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ABSTRACT. In this paper we present a variety of statements that are in the spirit of the
famous theorem of Pascal, often referred to as the Mystic Hexagon. We give explicit
equations describing the conditions for d + 4 points to lie on rational normal curves. A
collection of problems of Pascal type are considered for quadric surfaces in P3. Finally we
reprove, using computer algebra methods, a remarkable theorem of Richmond, Segre, and
Brown, for quadrics in P4 containing five general lines.

INTRODUCTION

We recall the famous theorem of Pascal, which states that for six points pi (1 ⩽ i ⩽ 6)
in general position in the plane, they lie on a conic if and only if the three derived points of
intersection of the opposite lines of the hexagon with vertices equal to the pi lie on a line.
We give the precise statement in Theorem 1.

Various authors have considered generalizations of Pascal’s theorem to prove statements
which we will call “of Pascal type”. The general form of such statements is the following.
Let F and G be irreducible families of varieties in a projective space. Let C be a collection
of subsets of this projective space, from which one can form a derived collection of subsets
D (also in this space) using elementary projective geometry constructions (e.g., taking
spans, intersections, etc.).
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A statement of Pascal type would be one with the following form: There is a member of
F containing the collection C if and only if there is a member of G containing the derived
collection D.

For example Pascal’s original theorem has F being the space of conics in a given plane,
G the space of lines, C a sextuple of points, and D triples of points, with the triples being
defined by the sextuples in the way indicated in Pascal’s Theorem.

In this paper we will consider some instances of theorems of Pascal type. When F is
the family of rational normal curves of degree d in Pd, Caminata and Schaffler in [CS,
Theorem A] have generalized Pascal’s Theorem when C is the space of (d + 4)-tuples of
points in general position in Pd.

When F is the family of quadric hypersurfaces in P4, and C is a collection of five
lines in general position there, a remarkable theorem of Pascal type has been observed by
Richmond [R] in 1899 (in one direction) and full proofs were given by B. Segre [S] and
Brown [B] in 1945.

In this paper we first present a computer algebra approach to the original Pascal’s The-
orem, first executed (it seems) by Stefanovi’c and Milo’sevi’c in [SM]. Then we consider
the problem of characterizing points on rational normal curves, and give a condition for
d+ 4 points to lie on one, which simplifies the Caminata-Schaffler statement.

Secondly we turn our attention to the case of ten points on a quadric surface in P3; we
have partial results which are adjacent to but not exactly of Pascal type.

Finally we take up the case of five lines on quadrics in P4, and re-prove the Richmond-
Segre-Brown result via computer algebra methods, which is in the same spirit as the ap-
proach in [SM]. The proof follows Segre’s approach, but is purely algebraic, and avoids
the long complicated geometric arguments that Segre and Brown use.

1. POINTS ON RATIONAL NORMAL CURVES

Any set of d+ 3 points in general position on Pd lie on a unique rational normal curve.
One can ask: given d + 4 points in general position in Pd, how can we detect whether

they lie on a rational normal curve?
For d = 2, the question is answered by Pascal’s Theorem for conics in the plane; we

remind the reader how this goes in Subsection 1.1.
The case n = 3 has been considered by Chasles [Chasles]; he proposes a rather com-

plicated condition which we do not see how to extend to higher dimensions.
We present an iterative approach that works for all n, and builds on Pascal’s Theorem

for n = 2. This is illustrated for d = 3 in subsection 1.2 before turning our attention to the
general case in subsection 1.3.

1.1. The case d = 2. We recall the famous “Mystic Hexagon” Theorem of Pascal:

Theorem 1. Let p1, . . . , p6 be six points in the plane, no three collinear. Let Li be the line
joining pi to pi+1 (indices taken modulo 6), for 1 ⩽ i ⩽ 6. Let qj be the point Lj ∩ Lj+3

for 1 ⩽ i ⩽ 3. Then the six points {pi}1⩽i⩽6 lie on an irreducible conic if and only if the
three points {qj}1⩽j⩽3 are collinear.

There are a number of proofs of this theorem; it may be that one of the most recent and
modern proof (using symbolic algebra packages) was given in [SM] and goes as follows.

