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ABSTRACT. In this paper we prove that certain linear systems (and all their multiples) of
plane curves with general base points and zero–self intersection are empty, thus exhibiting
further examples of rays at the boundary of the Mori cone of a general blow–up of the
plane.

INTRODUCTION

Let Xn be the blow–up of the projective plane at n general points. LetLd(m1, . . . ,mn),
with d > 0, be the linear system on Xn corresponding to plane curves of degree d with
general points of multiplicities at least m1 > · · · > mn (we will use exponential notation
for repeated multiplicities).

We assume n > 3. We define

N = #{j | mj > 2}, h = #{j | mj = 1}
so that N + h 6 n.

Let us make the hypothesisH:
(i) d > m1 > m2 > · · · > mn > 0,
(ii) e = d− (m1 +m2 +m3) > 0,
(iii) d2 =

∑n
i=1 m

2
i .

Note that condition (ii) implies that Ld(m1, . . . ,mn) is Cremona reduced, i.e., its de-
gree d cannot be reduced by applying quadratic transformations based at its assigned base
points.

Our goal in this article is to prove the following:

Theorem 1. Suppose that Ld(m1, . . . ,mn) is a linear system satisfying the hypothesisH,
for which N 6 8. Then for any k > 1, the system Lkd(km1, . . . , kmn) is empty, unless:
(a) Ld(m1, . . . ,mn) is a multiple of L1(1);
(b) Ld(m1, . . . ,mn) is a multiple of L3(1

9).

If we set N1(Xn) = Pic(Xn) ⊗Z R, then any system Ld(m1, . . . ,mn) such that
Lkd(km1, . . . , kmn) is empty for any k > 1 determines a rational ray in N1(Xn) that
is not effective (see [4, §3.1]). Therefore such a ray sits in the boundary of the Mori cone
of Xn. Any such ray, if rational, is called a good ray in [4, §3.2] whereas, if irrational,
it is called a wonderful ray. No wonderful ray has been discovered up to now1. Proving
that a given ray is good seems in general to be difficult, and in [4] the authors were able to
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1After this paper was finished wonderful rays have been exhibited in the preprint “Irrational nef rays at the

boundary of the Mori cone for very general blowups of the plane” (arXiv:2201.08634), by J. Roé and the two
authors of the present paper.

1



2 CIRO CILIBERTO AND RICK MIRANDA

exhibit some examples. Other examples have been provided in [3] and they correspond to
the case N = 1 in Theorem 1.

Our proof is inductive on N , and uses the degeneration introduced in [1]; we will recall
the main lemma that provides the basic reduction step in §2 (see Lemma 6). In §1 we
will separately treat the cases for which our general inductive strategy fails. The proof of
Theorem 1 is in §3.

Acknowledgements: Ciro Ciliberto is a member of GNSAGA of INdAM.

1. THE CASES L6(2
8, 14) AND L6(2

7, 18)

In this section we prove the following:

Proposition 2. For any positive integer k the linear system L = L6k((2k)
8, k4) is empty.

Proof. We use the collision technique introduced in [2], specifically the four points colli-
sion stated there in Proposition 3.1(c), which says that a general collision of four points
of multiplicity k results in a point of multiplicity 2k with a matching condition, i.e., the
2k tangent directions on the exceptional P1 are invariant under an involution which can be
taken to be general.

We apply this to the four k–tuple points of L and conclude that the emptiness of L
follows from the emptiness of the subsystem of L6k((2k)

9) which satisfies the aforemen-
tioned matching condition on the ninth point. However L6k((2k)

9) has dimension zero,
consisting of the unique cubic through the nine points with multiplicity 2k, and this curve
does not satisfy the matching condition. �

Corollary 3. For any positive integer k the linear system L = L6k((2k)
7, k8) is empty.

