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 TRIPLE COVERS IN ALGEBRAIC GEOMETRY

 By RICK MIRANDA*

 1. Introduction. The main purpose of this article is to develop the

 foundations of the theory of triple coverings in algebraic geometry, i.e. flat

 finite maps of degree 3 between irreducible varieties over an algebraically

 closed field k. The approach is "from the bottom up," i.e., given a variety

 Y, what data is required to construct a triple cover of Y? Theorem (3.6) is

 essentially the following.

 THEOREM 1.1. A triple cover of Y is determined by a locally free

 rank 2 0 y-module E and a map 4) :S3E -+ A2E, and conversely.
 The above result is in the spirit of the corresponding statement for

 double covers, namely that a double cover of Y is determined by a line

 bundle L on Y and a divisor D E I L -21 (D is the branch locus of the cover).
 Double covers have been used in a variety of ways to understand and con-

 struct varieties and it is my belief that triple covers will play an increasingly

 important role in this area as their properties become better understood.

 The following results are obtained as corollaries to the general theory.

 THEOREM 1.2. The general triple cover in dimension ? 2 has a sin-

 gular branch locus.

 THEOREM 1.3. The general triple cover in dimension ?4 is singular.

 THEOREM 1.4. The moduli space of trigonal curves of genus g is

 connected, of dimension 2g + 1, and is unirational.

 The final sections of the article are devoted mainly to the computation

 of the standard invariants of varieties which are triple covers, especially

 curves and surfaces. As one application, I propose a method for construct-

 ing surfaces of general type with K2 arbitrarily close to 3e(X).

 2. The local analysis. Let k be an algebraically closed field of char-

 acteristic unequal to 2 or 3. Let 0( ybe a local k-algebra which is an integral

 domain. Let Ox be a flat 0 y-algebra which is integral over 9 y of rank 3.

 Manuscript received June 6, 1983.

 *Partially supported by NSF Grant No. MCS-82-02021.
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 1124 RICK MIRANDA

 Assume that Ox is also an integral domain. (9y naturally sits inside 9x,
 and every a E (9x - 9 y will satisfy a unique irreducible monic cubic poly-
 nomial Pa (x) over ( y.

 Definition 2.1. The minimal cubic polynomial of a E Ox is the poly-
 nomial pa(x) if a Dy and is (x - a)3 if a E (Oy.

 LEMMA 2.2. <9x naturally splits as Ox -= y y ?D E, where E is the
 submodule of /9x consisting of those elements whose minimal cubic poly-
 nomial has no square term.

 Proof. For any a e (Ox, write its minimal cubic polynomial as x3 +

 c2(a)x2 + c1 (a)x + co(a); define a map a from (Ox to ( y by sending a to
 -c2(a)/3. It is clear that Ol is the identity on (Dy and the kernel of CZ is
 precisely E. It remains to show that a is an 9 y-linear homomorphism. It

 suffices to prove this after passing to the fraction fields Ky and Kx of (Dy
 and Ox, respectively, where we make the analogous definitions. In this

 case Kx is an extension of Ky of degree 3 and so Kx = Ky(e) for some e E

 Kx - Ky. By replacing e by e + c2(e)/3, we may assume e EE. Let e' =
 e2 + 2c 1 (e)/3. A computation shows that e' EiE: (e ')3 - (c I (e)3/3)e' -
 (co(e)2 + 2c I(e)3/27) 0 O. Note that Kx is generated as a vector space
 over Ky by 1, e and e'. A further calculation shows that for yi e Ky,

 yo + y1e + y2e' eE X yo = 0,

 and so the projection map is the map sending yo + y I e + y2e' to yo and is
 therefore K y-linear. Q.E.D.

 The projection of (Ox onto ( y is 1/3 of the trace map, and E is the
 submodule of "trace-zero" elements of (9x. The projection of Ox onto E is
 given by the well-known Tschirnhausen transformation, or "completing

 the cube"; if the minimal cubic polynomial for a E 19X is x3 + C22X2 +
 clx + co, send a to a + c2/3. For this reason I will call E the

 Tschirnhausen module of Ox over (Dy; it is a free (yr-module of rank 2.
 The multiplication in O9x is given by an (9 y-linear map Ox o (9x (x

 Ox; since (x - (Dy i) E, this map can be rewritten as a map

 (Oy@ey Oy) (Oy&OyE) (E&oy Oy) (EOOyE) - Oy(DE. The
 first three coordinates of this map define the multiplication in ( y and the
 left and right (9 y-module structure on E, respectively, and so are already

 determined. The fourth coordinate is a map E (Doy E -e (Dy ? E, which
 must factor through the second symmetric power S2E of E if the multipli-
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 TRIPLE COVERS IN ALGEBRAIC GEOMETRY 1125

 cation in Ox is to be commutative. Conversely, any 0 y-linear map
 0: S2 E -- 0 y?E will define a commutative multiplication on Ox which is
 0 y-linear. However, there are conditions on 0 in order that the multiplica-
 tion be associative and that the submodule E of Ox be the Tschirnhausen

 module of Ox over 0 y. To analyze these conditions, choose a basis { z, w }

 forE as a free (9y-module. The induced basis of S2E is {Z2, ZW, w2}, and
 so the map b takes the form

 (z2) - g + az + bw

 (2.3) O(zw) = h + ez + fw

 q$(w2) = i + cz + dw

 where a, b, ..., i are in Oy.