Since no three of the points are collinear, the pi’s lie on an irreducible conic if and
only if they lie on a conic, i.e., they satisfy a quadratic polynomial in the coordinates
of P2. If we choose such coordinates [xi : yi : zi] for pi, then a quadratic polynomial
ax2 + by2 + cz2 + dxy + exz + fyz has pi as a root if and only if the row vector vi =
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i , xiyi, xizi, yizi) is orthogonal to the column vector (a, b, c, d, e, f)⊤. Hence to

find such a quadratic polynomial defining the conic, we must find such a nonzero column
vector that is orthogonal to the six row vectors vi given by each of the points. This is
possible if and only if the determinant of the 6× 6 matrix whose rows are the vi’s is zero.
This determinant is a polynomial F in the 18 variables which define the coordinates of the
points. It is quadratic in each of the sets of six variables for each point, and has therefore
total degree 12.

On the other hand, each point qj has projective coordinates given by quadratic polyno-
mials in the six variables defining the two points pj and pj+3, given by the 2× 2 minors of
the corresponding 2 × 3 matrix formed by the coordinates of pj and pj+3. These expres-
sions for the coordinates of the qj are quartic polynomials in the p coordinates. Then the
three qj’s are collinear if and only if the determinant of the 3 × 3 matrix whose rows are
their coordinates is zero. This is a polynomial G, again in the 18 variables. It is cubic in
each of the three sets of q variables, hence of total degree 12 in the p variables also.

Any modern symbolic algebra package (we verified this with SageMath) can deduce
that F = G as polynomials in the 18 variables, which was first noted in [SM].

We observe that the identity F = G proves a bit more, namely Pappus’ Theorem, which
deals with the case when the points may lie three each on two lines.

In [TW1], Traves and Whelau give a very nice constructive analogue to Pascal’s The-
orem, namely a criterion for when ten points in the plane lie on a cubic curve. There are
very many extensions of Pascal’s Theorem via the perspective of more general Cayley-
Bacharach theorems; the reader may consult [EGH] for a history.

1.2. The case n = 3. Our analysis of the general case is illustrated by the case n = 3,
which we now take up as an example. Let p1, . . . , p7 be seven points in general position in
P3. We note that if we project from any one of the points, say pi, the remaining six go to a
set Si of six points in P2, which are also in general position.

Proposition 2. The points {pi}1⩽i⩽7 lie on a twisted cubic curve in P3 if and only if two
of the sets Si and Sj , with 1 ⩽ i < j ⩽ 7, lie on a conic in P2.

Proof. If the points lie on a twisted cubic, then it is clear that all of the sets Si lie on the
image of the cubic, which is a conic.

Conversely, suppose that Si and Sj lie conics Ci and Cj respectively. Consider the two
cones Ti and Tj formed by the two joins of the conics and the corresponding projection
points pi and pj . These are quadric surfaces that meet in the line L joining pi to pj . The
residual intersection is the desired twisted cubic. □

To implement this criterion with 7 specific points, we make two explicit projections,
and then apply the two conditions of Pascal’s Theorem, which involve checking two de-
terminants being zero. This of course gives two conditions on the coordinates of the seven
points.

This is the correct number: the first six points lie on a unique twisted cubic, and it is
two conditions for the seventh point in P3 to lie on this curve.

We can make another count of parameters as follows. The space of twisted cubics de-
pend on 12 parameters; such a curve is parametrized by four cubic polynomials, which
have then 16 coefficients; the automorphisms of the parametrization are the three dimen-
sions of automorphisms of P1 and the scaling in P3. Alternatively, they are all projectively
equivalent in P3, and the 15 dimensions of automorphisms of P3 give the 12 parameters,
since there is a 3-dimensional stabilizer for any one of them.
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Then seven points on these cubics depend on 12+7 = 19 parameters. But seven points
in P3 depend on 21 parameters, and 21− 91 = 2.

1.3. The general case. Now we fix d + 4 points {pi}1⩽i⩽d+4 in general position in Pd.
Note first that if we choose a point pi, we may project the others to Pd−1, obtaining a set
Si of d+ 3 points in general position in Pd−1.

Note secondly that if we choose a set R of d − 2 of the points, where pi /∈ R, we may
project (from R) the remaining six points to a set TR in P2.

Theorem 3. The set of d+4 points in Pd lie on a rational normal curve of degree d if and
only if Si lies on a rational normal curve of degree d − 1 in Pd−1 and TR lies on a conic
in P2.

Proof. If the d+ 4 points lie on a rational normal curve, the assertion is true in that direc-
tion. Conversely, we have two cones at hand: one is the cone Ci over the rational normal
curve in Pd−1 with vertex pi; the other is a quadric cone QR over the conic in P2 with
vertex the span of R.