Proof. We use again the collision technique as above, colliding four of the points of multi-
plicity k to a point of multiplicity 2k. Then the emptiness of L follows from the emptiness
of the system of L6k((2k)

8, k4), proved in Proposition 2. �

These two results are contained in [4, Remark 5.1.6, Remark 5.5.11 and Proposition
5.5.10]; we have included the brief proofs here for completeness.

2. THE INDUCTIVE STRATEGY

In this section we will present the strategy of the proof of Theorem 1 and we will prove
a couple of useful lemmas.

The proof will be by induction on N and we first prove the statement for N = 0, 1.
Then, for N > 2, we start with a given system Ld(m1, . . . ,mn) satisfyingH and different
from multiples of the forbidden systems (a) and (b) of Theorem 1. Since Ld(m1, . . . ,mn)
satisfies H, we have e > 0. The first step is to reduce to e = 0. For this we use Lemma 6
below, which raises m1 by 1, decreases e by 1 (and preserves H). Repeated applications
of this allow us to assume e = 0.

Next we define a basic move on e = 0 systems that satisfyH.

Definition 4 (Basic move). Suppose we have a system Ld(m1, . . . ,mn) satisfyingH with
e = 0 (for which we want to prove emptiness of all multiples). Consider then the system
obtained using Lemma 6 below, by increasing m1 by 1, and reducing appropriately the
number of simple points. This system now has e < 0, and therefore we may reduce it
via quadratic Cremona transformations. If the result has e > 0, we again apply Lemma 6
repeatedly to obtain a system with e = 0.
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The result of a basic move still satisfies H. The ability to apply Lemma 6 as needed is
provided by Lemma 5 below. During the application of the basic moves, the hypotheses
allow us to control the application of the required Cremona transformations, see Lemma 9.

The strategy is to apply basic moves iteratively and show that either N must decrease,
so that we can apply induction, or N = 8 and we arrive at a system that we directly know
is empty, such as a multiple of the degree 6 linear systems considered in §1.

Next we present the aforementioned useful lemmas.

Lemma 5. Suppose 1 6 N 6 8, H holds and the system is not L6(2
8, 14). Then h >

2m1 + 1, unless N = 1 and d = m1 in which case h = 0.

Proof. If N = 1 and d > m1, then h = d2 −m2
1 > (m1 + 1)2 −m2

1 = 2m1 + 1 and we
are done.

Suppose N = 2. Then d > m1 + m2, so h = d2 −m2
1 −m2

2 > 2m1m2 > 4m1 >
2m1 + 1 as wanted.

Next suppose N > 3. Since d > m1 +m2 +m3, we have

d2 > (m1 +m2 +m3)
2 = m2

1 +m2
2 +m2

3 + 2m1m2 + 2m1m3 + 2m2m3.

As the mis are in descending order, we have 2m2m3 > m2
4 +m2

5, 2m1m3 > m2
6 +m2

7,
and m1m2 > m2

8, so that h > m1m2 > 2m1.
Suppose that h = 2m1. Then all the above inequalities are equalities, which implies

N = 8 and all mis equal to 2. In that case h = d2 − 32, forcing d = 6, which is forbidden
by hypothesis. Hence h > 2m1 + 1. �

Suppose next 2 6 N 6 8,Ld(m1, . . . ,mn) satisfiesH and it is different fromL6(2
8, 14).

Fix k > 1 and considerLkd(km1, . . . , kmn). Then we can make the P–F degeneration
described in [1, Section 2] with the limit line bundle ofLkd(km1, . . . , kmn) having aspects

LP = Lk(m1+1)(km1, k
a)

and
LF = Lkd(k(m1 + 1), km2, . . . , kmN , kb, 0h−b)

with a = 2m1 + 1 and b = h − 2m1 − 1 on P and F respectively. Note that Lemma 5
implies that a and b are positive which is the prerequisite to apply the P–F degeneration
described above.

Lemma 6. Suppose that, in the above setting,LF is empty. Then so isLkd(km1, . . . , kmn).