 LEMMA 2.4. The map < induces an associative multiplication oni OX
 if and only if

 g = be +f 2-af-bd, h = bc-ef,

 and

 i e2 + cf - ac - de.

 Proof. Associativity will follow from the associativity of the triple

 products in S3E, which is generated by z3, z2w, zw2 and w3. Since the

 multiplication is already commutative and there is only one way to write z3

 and w3 as products, associativity is equivalent to the satisfaction of the

 equations z - zw = w - z2and z - w2 = w I zw in Ox. Using (2.3) to compute

 these products via q, one finds that

 z zw = (eg + fh) + (h + ae + ef)z + (be + f 2)w,

 w z2 (ah + bi) + (ae + bc)z + (g + af + bd)w,

 z w2 (cg + dh) + (i + ac + de)z JF (bc + df)w,

 and

 w zw = (eh + fi) + (e2 + cf)z + (h + ef + df)w.
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 1126 RICK MIRANDA

 Equating the corresponding coefficients of z and w in the above equations

 leads to the conditions of the lemma. Moreover, these values for g, h and i

 imply the equality of the ( y coordinates above automatically, so no further
 conditions are necessary. Q.E.D.

 COROLLARY 2.5. A commutative and associative ( y-algebra struc-

 ture on Ox = (Dy ?) E is equivalent to an ( y-linear map 2 :S2E -+ E.

 Proof. The equations of the previous lemma imply that the map 0 is
 determined by its second coordinate O2* Q.E.D.

 LEMMA 2.6. A map :S2E- E inthe form of (2.3)inzduces aim-ulti-
 plication on ODx for which E is the Tschirnhausen module for ODx over (9y if
 and only iff = -a and e = -d.

 Proof. The submodule E of (9y )Ewill be the Tschirnhausen mod-
 ule if and only if the minimal cubic polynomials of the generators z and w

 of E have no square term; this means that z3 must be in the (9 y-span of I

 and z, and w3 must be in the ( y-span of 1 and w. Using (2.3) to compute

 z3 and w3, one finds that

 z3 = (ag + bh) + (g + a2 + be)z + (ab + bf)w,

 and

 w3 = (ch + di) + (ce + cd)z + (i + cf + d2)w.

 Hence, b(a +f) = c(e + d) = Oin(Oy. If b = O, thenz2 = g + az in(9x
 and so z would satisfy a monic quadratic polynomial over ( y; after passing
 to the fraction fields, z would generate an intermediate quadratic exten-

 sion of Ky under the cubic extension Kx, a contradiction. Hence, b * 0,
 and a similar argument with w shows that c * 0. Since (9 is an integral

 domain, we must have a + f = e + d = 0. Q.E.D.

 The previous lemmas give all the conditions on the multiplication

 in Ox.

 THEOREM 2.7. Assume that ( y is a local k-algebra which is an inte-

 gral domain.

 2.7.1. Let (Dxbe aflat (9y-algebra, which is an integral domain, and
 integral over ( y of rank 3. Then

 (a) Ox -(9y ?) E where E is the free rank 2 ( r-submodule of Ox
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 TRIPLE COVERS IN ALGEBRAIC GEOMETRY 1127

 consisting of elements whose minimal cubic polynomial has no square

 term.

 (b) The multiplication in Ox is determined by an Oy-linear map
 &S :2E-> (Dy?E. If {z, w} are a basis of Eover O y, then X is of theform

 0 (z2) =2(a 2- bd) + az + bw

 (zw) = -(ad - bc) - dz - aw

 0(w2) = 2(d 2- ac) + cz + dw

 where a, b, c and d are in D y and bc * 0. The map 0 is determined by its
 second coordinate 2: S2E -+ E.

 2.7.2. Conversely, given a free rank 2 (Dy-module E with basis

 {z, w}, let0 2:S2E ->Ebeof theform

 02( 2) = az + bw

 2(zw) = -dz - aw

 2(W 2) =cz + dw

 fora,b,canddinDy withbc O. Thenthemap :S2E-+ O(yE

 defined as in (2.7.1(b)), whose second coordinate is 02, induces a commu-
 tative and associative 0 y-algebra structure on ODx = (9y 0 E making ODx
 into a flat and integral (Dy-algebra of rank 3, for which E is the
 Tschirnhausen module.

 Proof. The first part now follows by writing g, h and i in terms of a,

 b, c and d using Lemmas 2.4 and 2.6. The converse also follows from the

 lemmas; in fact, one need not have bc * 0 for the converse, but it follows

 from the arguments in the proof of Lemma 2.6 that if either b or c is zero,

 then Ox is not an integral domain. Q.E.D.

