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� Introduction

In this article we construct a speci�c projective degeneration of K� surfaces
of degree �g � � in P

g to a union of �g � � planes� which meet in such a way
that the combinatorics of the con�guration of planes is a triangulation of the
��sphere� Abstractly� such degenerations are said to be Type III degenerations
of K� surfaces� see �	
� ���
� ��
� Although the birational geometry of such
degenerations is fairly well understood� the study of projective degenerations is
not nearly as completely developed�

In ��
� projective degenerations of K� surfaces to unions of planes were con�
structed� in which the general member was embedded by a primitive line bundle�
The application featured there was a computation of the rank of the Wahl map
for the general hyperplane section curve on the K� surface�

In this article we construct degenerations for which the general member is
embedded by a multiple of the primitive line bundle class� The construction
depends on two parameters� and we intend in follow�up work to use these de�
generations to compute braid monodromy for Galois coverings� in the style of �


and ��
� We hope that the freedom a�orded by the additional discrete parame�
ters in the construction will yield interesting phenomena related to fundamental
groups�

The speci�c degenerations which we construct can be viewed as two rectan�
gular arrays of planes� joined along their boundary� for this reason we have given
them the name �pillow� degenerations� They are described in Section �� Fol�
lowing that� in Section �� we study the degeneration of the general branch curve
�for a general projection of the surfaces to a plane� to a union of lines �which
is the �branch curve� for the union of planes�� In particular when the general
branch curve is a plane curve having only nodes and cusps as singularities� we
describe the degeneration of the nodes and the cusps to the con�guration of the
union of lines� This is critical information in the application to the computation
of the braid monodromy�

We are not aware of a modern reference for the statement that the general
branch curve for a linear projection of a surface to a plane has only nodes and
cusps as singularities� In this article we will operate under the assumption that
this �folklore� statement is true and proceed� The reader may wish to consult

�



��
 for further information� We have included a short section at the beginning
of the article deriving the characters of a general branch curve �degree� number
of nodes and cusps� for the convenience of the reader� under this assumption�

The authors are grateful to the NATO Scienti�c A�airs Division� the Min�
istry of Science of Israel� the Emmy Noether Research Institute of Mathematics
at Bar�Ilan University� and EAGER �the European Union Research Network in
Algebraic Geometry�� for �nancial support for the Workshop in Eilat at which
this article was completed�

� Characters of a General Branch Curve

Here we brie�y develop the formulas for the degree and number of nodes and
cusps on a general branch curve B for a general projection of a smooth surface
S � P

N to a general plane P�� assuming that these are the only singularities�
These formulas are not new� see for example ��
� ��
� but these standard refer�
ences do much more� in either outdated notation or with much more advanced
techniques� than are necessary for this more modest computation� Hence we
thought it useful to include it here for completeness and for the convenience
of the reader� The reader may also want to consult ��
� �

� ��
� and ���
 for
additional insight�

Denote by � � S � P
� such a general projection� Let K and H be the

canonical and hyperplane classes of S respectively� Let d be the degree of S and
g�H� the genus of a smooth hyperplane divisor� The intersection numbers KH
and H� are related to d and g by

d � H� and �g�H�� � � H� �KH� �����

The degree of the �nite map � is equal to the degree d of the surface S� The
degree b of the branch curve may be easily computed by noting that the pull�
back of a line in P� is a hyperplane divisor� hence the Hurwitz formula gives

�g�H�� � � d���� � deg�B�

from which it follows that

b � deg�B� � �d� �g�H�� � � �d�KH� �����

Let R � S denote the rami�cation curve� and denote by R� the residual
curve �equal set�theoretically to the closure of ����B� � R�� R is a smooth
curve� and the mapping �� restricted to R� is a desingularization of B�

Suppose that B has n nodes and k cusps and no other singularities� Over
a general smooth point of B� the map � has d � � preimages� one on the ram�
i�cation curve and d � � on the residual curve� Over each node of B� the
rami�cation curve R has two smooth branches� and over each cusp� R has one
smooth branch� Over a node of B� the residual curve R� meets R once transver�
sally at each branch of R� and otherwise has d�� nodes of its own� Over a cusp
of B� the residual curve R� meets R twice at the point of R lying over the cusp�
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and is smooth there� it otherwise has d � � cusps of its own� In any case� over
either a node or a cusp of B� there are only d�� preimages� instead of the d��
preimages over a general point of B� Therefore� computing Euler numbers� we
see that

e�R �R�� � e�����B�� � �d� ��e�B�� �n� k�� �����

The genus of the rami�cation curve R� being a desingularization of the branch
curve B� is

g�R� � �b� ���b� ����� �n� k�

using Pl�ucker�s formulas� Its Euler number is therefore

e�R� � �� �g�R� � ��n� k�� b� � �b�

Since R and B di�er� topologically� only over the nodes� we see that the Euler
number of B is

e�B� � e�R�� n � n� �k � b� � �b�

Letting e�S� be the Euler number of the surface S� we see that

e�S� � d�e�P��� e�B�
 � e�R � R��

� �d� de�B� � �d� ��e�B�� �n� k� using �����

� �d� e�B�� n� k

� �d� �n� �k � b� � �b
� n� k

� �d� b� � �b� �n� �k�

so that

�n� �k � �d� b� � �b� e�S�� �����

Pulling back ��forms via �� we have the standard formula that

KS � ���KP�� �R � ��H �R

and since bH � ���B�� we see that

�R�R� � ���B� � bH�

so that� as classes on S�

R � K � �H and R� � bH � �R � ��K � �b� ��H�

Since R and R� meet transversally at each of the two points of R over a node�
and meet to order two at the point of R lying over a cusp� we see that R �R� �
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��n�k�� Therefore �n��k � R �R� � �K��H����K��b���H�� multiplying
this out gives

�n� �k � ��K� � �b� ���KH � ��b� ���H�� ���	�

Subtracting ���	� from ����� gives

k � �d� b� � �b� e�S� � �K� � �b� ���KH � ��b� ���d

and then one can solve either expression for the number of nodes� Simplifying
the expressions somewhat leads to the following�

Proposition ��� Let S be a smooth surface of degree d in P
N � and let � �

S � P
� be a general projection� Let K and H be the canonical and hyperplane

classes of S� respectively� Let B be the branch curve of the projection �� which
is assumed to be a plane curve of degree b with n nodes� k cusps� and no other
singularities� Then�

�a� deg��� � deg�S� � d � H��

�b� The degree of the branch curve B is b � �d�KH�

�c� The number of nodes of the branch curve B is

n � ��K� � e�S� � ��d�
b�

�
� �	b�

�d� The number of cusps of the branch curve B is

k � �K� � e�S�� �	d� �b�

�e� Under a general projection of the branch curve B to a line� the number t
of turning points �simple branch points� is

t � e�S�� �d� �b�

The last computation of turning points is obtained from the Hurwitz formula�
applied to the rami�cation curve R� noting that there are simple branch points
for such a projection at the points of R lying over the cusps of B also�

Example ��� �Veronese Surfaces� Let S be the rth Veronese image of P��
In this case� if L denotes the line class of S� then L� � �� K � ��L� and
H � rL� hence K� � �� KH � ��r� and d � H� � r�� The Euler number
e�S� � �� Therefore

b � �r�r � ��� n � ��r � ���r � ����r� � �r � �����
k � ��r � ����r � 	�� t � ��r � ����
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Example ��� �Rational Normal Scrolls� Let S be a rational normal scroll�
e�g� P

