Comparison Tests for Convergence or Divergence of Improper Integrals

Consider the improper integral \(\int_{a}^{\infty} f(x) \, dx \)

If \(f(x) \) tends to a nonzero limit \(L \neq 0 \) as \(x \) tends to \(\infty \), then the integral is clearly divergent. On the other hand, if \(L = 0 \), then we must compare \(f(x) \) to a suitable comparison function in order to determine the convergence or divergence of the integral.

Examples

1. \(\int_{1}^{\infty} \frac{\ln x}{x^{3/2}} \, dx \)
 Here \(\lim_{x \to \infty} \frac{\ln x}{x^{3/2}} = 0 \) so we need a comparison function.

 Note first that
 \[
 \lim_{x \to \infty} \frac{\ln x}{x} = \lim_{x \to \infty} \frac{1/x}{1} = 0 \quad \text{and} \quad \lim_{x \to \infty} \frac{\ln x}{\sqrt{x}} = \lim_{x \to \infty} \frac{1/x}{2 \sqrt{x}} = \lim_{x \to \infty} \frac{2}{2 \sqrt{x}} = 0
 \]

 In fact, L’Hôpital’s rule shows: for any \(p > 0 \) \(\lim_{x \to \infty} \frac{\ln x}{x^p} = 0 \)

 This is just the "relative rate of growth" result that says

 - \(\ln x \) grows more slowly at infinity than any positive power of \(x \); i.e.,
 for any \(p > 0 \) \(\lim_{x \to \infty} \frac{\ln x}{x^p} = 0 \)

 We use this fact in connection with

 - \(\int_{a}^{\infty} \frac{1}{x^p} \, dx \) converges for any \(p > 1 \).

 Then we can combine these two results in finding a comparison function for
 \(f(x) = \frac{\ln x}{x^{3/2}} = \frac{\ln x}{x^{1/4}} \cdot \frac{1}{x^{5/4}} \)

 We have: (i) \(\frac{\ln x}{x^{1/4}} \to 0 \) as \(x \to \infty \) and (ii) \(\int_{a}^{\infty} \frac{1}{x^{5/4}} \, dx \) converges

 The fact that \(\lim_{x \to \infty} \frac{\ln x}{x^{1/4}} = 0 \) implies there exists a constant \(M > 0 \) such that \(\frac{\ln x}{x^{1/4}} < M \) for all \(x > a \).

 To see why this must be true, look at the graph of \(f(x) = \frac{\ln x}{x^{1/4}} \). We see that the graph increases from \(f(1) = 0 \), reaches a maximum value and then decreases steadily as \(f(x) \to 0 \) as \(x \to \infty \). Since the maximum value is less than 2, we can see that \(\frac{\ln x}{x^{1/4}} < 2 \) for all \(x > 1 \).
Now we have \[\int_1^\infty \frac{\ln x}{x^{1/4}} \, dx = \int_1^\infty \frac{\ln x}{x^{1/4}} \frac{1}{x^{5/4}} \, dx < \int_1^\infty \frac{2}{x^{5/4}} \, dx \]

and since \[\int_1^\infty \frac{2}{x^{5/4}} \, dx \]
is convergent, the integral in question must also be convergent.

We could have equally well split \[\frac{\ln x}{x^{3/2}} = \frac{\ln x}{x^{1.5}} \]
into the pieces \[\frac{\ln x}{x^{1.1}} \frac{1}{x^{1.4}} \], since \[\frac{\ln x}{x^{1.1}} \to 0 \] as \(x \to \infty \) (so it is bounded by some constant \(M \)) and \[\int_1^\infty \frac{1}{x^{1.4}} \, dx \]
is convergent by the p-test.

The same approach could be used on the integral \[\int_1^\infty \frac{\ln x}{x^{1.001}} \, dx. \]

We would just write \[\frac{\ln x}{x^{1.001}} = \frac{\ln x}{x^{1.0005}} \frac{1}{x^{1.0005}} \leq M \frac{1}{x^{1.0005}} \] for \(x > a \)

Then \[\int_1^\infty \frac{\ln x}{x^{1.001}} \, dx \leq \int_1^\infty \frac{M}{x^{1.0005}} \, dx \] and since \(1.0005 > 1 \), the second integral converges.

On the other hand, \[\int_1^\infty \frac{\ln x}{\sqrt[3]{x}} \, dx \]
is divergent. It is true that \[\frac{\ln x}{\sqrt[3]{x}} \to 0 \] as \(x \to \infty \) but this integrand does not tend to zero fast enough to make the integral converge. To see this, note that

\[\frac{\ln x}{\sqrt[3]{x}} > \frac{1}{\sqrt[3]{x}} \] for \(x > 3 \)

Then \[\int_3^\infty \frac{\ln x}{\sqrt[3]{x}} \, dx > \int_3^\infty \frac{1}{\sqrt[3]{x}} \, dx \]
and since the second integral is divergent, the first one is too.

2. \[\int_1^\infty \frac{4}{x^4} \, dx \]
The integrand here goes to zero as \(x \to \infty \), so the question is, does it go to zero fast enough to make the integral convergent. To find a suitable comparison function for this integral, we use the following facts.
Another "relative rate of growth" result says

- If \(a > 1 \), then \(a^x \) grows more rapidly at infinity than any positive power of \(x \); i.e., for any \(p > 0 \)
 \[
 \lim_{x \to \infty} \frac{x^p}{a^x} = 0
 \]

We use this fact in connection with

- \[
 \int_1^\infty \frac{1}{ax} \, dx = \int_1^\infty a^{-x} \, dx = \int_1^\infty e^{-kx} \, dx \quad (k = \ln a)
 \]
 converges for any \(a > 1 \).