 Remarks.

 2.8.1. It does not seem easy to give a simple criterion in terms of a,

 b, c and d for (Ox to be an integral domain. If b * 0, we may tensor with

 Ky and solve for w in terms of z using the equation for k(z2). Then (Ox is an
 integral domain if and only if the minimal cubic polynoniial
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 1128 RICK MIRANDA

 z3 + 3(bd -a2)z + (3abd - 2a3 - b2c)

 is irreducible over Ky. If c = 0, it is not; z + a is a factor. However, there
 may be other values of c for which it is also reducible.

 2.8.2. If we think of z and w as variables over O y and let

 F(z, w) = z2- az - bw - 2(a2 - bd),

 G(z, w) = zw + dz + aw + (ad - bc),

 and

 H(z, w) = w2- cz - dw - 2(d2 - ac),

 then Ox can be thought of as the quotient ring 0 y[z, w]/(F, G, H). If X =
 Spec Ox and Y = Spec 0 y, then X is embedded as a codimension 2 subva-

 riety of A2 ; since Ox is free over O y, it is Cohen-Macauley over (Dy and
 therefore the embedding of X into A 2 should be determinantal [4]. In our
 case this representation is easy to see; F, G and H are the 2 x 2 minors of

 z + a w-2d cw )

 \b z -2a w + dJ

 3. The global analysis. Let f: X -+ Y be a flat, finite map of degree
 3 between irreducible k-schemes X and Y. I would like to use the results of

 the previous section to understand and construct such maps from a more

 global viewpoint. For this purpose I need to eliminate, in the local case, the

 dependency of the description of the relevant maps X, 41 and O2 on the
 choice of basis for the Tschirnhausen module E.

 Definition 3.1. Let E be a locally free rank 2 0y -module. A homo-
 morphism 2 :S2E -+ E is a triple cover homomorphism if it is locally of
 the form

 02( 2) = az + bw

 (3.2) 02(zw) =-dz - aw

 02(W2) = cz + dw
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 TRIPLE COVERS IN ALGEBRAIC GEOMETRY 1129

 for some (local) basis {z, w } of E over ( y. The set of triple cover homomor-

 phisms will be denoted by TCHom(S2E, E).

 It is not difficult to check that the above local form for a map

 02: S2E -- E is independent of the choice of basis and that
 TCHom(S2E, E) is a linear submodule of Hom(S2E, E).

 PROPOSITION 3.3. There is a natural isomorphism between

 TCHom(S2E, E) and Hom(S3E, A2E).

 Proof. Assume O2 e TCHom(S2E, E) is in the above form with re-
 spect to a basis {z, w } of E. The induced map

 S2E?E -2X E?E , A2E

 sends z2 0 Z to -b(z A w), Z2 ? w and zw ( z to a(z A w), zw X w and

 w20z to -d(z A w), and w2(w to c(z A w). Hence, it factors through the

 canonical map from S 2E &E to S3E (which identifies Z2 ?w and zw (8z as

 Z2W and zw ( w and W2 & Z as ZW2), and induces a map -p:S3E A2E
 which is the image of b2 under the isomorphism.

 The inverse isomorphism is constructed as follows. We seek a natural

 element of

 Hom(Hom(S3E, A 2E), Hom(S2E, E))

 which is an isomorphism onto TCHom(S2E, E). Note that

 Hom(Hom(S3E, A 2E), Hom(S2E, E)) -Hom(S3E* ( A2E, S2E* &E)

 - S3E A A2E*OS2E*OE

 -Hom(A2EXS2E, E X S3E).

 The desired element here is the map sending eI A e2 0 e3e4 in A2EOS2E
 to e1 I 0e2e3e4 - e2 ( ee3e4, where ei e E. In this form it is apparent that
 the isomorphism does not depend upon a choice of basis forE and is there-

 fore natural. To check that this does map Hom(S3E, E) isomorphically

 onto TCHom(S2E, E) and is the inverse of the map above, choose a basis

 {z, w } for E. Write 02 as in (3.2). Then the induced map 1: S3E -+ A2E is
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 1130 RICK MIRANDA

 4(z3) = -b(z A w)

 4(z2w) = a(z A w)

 (3.4)
 b(zw2) = -d(z A w)

 )(W3) = c(z A w).

 Conversely, the natural transformation given above sends

 (z A w) ? z2 to z ? z2w w ?g z3,

 (zAw)(zw to z?zw2 w? z2w,

 and

 (z A w) ? w2 to z?w3-w(zw2

 as an element in Hom(A2E&S2E, E&S3E), and is therefore the element

 (z A w)* ? (z2)* (z z2w -w? Z3)

 + (z A w)* ( (zw)* (z zw2 - w (z2w)

 + (z A w)*? (w 2)*? (Z ?W3 -W ZW2)

 in A2E*?S2E*?E?S3E, using the obvious notation for the dual bases.