These two cones intersect in the set of d − 2 lines joining pi to the points of R. The
residual intersection has degree 2(d− 1)− (d− 2) = d, and is the desired rational normal
curve. □

Applying this iteratively, we have:

Corollary 4. Given d + 4 points in general position in Pd, they lie on a rational normal
curve of degree d if and only if the following holds. Fix d− 1 of the points to form a subset
U . For each point p in U , we may project from the span of the complement of p in U to a
plane. This gives six points in the plane, namely the projections of the complement of U
and the point p. For each such point in U , these six points must lie on a conic.

Note that in the Corollary, this gives exactly d− 1 conditions on the points.

Remark 5. We see that to apply the above criterion for d + 4 points in Pd to lie on a
rational normal curve, we must ultimately make d − 1 applications of Pascal’s Theorem,
which, as we have observed in Section 1.1, is one polynomial in the coordinates of the
points.

Hence the variety of solutions here is at most codimension d − 1 in the relevant pa-
rameters. It is easily seen to be exactly d − 1, by counting dimensions as in the d = 3
case.

The family of rational normal curves in Pd depends on d2+2d−3 parameters. (They are
all projectively equivalent, and the stabilizer is 3-dimensional.) Therefore the d+ 4-tuples
of points on such a curve depend on d2 + 3d+ 1 parameters.

The parameters for d+4 points in general are d2+4d; the difference is d−1 as claimed.

Remark 6. The criteria presented by Caminata and Schaffler in [CS, Theorem A] basically
reduces to asking that however one projects from a subset of d − 2 points to a plane, the
remaining six points lie on a conic, and this is then rephrased via Pascal’s Theorem to a
linear condition on the derived intersection points. Their argument is algebraic in nature,
using the Grassmann-Cayley algebra; the proof above seems more geometric.

1.4. Equations. In [CGMS], the authors, among other things, determine equations for
(d + 4)-tuples of points to lie on a rational normal curve of degree d in Pd. The above
considerations also enable us to give similar explicit equations for this problem. We assume
d ⩾ 3 here.
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Given d + 4 points in Pd, using projective transformations we may fix the first d + 2
of them to be the coordinate points and the point [1 : 1 : · · · : 1]. The coordinates of the
remaining two points give our parameter space for the problem. We set these coordinates
to be [a0 : · · · : ad] and [b0 : · · · : bd]. We restrict ourselves to the open subset where the
points are in general position.

We now apply Corollary 4, taking U to be the first d− 1 of the coordinate points:

U = {[1 : 0 : · · · : 0], [0 : 1 : 0 : · · · : 0], . . . , [0 : · · · : 0 : 1 : 0 : 0]}

Using homogeneous coordinates [z0 : z1 : · · · : zd], the projection from the complement
of the i-point (0 ⩽ i ⩽ d − 2 here) is exactly the projection to the plane with coordinate
[zi : zd−1 : zd].

The six points of the construction in this plane are then given by [1 : 0 : 0] (the image
of the i-th point) [0 : 1 : 0], [0 : 0 : 1], and [1 : 1 : 1] (the projections of the other
coordinate points not in U ) and [ai : ad−1 : ad], [bi : bd−1 : bd] (the projections of the two
final points). We then take the double Veronese images of these six points to produce the
following six points in P5:

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
1 1 1 1 1 1
a2i a2d−1 a2d aiad−1 aiad ad−1ad
b2i b2d−1 b2d bibd−1 bibd bd−1bd

We must impose that the determinant of the corresponding 6 × 6 matrix is zero, which
simplifies to the equation

aiadbd−1bd−ad−1adbibd−aiad−1bd−1bd+ad−1adbibd−1+aiad−1bibd−aiadbibd−1 = 0.

These equations, as i ranges from 0 to d − 2, give the required equations describing the
family of points lying on a rational normal curve, using this parametrization. This holds
for the points [a] and [b] satisfying some open conditions that ensure the general position
of the d + 4 points. They are exactly the equations coming from the collinearity of the
three derived points in the plane, via the assertions of Pascal’s Theorem.

We note that one may interpret the vanishing of the above determinant differently. It is
clear that the determinant is equal to the lower right 3× 3 minor, and the vanishing of this
minor says exactly that the three points

(aiad−1, bibd−1), (aiad, bibd), (ad−1ad, bd−1bd)

are collinear in the affine plane.
These consideration additionally show that our equations define the variety of points on

a rational normal curve as a set-theoretic complete intersection.