Then we can combine these two results in finding a comparison function for \(\int_1^\infty \frac{x^4}{4^x} \, dx \).

We write \(\frac{x^4}{4^x} = \frac{x^4}{2^x} \). Then \(\frac{x^4}{2^x} \to 0 \) as \(x \to \infty \), and \(\int_1^\infty \frac{1}{2^x} \, dx \) is convergent.

The fact that \(\lim_{x \to \infty} \frac{x^4}{2^x} = 0 \) implies there exists a constant \(M > 0 \) such that \(\frac{x^4}{2^x} < M \) for all \(x \) large enough.

Then \(\int_1^\infty \frac{x^4}{4^x} \, dx = \int_1^\infty \frac{x^4}{2^x} \frac{1}{2^x} \, dx \leq \int_1^\infty \frac{M}{2^x} \, dx \) and since the last integral is convergent, the integral in question is too.

3. \(\int_1^\infty \sin(1/x) \, dx \)

Here \(\lim \sin(1/x) = \sin\left(\lim 1/x\right) = 0 \), but in order to tell if the integrand goes to zero fast enough to make the integral convergent, we need a comparison function.

What about the comparison \(\sin(1/x) \) with \(\frac{1}{x} \)? (How we thought of this comparison will become clear after we have studied Taylor’s series)

In order to see how these two functions compare as \(x \) tends to \(\infty \), note that,

\[
\lim_{x \to \infty} \frac{\sin(1/x)}{1/x} = \lim_{x \to \infty} \frac{\cos \left(\frac{1}{x^2} \right)}{-\frac{1}{x^2}} = \lim_{x \to \infty} \cos \frac{1}{x} = 1
\]

Now we apply the following theorem:

- If \(\lim \frac{f(x)}{g(x)} = L \), where \(L \) is a finite number and not zero, then the integrals
 \[
 \int_1^\infty f(x) \, dx \quad \text{and} \quad \int_1^\infty g(x) \, dx
 \]
 either both converge or both diverge.

Since \(\int_1^\infty \frac{1}{x} \, dx \) is divergent, \(\int_1^\infty \sin(1/x) \, dx \) is also divergent.

Now consider \(\int_1^\infty \sin(1/x^p) \, dx \). In view of the previous example, we would expect to compare the integrand with \(\frac{1}{x^p} \). That is,
\[
\lim_{x \to \infty} \frac{\sin(1/x^p)}{1/x^p} = \lim_{x \to \infty} \cos \frac{1}{x^p} \frac{d}{dx} \left(\frac{1}{x^p} \right) = \lim_{x \to \infty} \cos \frac{1}{x} = 1
\]

Then the theorem implies that \(\int_1^\infty \sin(1/x^p)\,dx\) and \(\int_1^\infty 1/x^p\,dx\) are either both convergent or both divergent. Then the integrals converge for \(p > 1\) and diverge otherwise.

4. \(\int_a^\infty \frac{1}{(\ln x)^2}\,dx\) \(a > 1\). Here \(\lim_{x \to \infty} \frac{1}{(\ln x)^2} = 0\) so, to determine the convergence or divergence, we need a comparison function.

We use again, the fact that for any \(p > 0\) \(\lim_{x \to \infty} \frac{\ln x}{x^p} = 0\). This implies that there is a constant \(M > 0\) such that for any \(p > 0\) \(\frac{\ln x}{x^p} < M\) \(\text{for } x > a\)

Then for any \(p > 0\) \(\frac{1}{M^2} \frac{1}{x^{2p}} < \frac{1}{(\ln x)^2}\) \(\text{for } x > a\)

and \(\int_a^\infty \frac{1}{x^{2p}}\,dx\) is divergent if \(2p \leq 1\).

In particular, taking \(p = 1/2\) we have \(\frac{1}{M^2} \int_a^\infty \frac{1}{x^{2p}}\,dx = \frac{1}{M^2} \int_a^\infty \frac{1}{x}\,dx < \int_a^\infty \frac{1}{(\ln x)^2}\,dx\)

and since \(\int_a^\infty \frac{1}{x}\,dx\) is divergent, the integral in question is also divergent.

More generally, if we have \(\int_a^\infty \frac{1}{(\ln x)^q}\,dx\) \(\text{where } q > 0\), then for any \(p > 0\) \(\frac{1}{M^q} \frac{1}{x^{2pq}} < \frac{1}{(\ln x)^q}\) \(\text{for } x > a\)

and for any \(p > 0\) \(\frac{1}{M^q} \frac{1}{x^{2pq}} < \frac{1}{(\ln x)^q}\) \(\text{for } x > a\).

If we choose \(p = 1/q\), then \(\frac{1}{M^q} \int_a^\infty \frac{dx}{x^{2p}} = \frac{1}{M^q} \int_a^\infty \frac{dx}{x} < \int_a^\infty \frac{dx}{(\ln x)^q}\)

and since \(\int_a^\infty \frac{1}{x}\,dx\) is divergent, the integral in question is also divergent.