 As an element in Hom(S3E* E ?A2E, S2E* ( E), it sends

 (z3)* ? (z A w) to -(z2)* ( w,

 (z2w)* (8 (z A w) to (z 2)* z -(zw)* 0 w,

 (zw2)* ( (z A w) to (zw)* z - (w2)* w,

 and

 (w 3)* ( (z A w) to (w2)* ( z.

 If c1 is in the form of (3.4), then it is the element (-b(z3)* + a(z2w)*-
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 TRIPLE COVERS IN ALGEBRAIC GEOMETRY 1131

 d(zw2)* + c(w3)*) 0 z A w in S3E* 0 A2E, so the image of c1 under the

 natural transformation is b(z2)* 0 w + a((z2)* 0 z - (zw)* 0 W) -

 d((zw)* 0 z - (w2)* 0 w) + c(w2)* ( z in S2E* 0 E. As an element in

 Hom(S2E, E), it sends z2 to az + bw, zw to -dz - aw, and w2 to

 cz + dw; therefore, it is the desired map 72* Q.E.D.

 PROPOSITION 3.5. There is a natural transformation from

 TCHom(S2E, E) to Hom(S2E, ( y) which sends a map k2 in the form of
 (3.2) to a map ki which has the form

 0 I(z2) 2(a2- bd)

 01(zw) -(ad - bc)

 O (w 2) =2(d2- ac),

 i.e. 0 1 is the first coordinate of the multiplication map 5 for (9 (OE.

 Proof. The map 02 induces a map A202: A2S2E -+ A2E, or equiva-
 lently a map a: A2S2E 09 A2E* --9 0y. The desired map k1 is then the
 composition of ao with a natural transformation in Hom(S2E, A2S2E 0

 A2E*) - Hom(A2E 0 S2E, A2S2E). This transformation sends

 (e1Ae2)(ge3e4 to-(e1e3Ae2e4+e1e4Ae2e3).Ifq+2isintheform(3.2),

 then A202 sends

 z2 A zw to (-a2 + bd)z A w,

 z2A w2 to (ad- bc)z A w,

 and

 zw A w2 to (-d2 + ac)z A w;

 therefore, ae is the map sending

 (z2A zw)0(g(z A w)* to bd-a2,

 (z2 A w2)0(D(z A w)* to ad - bc,

 and

 (zw A w2) 0 (z A w)* to ac-d2.
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 1132 RICK MIRANDA

 The natural transformation above sends

 z2 to -(z2 A zw + Z2 A zw) ( (z A w)* = -2(z2 A zw) ? (z A w)*,

 zw to - (z2A W2 + zw A zw) ( (z A w)* = -(Z2 A w2) ? (z A w)*,

 and

 w2 to -(zw A w2 + zw A w2) ( (z A w)*- -2(zw A w2) ? (z A w)*.

 Hence the composite map with a sends

 z2 to 2(a2 - bd),

 zw to -(ad - bc),

 and

 w2 to 2(d2 - ac),

 and is exactly the desired map 1: 5 2E -+ (Dy. Q.E.D.

 Because the relevant maps are now described without coordinates, us-

 ing natural transformations, the local analysis of Section 2 'sheafifies' to

 give the following theorem.

 THEOREM 3.6. Let f :X -+ Y be a flat finite map of degree 3 be-
 tween irreducible k-schemes. Then

 (a) f*0x = O y?GE where E is the locallyfree rank 2 O( y-submodule
 of Ox consisting (locally) of elements whose minimal cubic polynomial has
 no square term. E will be called the Tschirnhausen module for f: X -+ Y.

 (b) The multiplication in Ox is determined by a map 0: S2E -( Oy(
 E whose second coordinate 02 is a triple cover homomorphism and whose
 first coordinate /1 is the image of 02 of the natural transformation from

 TCHom(S2E, E) to Hom(S2E, 0 y) given in Proposition 3.5.
 (c) The triple cover homomorphism 02 determines a unique 0 y-lin-

 ear map 4:S3E -+ A2E.
 (d) Conversely, given a locally free rank 2 0 y-module E, any (Dy-

 linear map c1 S3E -- A2E determines a unique triple cover homomor-
 phism 02 via the natural isomorphism from Hom(S3E, A 2E) to
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 TRIPLE COVERS IN ALGEBRAIC GEOMETRY 1133

 TCHom(S2E, E) given in Proposition 3.3. If I1 is the image of 02 in
 Hom(S2E, (9y), then 0 = 01 ?)02 :S2E -+ 0 y?E defines a commutative
 and associative multiplication on 0 y)E for which E is the Tschirnhausen

 module. If X = Spec o (( y (0y E), then the canonical map f :X -+Y is a
 flat finite map of degree 3.