2. QUADRICS IN P3

One may imagine that an extension of Pascal’s Theorem to quadrics in P3 would be
available, but there does not seem to be an exact analogue available. In [Chasles, Note 32]
there are presented several statements for tetrahedra related to quadric surfaces, but they
do not seem to present the same type of phenomena as a Pascal-type theorem.
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2.1. Ten points. Quadrics in P3 form a 9-dimensional complete linear system, and there
is in general a unique quadric through 9 general points; there is no quadric through 10
general points. The condition that there is a quadric through 10 points is easy to describe
in terms of the coordinates of the points {pi}1⩽i⩽10.

If pi = [ai0 : ai1 : ai2 : ai3], we re-embed these points into P9 via the double Veronese
map, obtaining 10 points in P9. They will be dependent in P9 if and only if there is a
quadric through the ten points in P3. This gives a straightforward polynomial condition to
check; that condition is the determinant of the 10×10 matrix whose rows are the quadratic
monomials in the aij’s, and hence has degree 20.

There does not seem to be an alternative construction, a la Pascal’s Theorem for conics
in the plane, to re-write this polynomial as arriving from a different geometric condition.
However recently Traves and Whelau [TW2] translated the condition for ten points to be
on a quadric surface in P3 in a condition for four points in P3 to be coplanar.

There are some elementary statements one can make, taking into account the geometry
of a quadric surface. An example is the following.

Proposition 7. Let there be ten points in general position in P3. Take the ten points, divide
them into two sets of five points. If the ten points lie on a quadric, then there are twisted
cubic curves in P3 passing through each of the two sets of five points, that meet each other
in five additional points. The converse holds as well: if two such twisted cubics exist, the
ten points lie on a quadric.

The proof is easily seen by considering the quadric as P1 × P1, and noticing that there
are curves of bidegree (1, 2) and (2, 1) on the quadric through general five points; they will
meet in five points.

One may extend the set of conditions and include requiring that the quadric contains
various low degree curves. We take up several examples of these in the following subsec-
tions.

2.2. Seven Points and One Line. It is three conditions for a quadric to contain a line, and
therefore if we fix seven general points and one general line, there should not be a quadric
containing them; the condition that there is one should be one condition on the parameters
describing the points and the line.

We again have a geometric condition in the spirit of the statement for ten points, but it
is not exactly of Pascal type.

Proposition 8. Let there be given a general line and seven general points in P3. If this
collection lies on a quadric surface, there is a rational quartic curve passing through the
points and meeting the line in three points. The converse is also true.

Again the proof is immediate upon considering a curve of bidegree (1, 3) on the quadric,
which will be the rational quartic.

2.3. Four Points and Two Lines. Given four points and two lines in general position
in P3, we again should have one condition that they lie on a quadric. Call the points
p0, . . . , p3. There is a unique line Li containing pi and meeting the two given lines, for
1 ⩽ i ⩽ 3. There is a quadric through the four given points and the two given lines if and
only if there is a quadric through p0 and L1, L2, L3. Hence this case reduces to the next
case.
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2.4. One Point and Three Lines. In this case there is an elementary Pascal-type condition
to state.

Proposition 9. Given a general point and general three lines in P3, they lie on a quadric
surface if and only if there is a line through the point meeting each of the three lines.
Equivalently, this happens if the projection from the point maps the three lines to three
concurrent lines in the plane.

Again, this is elementary: the three lines (if on a quadric) come from one of the two
rulings, and the line through the point is the unique line from the other ruling through the
point.

In this case we also offer an algebraic analysis. Let us choose coordinates so that the
given point P is at [1 : 0 : 0 : 0] and the three given lines each contain the other three
coordinate points: L1 contains [0 : 1 : 0 : 0], L2 contains [0 : 0 : 1 : 0], and L3

contains [0 : 0 : 0 : 1]. Then each line is determined by an additional general point
Ri = [ai0 : ai1 : ai2 : ai3] on Li. We seek the conditions on the aij’s so that P and the Li

lie on a quadric.
That the quadric contains the four coordinate points means that the quadratic equation

has no square terms, and we are left with the remaining six monomial terms. The condi-
tions are that the three points Ri are zeroes of the polynomial, and that the tangent plane
to the quadric at the coordinate point passes through Ri as well.