� � P
� embedded by the complete linear system H of type ��� r�� The

canonical class is of type �������� so that K� � �� KH � ��r � �� and
d � H� � �r� The Euler number e�S� � �� Therefore

b � �r � �� n � ��r � ����r � ��� k � �r � �� t � �r�

Example ��	 �Del Pezzo Surfaces� Let S be a Del Pezzo Surface of degree
d in P

d� for � � d � �� Then S is isomorphic to the plane blown up at � � d
points� if L denotes the class of a line� and E the sum of the classes of the ��d
exceptional divisors� then L� � �� LE � �� and E� � d� �� also K � ��L�E�
and H � �K� so that K� � H� � d� and KH � �d� The Euler number
e�S� � ��� d� Therefore

b � �d� n � ��d� ���d� �� � �d� � ��d� ��� k � ��d� ��� t � ���

Example ��
� �K� Surfaces� Let S be a K� surface of degree d � �g � � in
P
g� The canonical class is trivial� so that K� � KH � �� The Euler number

e�S� � ��� Therefore

b � �g � �� n � ��g � ����g � 
� � ��g� � 
�g � ���
k � ���g � ��� t � �g � ���

� Construction of the Pillow Degeneration

A non�hyperelliptic K� surface of genus g � � can be embedded by the sections
of a very ample line bundle as a smooth surface of degree �g � � in Pg� When
the line bundle generates the Picard group of the K� surface� the embedded K�
surface can be degenerated to a union of �g� � planes in a variety of ways �see
for example ��
�� In this section we will describe a degeneration� which we call
the pillow degeneration� which smooths to a K� surface whose Picard group is
generated by a sub�multiple of the hyperplane class�

Fix two integers a and b at least two� set g � �ab��� The number of planes
in the pillow degeneration is then �g � � � �ab�

This projective space has g � � � �ab � � coordinate points� and each of
the �ab planes is obtained as the span of three of these� The sets of three are
indicated in Figure �� which describes the bottom part of the �pillow� and the
top part of the �pillow�� which are identi�ed along the boundaries of the two
con�gurations� The reader will see that the boundary is a cycle of �a��b lines�

Note that no three of the planes meet in a line� Also note that the set of
bottom planes lies in a projective space of dimension ab � a � b� as do the set
of top planes� these two projective spaces meet exactly along the span of the
�a � �b boundary points� which has dimension �a � �b � �� Finally note that
the four corner points of the pillow degeneration �labeled �� a��� a� b��� and
a � �b � �� are each contained in three distinct planes� while all other points
are each contained in six planes� This property� that the number of lines and
planes incident on each of the points is bounded� is important for the later

	



Figure �� Con�guration of Planes� Top and Bottom
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computations� and is a feature of the pillow degeneration that is not available
in other previous degenerations�

We will call such a con�guration of planes a pillow of bidegree �a� b��

Theorem ��
 For any a and b at least �� the pillow of bidgree �a� b� is a degen�
eration of a smooth K� surface of degree �ab in a projective space of dimension
g � �ab��� If c � g�c�d�a� b�� then the general such K� surface will have Picard
group generated by a line bundle L such that cL is the hyperplane bundle�

The proof of the Theorem will be made in three steps� First we will exhibit a
degeneration of the K� surface to a union of two rational surfaces� each isomor�
phic to P��P�� embedded via the sections of the linear system of bidegree �a� b��
These two rational surfaces will meet along an elliptic normal curve which is
anticanonical in each� Secondly we will simultaneously degenerate each rational
surface to a union of ab quadrics� resulting in a total of �ab quadrics� Finally
we will degenerate each quadric to a union of two planes�

Proof
 �Step One�� Note that the sections of the linear system of bidegree �a� b�
embed P��P� as a surface in a projective space of dimension ab�a�b� Choose
an anticanonical divisor �of bidegree ��� ��� which is a smooth elliptic curve� it
is mapped by the above embedding to an elliptic normal curve in a subspace of
dimension �a� �b� ��

In our original ambient space of dimension �ab��� choose two subspaces of
dimension ab�a�b which meet along a subspace of dimension �a��b��� Make
the above identical construction of the P� � P