 Definition 3.7. Fix the variety Y. A flat finite map f :X -+ Y of de-
 gree 3 will be called a triple cover of Y. A pair (E, 4), where E is a locally

 free rank 2 (9y-module and c1:S3E -+ A2E is an Oy-linear map, will be
 called triple cover data over Y. The map c1 will be called the building map

 and if (E, 1) induces the triple coverf: X -+Y as in (3.6(d)), I will say that
 4 builds f: X- Y, or builds X on Y. Two pairs (E1, 4 1) and (E2, 42) are

 isomorphic as triple cover data if there exists an isomorphism :E -+ E2
 such that the diagram

 S 3El ~ S3U VE2

 01 I41 2

 A22E1 A- , A2E2

 commutes; isomorphic triple cover data corresponds to isomorphic triple

 covers, i.e. an isomorphism g :X1 -+ X2 making the diagram

 XI ' _ X2

 fi

 y

 commute (where 4) builds XI and 4'2 builds X2).
 It is clear from Theorem 3.6 that given a triple cover f:X -+ Y be-

 tween irreducible k-schemes, one gets unique triple cover data (E, 1) over
 Y up to isomorphism. Conversely, given triple cover data (E, 4), there is a

 triple cover f : X -+ Y which c1 builds.

 Remark. I will sometimes abuse notation and regard the building

 map c1 as a section of A2E (g S3E*.

 PROPOSITION 3.8. If f: X -+ Y is a triple cover with Tschirnhausen

 module E, then X naturally embeds into the geometric rank 2 vector bun-

 dle V(E) as a codimension two subvariety.
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 1134 RICK MIRANDA

 Proof. If S(E) = ?m ?0 SmE is the symmetric algebra of E, then the

 multiplication in f*Ox induces a surjection S(E) -+ (Dy ?) E = f*Ox
 (which is the identity on (9y ? E C S(E)). This surjection corresponds to

 the embeddingX =Speco (yG)yE) -- Spec0YS(E) = V(E). Q.E.D.

 It will become necessary to know the kernel of the map S S 2E -+ O y
 in Section 10.

 PROPOSITION 3.9. Given the building map 4, there is a naturally

 induced ( y-linear map b :E 0 A2E -+ S2E such that the sequence 0

 E?A2E -( S E 4 y5 is exact, unless 11 is the zero map.

 Proof. We seek a natural element of

 Hom(Hom(S3E, A 2E), Hom(E ( A 2E, S2E))

 which carries the building map c1 to the desired map b. Note that

 Hom(Hom(S3E, A 2E), Hom(E 0 A2 E, S2E))

 Hom(S3E*& ? 12E, E* 0 A2E* 0 S2E)

 S3E?A2E*0E*0A2E*0S2E

 Hom(A 2EOE? A2E, S3E(S2E)

 via natural isomorphisms. Consider the element of this final Hom group

 which sends (e1 A e2) 0 e3 0 (e4 A e5) to

 e 1 e3e4 (g e2e5 - e 1 e3e5 ? e2e4 - e2e3e4 ( e 1 e5 + e2e3e5 ( e 1 e4.

 I'll leave it to the reader to check that this element, considered as a trans-

 formation from Hom(S3E, A2E) to Hom(E?OA2E, S2E), sends a building
 map 'I in the local form of (3.4) to a map b which is locally in the form

 (z ? (z A w)) = -dz 2- 2azw - bw2

 b(w 0 (z A w)) = cz2 + 2dzw + aw2.

 This map b is injective because the local functions A = a2- bd, B

 ad - bc and C = d2- ac are not identically zero and they are the 2 x 2
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 TRIPLE COVERS IN ALGEBRAIC GEOMETRY 1135

 minors of the local matrix for Q. The image of b is in the kernel of Xl

 because of the identities dA - aB + bC = cA -db + aC 0. This

 proves the proposition. Q.E.D.

 4. The ramification and branch locus of a triple cover. To deter-

 mine the ramification for the triple cover fX -+ Y defined by the map

 S: 52E -+ (Dy ?E, I will work locally at first. Let ( y be a local integral k-
 algebra and let E be a free (Dy-module of rank 2, with basis {z, w}. Let

 0 :S3E -+ A2E build X, where c1 is given by (3.4). I will consider X as
 embedded in A2 X Y as in 2.8.2. Let

 A = a 2- bd,
 (4.1)

 B =ad - bc,

 and

 C = d2- ac.

 Then X c A2 X Y is defined by the three equations

 F(z,w)=z2 -az-bw-2A,

 (4.2)
 G(z, w) = zw + dz + aw + B,

 and

 H(z, w) = w2 -cz-dw-2C.

 Let

 P(z, w) = az + bw + A,

 (4.3) Q(z, w) = dz + aw + ? B9
 2'

 and

 R(z, w) = cz + dw + C.

 LEMMA 4.4. The ramification locus in X is defined by the ideal

 (P, Q, R) in Ox.
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 1136 RICK MIRANDA

 Proof. The ramification locus is the locus where the jacobian matrix

 for F, G and H with respect to the variables z and w does not have maximal
 rank. This matrix is

 (2z-a -bd)

 w +d z +a ,

 -c 2w-d

 and its 2 x 2 minors are

 (2z - a)(z + a) + b(w + d) = 2z2 + az + bw -A

 = 2F + 3P,

 (2z - a)(2w - d) - bc = 4zw - 2dz - 2aw + B

 = 4G-6Q,

 and

 (2w - d)(w + d) + c(z + a) = 2w2 + cz + dw - C

 = 2H+ 3R.