The first three conditions are quadratic in the aij’s, and the second three are linear.
The corresponding matrix condition can be easily seen to be that the determinant of the
following 6× 6 matrix must be zero:

a10a11 a10a12 a10a13 a11a12 a11a13 a12a13
a20a21 a20a22 a20a23 a21a22 a21a23 a22a23
a30a31 a30a32 a30a33 a31a32 a31a33 a32a33
a10 0 0 a12 a13 0
0 a20 0 a21 0 a23
0 0 a30 0 a31 a32


The determinant of this matrix has degree 9, tridegree 3 in each of the three sets of variables
for the three points Ri. This determinant is:

(a21a30 − a20a31)(a12a30 − a10a32)(−a13a20 + a10a23)(a12a23a31 − a13a21a32).

The first three terms express degenerate cases in which two of the lines meet, and are
therefore coplanar. This geometric condition obviously guarantees the existence of the
quadric as the plane containing the two lines that meet, together with the plane through the
third line and P . Factoring these out, we obtain the relatively simple algebraic condition
that

a12a23a31 − a13a21a32 = 0

and this expresses exactly the condition that the projection of the three lines from P to the
plane z0 = 0 are concurrent.

2.5. One Conic and Five Points. In this case we again have a geometric condition.

Proposition 10. Let there be given a general conic and five general points in P3. Then
they lie on a quadric surface if and only if there is a twisted cubic passing through the five
points and meeting the conicat three points.
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The conic is of bidegree (1, 1) on the quadric, and the required twisted cubic is of
bidegree (1, 2). We note that the twisted cubic is not unique: there is a second one, having
bidegree (2, 1).

2.6. Twisted Cubic and Three Points. In this case there is a Pascal-type proposition to
state, which again follows from relatively elementary considerations.

Proposition 11. Given a twisted cubic and three general points in P3, they lie on a quadric
surface if and only if the twisted cubic meets the plane in three additional points which,
together with the three given points, lie on a conic in that plane.

In this case the twisted cubic is of bidegree (1, 2), the conic has bidegree (1, 1), and the
statement follows directly from the geometry of P1 × P1.

3. THE RICHMOND-SEGRE-BROWN THEOREM FOR LINES IN P4

There is a remarkable extension of Pascal’s Theorem to quadrics in P4, which is the
following construction.

For a quadric in P4 to contain a line is 3 conditions. The space of quadrics in P4 is of
dimension 14. Therefore it is expected that there are no quadrics containing five general
lines, and this is indeed the case.

The Grassmann variety of lines in P4 is 6-dimensional, so the number of parameters for
quintuples of lines is 30. Let I be the incidence correspondence consisting of pairs (Q,C)
where Q is a quadric, C is a collection of five skew lines, and C ⊂ Q. The family of lines
on a quadric threefold has dimension three, so that the fiber of I to the projective space of
quadrics in P4 has dimension 15. Hence I has dimension 29.

Now given five general lines on a general quadric, we claim that there is only that one
quadric containing them. The reason is that the quadrics containing them is a linear system,
and if it is positive dimensional, the intersection of the given quadric with a general other
member of the system would be a Del Pezzo surface of degree 4 in P4 containing the five
lines. However on any such Del Pezzo, there is a line meeting all five skew lines. This is
not possible by the generality of the five lines on the quadric.

Hence the second projection from I to the space of five general lines is birational, and
so the image has dimension 29 as well, hence it has codimension one.

Therefore it is one condition for a quintuple of lines to lie on a quadric.
What is that condition? This is the content of a remarkable theorem first addressed by

Richmond at the end of the 19th century [R]. It was rediscovered by B. Segre in a paper
in 1945 who does not reference Richmond; he may not have been aware. In the next year
Brown [B] gave a different proof, and Brown references both Richmond and Segre.

It is convenient to make a definition:

Definition 12. Fix an ordered set of five lines Li, 1 ⩽ i ⩽ 5. For each i, consider the point
Ri of intersection of Li with the span of Li−1 and Li+1 (indices taken modulo five). We
say that the quintuple of lines is of RSB type (after Richmond, Segre, and Brown) if those
five points {Ri}1⩽i⩽5 are dependent in P4.

The theorem is the following.

Theorem 13. Five lines in general position in P4 lie on a quadric if and only if they are of
RSB type.

