yv2 + ∂zv3 − ∇2v3 

= i⃗ ∂
∂x

+ j⃗ ∂
∂y

+ k⃗ ∂
∂z

divV⃗ − ∇2 v1 i⃗ + v2 j⃗ + v3k⃗ = grad divV⃗ − div gradV⃗

3. For smooth vector field V⃗ = v1x, y, zi⃗ + v2x, y, zj⃗ + v3x, y, zk⃗,

∇⃗ × V⃗ = i⃗∂yv3 − ∂zv2 + j⃗∂zv1 − ∂xv3 + k⃗∂xv2 − ∂yv1

Then div curl V⃗ = ∂x∂yv3 − ∂zv2 + ∂y∂zv1 − ∂xv3 + ∂z∂xv2 − ∂yv1

= ∂xyv3 − ∂yxv3 + ∂zxv2 − ∂xzv2 + ∂yzv1 − ∂zyv1

Since v1, v2 and v3 are all smooth functions, the mixed partial derivatives are equal and it
follows that div curl V⃗ = 0. Thus if W⃗ = curl V⃗ for some smooth vector field V⃗, then the

divergence of W⃗ must vanish. The converse result can also be shown to be true. That is, if
div W⃗ = 0, then W⃗ = curl V⃗ for some smooth vector field V⃗.

4. Let f = fx, y, z denote a smooth scalar field defined over D in R3. Then

∇⃗ × ∇⃗f = curl ∇⃗f =

i⃗ j⃗ k⃗

∂x ∂y ∂z

∂xf ∂yf ∂zf

= i⃗∂yzf − ∂zyf − j⃗∂xzf − ∂zxf + k⃗∂xyf − ∂yxf

For f a smooth scalar field, the mixed partial are all equal and curl ∇⃗f = 0⃗. Thus if W⃗ is a so
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called gradient field (i.e., if W⃗ = ∇⃗f for some smooth scalar field f then curl W⃗ vanishes. The
converse of the result is also true. If curl W⃗ = 0⃗, then W⃗ must be the gradient of some
smooth scalar field. A vector field whose curl vanishes is said to be a conservative field or
irrotational field. Then every conservative field is a gradient field.
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