 Hence the ideal of the ramification locus is (2F + 3P, 4G - 6Q,

 2H + 3R) = (P, Q, R) in Ox. Q.E.D.

 Let

 D = B2-4AC

 = b2c2 - 3a2d2 + 4a3c + 4bd3 - 6abcd.

 LEMMA 4.5. The branch locus in Y of the triple cover is defined by
 D = 0.

 Proof. Let us work in the ambient space A2 X Y. By the previous

 lemma, any point of ramification in X must satisfy the linear equations

 P = Q = R = 0. These three equations in the two unknowns z and w have
 a solution in A2 if and only if the determinant
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 TRIPLE COVERS IN ALGEBRAIC GEOMETRY 1137

 d a -B =--D
 2 2

 c d C

 equals zero. Hence the branch locus is contained in the locus D = 0. An

 alternate proof of this is that because of the identities

 cA-dB + aC = dA-aB + bC = O,

 one can write D -1/2 (CP - BQ + AR), and so D is in the ramification

 ideal (P, Q, R).

 To show that if D = 0, then there is ramification of the triple cover, I

 must show that there is a solution to P = Q = R = 0 which satisfy F, G

 and H and so lies in X. There are several cases to consider. The rank of the

 above determinant is

 three if D * 0,

 two if D =O butoneofA,BorC * O,

 one if A= B =C=O butoneofa,b,cord O,

 and

 zero if a = b = c = d = O.

 Case 3. D * 0 at the closed point y E Y. Then there is no ramifica-

 tion over y and f: X -+ Y is etale at the three distinct points lying over y.

 Case 2. D = O but one of A, B, C * O at y E Y. Here, then, there is

 a unique solution (zo, wo) to the system P = Q = R = 0. There are several
 subcases to consider.

 Case 2A. D 0, A * Oaty. InthiscaseP = Q = Odefine(z0,wo)
 and therefore

 ZO = +KaA + B), and wo jdA--2B).
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 1138 RICK MIRANDA

 Note that since A * 0, the matrix (-a b/2) iS nonsingular, so that if z0a
 vO = 0, necessarily A = B = 0, a contradiction. Hence (z0, w0) * (0, 0).

 One can easily verify that (z0, w0) satisfy F, G and H; in fact, we have

 the identities

 A2F = (Az - (-aA + - B))(aP - bQ) -A2P + D

 A2G = (aP - bQ)(aQ - dP) + A2Q - (ab/4)D + (-aA + (b/2)B)(aQ
 - dP) + (dA - (a/2)B)(aP - bQ), and

 2 / / ~~~~a 0 a a2
 A2H = (Aw + (A- 2 B))(aQ-dP)-A 2R D,

 so that F, G and H vanish if P, Q, R and D do, and A * 0.

 A calculation shows that (z1, w) I (-2z0, -2wo) also satisfy F, G
 and H in this case:

 F(zl, w1) = 4z2 + 2azo + 2bwo - 2A

 = 4F(zo, wo) + 6P(zo, wo) = 0,

 G(zl, wl) = 4zowo - 2dzo - 2awo + B

 = 4G(zo, wo) - 6Q(zo, wo) = 0,

 and

 H(zl, w1) = 4wo + 2czo + 2dwo - 2C

 = 4H(zo, wo) + 6R(zo, wo) = 0.

 Since (z0, w0) * (0, 0), (z1, w1 ) * (z0, wo) and over y there is ramifi-
 cation of type (2, 1) :f :X Yis simply ramified at (z0, w0) and is etale at

 (z1, w1).

 Case 2C. D = 0, C 0. In this case Q R = Odefine (zo, w0),
 and

 ZO= C& B + aC), wo ( B - dC),
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 TRIPLE COVERS IN ALGEBRAIC GEOMETRY 1139

 with (zo, wo) * (0, 0). If (z1, w1) = (-2z1, -2w1), then both (zo, wo)

 and (z 1, w I ) lie on X andf: X -+Y is simply ramified at (z0, w0 ) and etale
 at (z1, w1).

 Case 2B. D = O,B * 0. SinceD =B2 - 4AC,AC * Otooso

 actually both of the above subcases hold. However, to be complete, P =

 R = 0 define (zo, wo), and

 11
 ZO = -(-dA + bC), wo = -(cA - aC),
 B B

 and (zO, wo) * (0, 0).

 Cases 1, 0. A = B = C = 0 at y. In this case there is no longer a

 unique solution to P = Q = R = 0 and one can't expect all solutions to lie

 on X.

 Claim. If A = B = C = 0 at y, the only point of X lying over y is

 (z, w) = (0, 0), and f: X -+ Y is totally ramified there.