Proof. First we notice that Lm1+1(m1, 1
a) is a pencil and no curve in this pencil contains

a general line. Then Lk(m1+1)(km1, k
a) is composed with this pencil and no curve in this

system contains a general line. Hence the system L̂P = Lkm1+k−1(km1, k
a) is empty.

This implies the result because any section of the limit line bundle is identically zero.
Indeed, such a section is identically zero on F by hypothesis, and it is also identically zero
on P since its zero locus has to lie in L̂P and this is empty. �

An additional application of the P–F degeneration method enables us to prove the
following statements. The first one is also a consequence of [4, Remark 5.5.11], where
more general statements are made; we include the brief proof for the convenience of the
reader.

Proposition 7. For any positive integer k the linear system L = L9k((3k)
8, k9) is empty.
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Proof. We make the P–F degeneration as above. The relevant systems are

LF = L9k(4k, (3k)
7, k2) and LP = L4k(3k, k

7).

By Cremona reducing LF we see that it consists of a unique curve with multiplicity k
which is the Cremona image of a cubic through 9 general simple points. It meets the
double curve R = P ∩ F at 4 points with multiplicity k which can be assumed to be
general. The kernel system L̂F is empty. The system LP is composed with the pencil
L4(3, 1

7), and it cuts out on R the linear system (a gk4k) composed with the g14 cut out
on R by L4(3, 1

7). The kernel linear system L̂P is also empty. By the generality of the
restriction of LF to R, there can be no matching divisor in LP with the unique curve in
LF and therefore no section of the limit line bundle, since both kernel linear systems are
empty (see [1]). This ends the proof of the proposition. �

Before the next lemma we need a simple remark.

Remark 8. We notice that a linear system Ld(m1, . . . ,mn) cannot be a multiple of the
system (a) of Theorem 1 if m2 > 1 and it cannot be a multiple of the system (b) of Theorem
1 if m1 > m8.

Lemma 9. Let Ld(m1, . . . ,mn) satisfy H, with 8 > N > 2 and e = 0 and assume it is
different from a multiple of L6(2

8, 14) or of L9(3
8, 19) or of L6(2

7, 18). Then the result of
a basic move is different from a multiple of either of the two forbidden systems (a) and (b)
of Theorem 1.

Proof. Since the system is not a multiple ofL6(2
8, 14) we can do a basic move (see Lemma

5).
The first step in the basic move leads to the system Ld(m1 + 1,m2, . . . ,mn). Then,

applying the quadratic transformation based at the first three points, gives the linear system
L1 := Ld−1(m1,m2 − 1,m3 − 1,m4 . . . ,mn).

If m3 > m4, the three highest multiplicities are m1,m2 − 1,m3 − 1 and therefore the
system is Cremona reduced, with e = 1. At this point, to finish the basic move, we make
one more application of Lemma 6 to reduce to the case e = 0. This leads to the system
Ld−1(m1 + 1,m2 − 1,m3 − 1,m4, . . . ,mn), and we conclude by applying Remark 8.

If m3 = m4 but m2 > m5 then the three highest multiplicities of L1 are m1,m2 −
1,m4 = m3 in some order. We see that e = 0 for L1 so the basic move is finished and we
conclude again by using Remark 8.

We may now assume m3 = m4 and m2 = m5, hence m2 = · · · = m5 = m. In this
case reordering the multiplicities of L1 the three highest ones are m1,m,m. This is not
Cremona reduced. After making the quadratic transformation based at the three points of
highest multiplicity, we get to the system L2 = Ld−2(m1 − 1, (m − 1)4,m6, . . . ,mn).
Now we have three cases.