� in each of the two subspaces�
taking care to have the two elliptic normal curves identi�ed in the intersection
subspace�
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This union R of the two rational surfaces is a degeneration of an embedded
K� surface� by an argument identical to that presented for Theorems � and � of
��
� which we will not repeat in detail here� Brie�y� one �rst checks via standard
calculations that H��NR� has dimension g� � �g � �� and that H��NR� �
H��NR� � �� Secondly� the natural map from H��NR� to H

��T �� is seen to be
surjective� This is su�cient to prove that R represents a smooth point of its
Hilbert scheme� whose general member is a smooth K� surface of degree �g���

�Step Two�� The second step can be achieved as in �

 by observing that each
P
� � P

� can be degenerated to a union of ab quadrics by degenerating the �rst
coordinate P� to a chain of a lines� and the second coordinate P� to a chain of
b lines� In this degeneration the elliptic curve degenerates to a cycle of ��a� b�
lines� This degeneration is made simultaneously for each of the two P� � P

��s�
resulting in a degeneration to a union of �ab quadrics� This con�guration of
�ab quadrics meet as in Figure �� without the diagonal lines� if one removes the
diagonal lines from Figure � we obtain �ab rectangles� each indicating a quadric�
Each of these quadrics meets the others along a cycle of four lines �two vertical
and two horizontal��

�Step Three�� Finally degenerate each quadric to a union of two planes� as in
Figure �� These degenerations can be executed completely independently of
course� and it is elementary to see that this can be done keeping the four lines
along which any one of the quadrics meet the others �xed�

�Step Four�� Finally note that if c 	� �� the pillow degeneration of bidegree �a� b�
is a degeneration of the c�uple embedding of the pillow degeneration of bidegree
�a�c� b�c�� To see this� one uses the standard triangular degeneration of the
Veronese embedding of the plane as described in ��
�

The �nal point to check is that the generalK� surface in this ���dimensional
family has Picard group generated by ���c�H � where H is the hyperplane class�
Since we have a ���dimensional family of K� surfaces� the only question to be
decided is which sub�multiple of the hyperplane system is the generator of the
general Picard group� The maximum possible is the g�c�d c� Since the pillow is
a c�uple Veronese� the hyperplane class is at least a c�fold multiple� and since it
cannot be any more� this shows that the Picard group is generated by ���c�H �
This completes the proof of the Theorem�

Q�E�D

Note that in this degeneration� the horizontal and vertical lines appear �rst�
and the diagonal lines appear second�

� The Degeneration of the Branch Curve

We assume that we are in a general enough situation that for a generic projection
of a K� surface of degree g in Pg to a plane� the branch curve is a curve of degree
�g��� having ��g�����g�
� nodes and ���g��� cusps and no other singularities�
these numbers were presented in Section �� If one projects this branch curve
onto a general line� the projection will have �g � �� simple branch points�






It is our goal in this section to describe how these nodes� cusps� and branch
points degenerate in a pillow degeneration�

Firstly� since the pillow degeneration consists entirely of planes� under a
general projection each plane will map isomorphically onto the target plane�
Therefore the degenerate branch curve is composed of the �g � � planar lines
which are the images of the �g�� double lines of the pillow degeneration where
two planes meet� Each of the �g � � planar lines have multiplicity two in the
limit branch curve�

We see therefore that the general branch curve �of degree �g��� degenerates
as a curve to the �g� � planar lines� each doubled� Our next task is to describe
the degeneration of the nodes� cusps and branch points of the general branch
curve� In any case it is clear that these distinguished points of the general
branch curve can only go to points of the �g � � planar lines�

Secondly� it is elementary to compute that there are �����g� � �	����g� ��
pairs of disjoint lines in the pillow degeneration� Each of these pairs of disjoint
lines gives rise to an intersection of two planar line components of the limit
branch curve� We refer to these points as ��points of the con�guration of the
�g � � planar lines�

In addition to these ��points� we have exactly four ��points� corresponding
to the projection of the four points in the pillow degeneration where � planes
�and � double lines� meet� Finally we have g � � ��points corresponding to the
projection of the g � � points in the pillow degeneration where � planes �and �
double lines� meet� At any one of these n�points �n � �� �� or �� exactly n of
the �g� � planar lines meet� moreover at no other point of the plane do any of
these lines meet�

In the degeneration of the general branch curve to this con�guration of �g��
double lines� each of the nodes� cusps� and branch points can degenerate either
to a ��point� a ��point� a ��point� or a smooth point of one of the �g � � lines�
With the above terminology� we can now describe how many nodes� cusps� and
branch points degenerate to each of these types of points�

Theorem ��
 In the pillow degeneration of a K� surface of degree g in Pg� the
nodes� cusps� and branch points of the general branch curve degenerate to the
��points� ��points� ��points� and other smooth points of lines according to the
following table�

Object Number Branch Nodes Cusps
Type Points

Lines �g � � � � �
��points � � � �
��points g � � � �� ��

��points �

�
g� � ��

�
g � �� � � �

Totals� �g � �� ��g� � 
�g � �� ���g � ��
In particular no node� cusp� or branch point degenerates to a smooth point

of any of the �g � � double lines of the limit branch curve�

Proof
 We �rst look at the row of the table for the ��points� Since each of
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the planar lines have multiplicity two in the branch curve� this crossing point
actually is a limit of � nodes of the general branch curve �the � nodes appearing
as the four intersection points of two pairs of lines�� No cusp or branch point of
the general branch curve has this crossing point as a limit in general� since these
points are created by the projection of unrelated disjoint lines in the union of
planes in Pg�

We now turn our attention to the images of the multiple points of the pillow
degeneration where n planes �and n double lines� meet at one point� We assume
that � � n � � in what follows� �In the pillow degeneration we have n � � or
n � � only�� Under the generic planar projection� such points go to intersections
of n of the corresponding planar lines� We will refer to these as n�points of the
limit branch curve�

In order to analyze the number of nodes� cusps� and branch points of the
general curve which go to these n�points� we make a local analysis near the
multiple point of the union of planes� There are n planes incident to this multiple
point� and they together span a Pn� Locally this collection of n planes in P

n

smooths to a Del Pezzo surface of degree n� In a generic projection for such
a Del Pezzo� the branch curve has degree �n� with ��n � ���n � �� nodes and
�n� �� cusps� the number of simple branch points for this curve under generic
projection to a line is ���

The limit branch curve corresponding to the degeneration of the Del Pezzo
to the union of n planes is a union of n lines concurrent at a point p� the images
of the n lines through the multiple point�

A partial smoothing of the union of n planes may be obtained by taking two
adjacent planes and smoothing them to a quadric surface� The corresponding
smoothing of the limit branch curve smooths exactly one of the n lines to a conic�
which is necessarily tangent to two adjacent lines� As the conic degenerates to
the �double� line L� we see that no nodes of the general branch curve go to any
point of L which is not p� and no cusps do either� The conic has two general
branch points for a projection to a line� and one of these branch points goes to
p and one does not�

This local analysis of this partial smoothing shows that in a complete smooth�
ing to the Del Pezzo� no node can go to a point of any line except the concurrent
point p� and neither can any cusp� Therefore all of the ��n � ���n � �� nodes
degenerate to the concurrent point� and all of the �n� �� cusps do too� More�
over� of the �� branch points for the general curve� all but n of them go to the
concurrent point p� �The other n go to one on each line��

In the cases n � � and n � � of interest in the pillow degeneration� the
above analysis shows that arbitrarily close to a ��point there are � � �� � �
branch points� and no nodes and � cusps� Arbitrarily close to a ��point there
are � � ��� � branch points� and �� nodes and �� cusps� This gives the entries
in the ��point and ��point rows of the table�

If we now total the number of branch points� nodes and cusps which degen�
erate to these multiple points� we obtain the values in the last row of the table�
Since these are exactly the number of branch points� nodes� and cusps of the
general curve� we must have accounted for all of the branch points� nodes� and
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cusps already� In particular there are none left to degenerate to smooth points
of the double lines�

This completes the proof of the Theorem�
Q�E�D
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