 Proof of the claim. Under the hypotheses, z and w must satisfy

 z3= (z + a)F + bG and w3 = (w + d)H + cG,

 so that if F(z, w) = G(z, w) = H(z, w) = 0, necessarily z = w = 0. The

 point (0, 0) certainly satisfies P = Q = R = 0, so f: X -+Y must be totally
 ramified here.

 This completes the proof of Lemma 4.5. Q.E.D.

 COROLLARY 4.6. The locus in Y over which there is total ramifica-

 tion is defined by the ideal (A, B, C) in (Dy and is generally codimension

 two in Y.

 For a more global viewpoint, there is the following:

 PROPOSITION 4.7. Let f :X -+ Y be a triple cover with
 Tschirnhausen module E. Then the branch locus { D = 0 } in Y is a divisor

 whose associated line bundle is (A2E)2.

 Proof. Consider the multiplication map : S2E -+ ( ?E. This in-
 duces A30 : A3S3E -+ A3( (Y (E) which (locally) sends

 z2 A zw A w2 to D(l A z A w).
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 1140 RICK MIRANDA

 Hence {D = 0} is the zero locus of this map between two line bundles. In

 particular we can consider D as a section of A3S2E* 0 A3(O y SE). Since

 E has rank 2, A3S2E _ (A2E)3 and A3(Oy 0 E) -A2E; the result
 follows. Q.E.D.

 It is clear from the equation D for the branch locus that even when X

 and Y are smooth, {D = 0 } may be singular. This contrasts with the case

 of double covers where, if Y is smooth, then X is smooth if and only if the

 branch locus is smooth. More precisely, we have:

 LEMMA 4.8. Assume f: X -+ Yis a triple cover and X and Yare both
 smooth. Then the branch locus { D = 0 } is singular at a point p e Y if and

 only if there is total ramification over p, i.e., if A, B and C vanish at p.

 Proof. If there is only simple ramification over p, then locally on X

 the covering map is either etale or is analytically a double cover over Y.

 Therefore, since X and Y are smooth, the branch locus must be smooth.

 Conversely, if there is total ramification over p, then the local functions A,

 B and C must all vanish at p by (4.6), so D = B2 - 4AC is at least double

 at p. Q.E.D.

 Slightly more can be said about the precise nature of the singularities

 of the branch locus when both X and Y are smooth, especially in low di-

 mensions. I will defer this until the next section, in which explicit criteria

 are given for the nonsingularity of X, given that Y is smooth.

 5. The singularities of a triple cover. To analyze the singularities of

 the variety X, where f: X -- Y is a triple cover, I will again work locally on
 Y and in addition assume that Y is smooth at a point p. Choose a system of

 local parameters y = {Yi, .. ., y,, } at p.

 LEMMA 5.1. Assume that Xis defined by an equation of the form

 f(z) = z3 + g(y)z + h(y)

 as a subset of Al X Y, where g and h are regularfunctions on Yat p. Letm

 be the maximal ideal at p, and let d(y) = 4g(y)3 + 27h(y)2 be the dis-

 criminant function for f. Then X is singular over p if and only if either

 (a) g emand h em2, or

 (b) g 0 m but d E m2. (In this case necessarily h 0 m.)
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 TRIPLE COVERS IN ALGEBRAIC GEOMETRY 1141

 Proof. Assume (a). Then the equation f (z) defining X is in the

 square of the maximal ideal (z, m) in (DAI (D9 Y, so X is singular at the
 point z = 0 over p.

 Assume (b). Setz- - z + 3h(y)/2g(y). Then changing coordinates in

 A1 to z- transforms f (z) to

 3 9h 2 d hd

 2g ?4gZ 8g

 and so f is in the square of the maximal ideal (z, m) of (OAI (9 r. Therefore

 X is singular at the point z = -3h/2g over p.

 For the converse, assume X is singular at a point q over p; then neces-

 sarily d E m. Let mq be the maximal ideal of Ox at q.
 Assume g E m. Since d E m, this forces h em, and since f em 2,, z must

 be in mq. Therefore h = f-z3 - gz is in m2 and we have (a).

 Assume g 0 m. Make the change of coordinates to z- = z + 3h/2g,
 transforming f (z) to f (z) as above. Since d E m, f (z) has a double root at

 z = 0 and a single root at z- = 9h/2g over p. Therefore q is the point z- = 0

 over p, and z- E mq. Since f E m,

 hd - -3 9h -2 + d f
 2g 2g 4g2

 is in m2; since h and g are units at p, d E m2 and we have (b). Q.E.D.

 The above lemma is preliminary to the analysis in the general case.