The proofs given in the last centuries by Richmond, Segre, and Brown are a tour-de-
force of four-dimensional synthetic geometry, involving rather complicated constructions.
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Nowadays a computer algebra proof is available, once we formulate the problem in
explicit linear algebra terms. We will explain now the approach.

We choose two points Pi and Qi on the line Li. Using projective transformations we
may assume that the Pi are the five coordinates points of P4.

We describe the conditions on the quadric to contain the five lines as follows. We
write the general quadric as the zeroes of a homogeneous quadratic polynomial in the
homogeneous coordinate [z0 : · · · : z4]. That the quadric contains the coordinate points Pi

is equivalent to having no pure square terms in the quadratic polynomial. This leaves 10
terms with the monomials zizj , i ̸= j.

Now imposing that the quadric contain the Qi’s give five linear conditions on the coef-
ficients. These linear conditions are quadratic in the coordinates of the Qi’s.

Finally imposing that the quadric contains the line Li, is now equivalent to imposing that
the tangent hyperplane to the quadric at Pi contains Qi. This is five more linear conditions
on the coefficients, which are each linear in the coordinates of the Qi’s.

Hence the existence of the quadric amounts to the vanishing of the determinant F of the
10×10 matrix described by the above ten conditions on the ten coeffients. This matrix has
five rows with entries of degree two in the coordinates and five rows with linear entries in
the coordinates. Hence the degree of the polynomial F in these coordinates is 15.

Let us now describe the condition for the five lines to be of RSB type. The calculation
of the points Ri can be made explicitly as follows. The hyperplane spanned by Li−1 and
Li+1 is exactly the hyperplane spanned by the four points Pi−1, Qi−1, Pi+1, Qi+1. Hence
the coefficients of this plane are given the 4× 4 minors of the 4× 5 matrix whose rows are
the coordinates of those four points. Each of these minors is a quadratic polynomial in the
coordinates of the Qi’s.

The intersection of this hyperplane with the line Li is obtained by taking the parametric
equation for Li and solving for the intersection point; this gives a point Ri whose coordi-
nate are now cubic polynomials in the coordinates of the Qi’s.

Now the condition that the Ri’s are dependent in P4 is the determinant G of the corre-
sponding 5× 5 matrix whose rows are the coordinates of the Ri’s. Since the Ri are cubic,
we see that G is also of degree 15.

In the same spirit as was discussed in section 1.1 for Pascal’s Theorem in the plane, these
two polynomials can be computed explicitly with any modern symbolic algbra package.
We used Sagemath, and verified that F = G as polynomials of degree 15 in the variable
coordinates of the Qi’s. This proves the theorem.

Remark 14. In Segre’s paper, he also considered the two relevant determinants above.
He was unable to prove algebraically that these two determinant were equal. However he
argued via synthetic methods that their ratio must be a constant (and he computed the con-
stant!). Hence our proof follows his overall line of argument, but the use of the computer
simplifies things greatly.

Remark 15. One can give a different criterion for five lines to lie on a quadric hypersurface
in P4 by following the line of argument of Traves and Whelau [TW2] for ten points on a
quadric surface in P3, as follows. Choose four of the five lines, say L1, L2, L3, L4. The
quadrics containing them form a 2-dimensional family, and this family has three reducible
members, obtained by splitting the four lines into two pairs, and taking the union of the
hyperplanes through the pairs. To be specific, if we denote the hyperplane containing Li

and Lj by Hij , then we obtain three (reducible) quadrics by setting Q1 = H12 + H34,
Q2 = H13 +H24, and Q3 = H14 +H23. It is easy to see that these three are independent.
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Denote the equations of the quadric Qi by Fi. Then the map ϕ given by [F1 : F2 : F3]
sends P4 rationally to P2. Since the Fi’s are quadratics, the image under ϕ of a general line
in P4 will be a conic.

Proposition 16. The five lines in P4 lie on a quadric hypersurface if and only if the image
of the fifth line L5 under this rational map is a line, not a conic. This is equivalent to asking
that the images of any three distinct points of L5 are collinear.

This is not very deep, actually: the map ϕ is simply the composition of the Veronese
map of degree two with a projection onto P2 given by the three Fi’s. The existence of the
desired quadric hypersurface is (tautologically) equivalent to the existence of a hyperplane
in the Veronese space containing the image of the five lines. Since the center of projection
for ϕ (the zeroes of the Fi’s) already contains four of the lines, the criterion is that the fifth
line must be cut out by a linear equation in the P2.
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