The first case is m6 < m2 = m. In that case the three highest multiplicities of L2

are m1 − 1,m − 1,m − 1, the system is Cremona reduced and e = 1. Moreover L2

does not coincide with a multiple of L6(2
8, 14) that all have e = 0. Then we can apply

Lemma 6 one more time to finish the basic move and we get the system Ld−2(m1, (m −
1)4,m6, . . . ,mn). We conclude again by using Remark 8 because m1 > m− 1 > 1.

In the second case we have m6 = m and m7 < m. In that case the three highest
multiplicities of L2 are m1 − 1,m,m− 1 and the system is Cremona reduced with e = 0.
This ends the basic move and we apply Remark 8 to finish.
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In the final case we have m6 = m7 = m. Now the three highest multiplicities of L2 are
m1− 1,m,m and the system is not Cremona reduced. One more quadratic transformation
gives L3 = Ld−3(m1 − 2, (m− 1)6,m8, . . . ,mn).

If m1 > m and m8 < m the three highest multiplicities are m1 − 2,m − 1,m − 1,
the system is Cremona reduced, with e = 1. In this case we have to make a further step to
accomplish the basic move and we get Ld−3(m1 − 1, (m − 1)6,m8, . . . ,mn). We apply
again Remark 8 to finish.

If m1 > m and m8 = m the three highest multiplicities of L3 are m1 − 2,m,m − 1.
Then L3 is Cremona reduced with e = 0, the basic move is finished and we conclude by
applying Remark 8 since m > m− 1.

If m1 = m and m8 < m, the three highest multiplicities of L3 are m−1,m−1,m−1.
Then L3 is Cremona reduced with e = 0. The basic move is finished and by applying
Remark 8 we see that this is not a multiple of the forbidden system (a) of Theorem 1 by
Remark 8. It could be a multiple of the (b) system, but this only happens if m = 2, d = 6,
and the original system is L6(2

7, 18), which is forbidden by hypothesis.
If m1 = m and m8 = m the system we start with is L3m(m8, 1m

2

) and we notice
that m > 3 because m = 2 is forbidden by hypothesis. Then in L3 the three highest
multiplicities are m,m − 1,m − 1. At this point the system is not Cremona reduced.
Reducing it one gets L4 := Ld−6((m − 2)7,m − 3,m9, . . . ,mn). This again is not a
multiple of the forbidden system (a) of Theorem 1. It could be a multiple of the (b) system,
but this only happens if m = 3, d = 9, and the original system is L9(3

8, 19), which is
forbidden by hypothesis.

This ends the proof of the lemma. �

3. THE PROOF OF THEOREM 1

Now we are in a position to prove Theorem 1.

Proof of Theorem 1. If N = 0, then L = Ld(1
d2

). We have excluded the d = 1 case.
The d = 2 case does not verify H. We have excluded the d = 3 case. For d > 4, this is
Nagata’s Theorem (see [5]).

If N = 1, then L = Ld(m1, 1
h) where h = d2−m2

1. If h = 0 then this is a multiple of
L1(1), which we have excluded. If h > 1 then by Lemma 5, we have h > 2m1+1, so that
there are at least five simple points. Since H holds, we must have d > m1 + 1 + 1 > 4.
Then the result is contained in [3].

Next we assume N > 2. By Propositions 2, 7, and Corollary 3, we can assume that
the system is not a multiple of L6(2

8, 14) or of L9(3
8, 19) or of L6(2

7, 18). By applying
(if necessary) Lemma 6, we can assume that e = 0. Then the hypotheses of Lemma 9
are met and we can make a basic move which does not arrive at a forbidden system. If
the result of the move is a multiple of L6(2

8, 14) or of L9(3
8, 19) or of L6(2

7, 18), that
are empty by Propositions 2, 7, and Corollary 3, we apply Lemma 6 again and conclude
that the original system is empty. If not we have reduced to a linear system with lower
multiplicities. So, repeated applications of a basic move either results in an empty system
or eventually decreases N , so that we can finish by induction. �

We notice that the theorem is certainly false for the forbidden systems (a) and (b) of
Theorem 1.
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