 PROPOSITION 5.2. Assume f :X -- Y is a triple cover, locally de-
 fined at p E Yas a subset of A2 e Y by the three equations F, G and H as in

 (4.2). Let m be the maximal ideal of p. Then X is singular over p if and

 only if one of the following conditions hold:

 (i) a, b, c, d em

 (ii) a, c Em, b E m2

 (iii) b, d em, c em2

 (iv) b Om, A Em, bB -2aA E m2
 (v) c m, C Em, cB-2dC Em2

 (vi) b Cm, A Om, D em2
 (vii) co m, Co m, D em2.
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 1142 RICK MIRANDA

 Proof. Assume b 0 m. Then, using the equation F, one may solve for
 w in terms of z and X will be defined by the equation

 z- 3Az + (bB - 2aA) = 0

 (see Remark 2.8.1) as a subset of A1 X Y. Therefore, by the previous
 lemma, X is singular over p if and only if either

 -3A em and bB-2aA em2, or -3ACm and D em2,

 since 4(-3A)2 + 27(bB - 2aA)3 = 27b2D. In the first case we have (iv)
 and in the second case, (vi).

 If c 0 m, by symmetry X will be singular over p if and only if (v) or (vii)

 hold. Therefore let us assume that b and c are both in m. X will be singular

 over p if and only if the 3 x (n + 2) jacobian matrix of F, G and H with
 respect to the coordinates z, w, Y,. *, Ym has rank one at some point q
 over p. This matrix is

 2z-a -b (-2Ai - aiz -biw)

 w + d z + a (Bi + diz + aiw)

 -c 2w-d (-2Ci-ciz-diw)

 where ai, bi, . . ., etc., are the derivatives with respect to yi.
 Since b and c both vanish at p, the equations F, G and H can be easily

 solved for z and w over p; the three solutions are (z, w) = (-a, -d),
 (-a, 2d), and (2a, -d). SinceD must vanish atp forXto be singular over
 p, and D = -3a2d2 modulo m, we may assume either a E m or d E m.

 If a E m, then z = 0 over p and w = -d at the ramification point q
 over p. The jacobian matrix at q = (0, -d) over p is now

 0 o (3dbi)

 ( -3d (3ddi)/

 modulo m, so the vanishing of the 2 x 2 minors 9d2bi and -9d2(bid. -
 bjdi) is equivalent to the singularity of X at q. Assume d E m; this gives
 condition (i). If d 0 m, then bi E m for each i, so that b E m2; this is (ii).

 If a 0 m, then d E m and by symmetry we get condition (iii). Q.E.D.
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 TRIPLE COVERS IN ALGEBRAIC GEOMETRY 1143

 The seven conditions of Proposition 5.2 may seem a bit daunting at

 first. However, there is a simple and surprising corollary.

 COROLLARY 5.3. Assume the dimension of Y is at least 4. Then the

 general triple cover of Y is singular.

 Proof. Let 4D be a building map for a triple cover f :X -- Y and
 consider 4D as a section of the rank 4 bundle S3E* ? A2E. For general E,

 such a section will have a zero if dim Y > 4. Using the local description

 (3.4) for 4, one sees that a zero of 4 is precisely a point p E Ywhere a, b, c

 and d all vanish; by condition (i) of the proposition, X will be singular over

 such a p. Q.E.D.

 Note that there may well be special Tschirnhausen bundles E for

 which the general building map 4b has no zeros, so no singularity of the

 triple cover is forced in this case. If this is so, then necessarily the top chern

 class c4 of S3E* 0 A2E must vanish; a chern class computation shows that

 c4 (S3E*?A2E) = c2(E)(9c2(E) - 2c 1 (E)2).

 COROLLARY 5.4. Assume f: X -- Y is a triple cover with Ts-
 chirnhausen module E. If X and Y are both smooth, then

 c2(E)(9c2(E) - 2cI(E)2) = 0

 in the Chow ring of Y.

 Example 5.5. Let Y = pn, and letE = Op,,(-l)Op,,(-2). Iden-
 tifyingA2(Y) with Z, we have c2(E) = 2 and cl (E)2 = 9, so a triple cover

 with Tschirnhausen module E could be smooth. In fact, as we will see

 later, such covers are the cubic hypersurfaces in P'+1 and the covering
 map f is a projection from a point not on the cubic; certainly the general

 such cover is smooth.

 We are now in a position to analyze the singularities of the branch

 locus {D = } more closely. Let p E Y be a point over which there is total

 ramification of the cover f: X -+ Y and assume that X is smooth at the
 point q over p.

 LEMMA 5.6. With the above assumptions, the localfunctions b and

 c cannot both vanish at p.

 Proof. Assume b and c are both zero at p. Then, at p, A = a2,
 B = ad, and C = d2 all vanish by Corollary 4.6, so a and d must vanish at

 p. In this case X is singular over p, by Proposition 5.2(i). Q.E.D.
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 1144 RICK MIRANDA

 Let us assume that b is not zero at p; then, locally near p, we can solve

 for w in terms of z and X will be defined by an equation of the form z3 +

 g(y)z + h(y) = 0 over a neighborhood of p, as in Lemma 5.1.

 LEMMA 5.7. If m is the maximal ideal at p, then the localfunctions g

 and h are both in m and h m2.

 Proof. Since there is total ramification over p, the discriminant d

 4y3 + 27h2 E m2; by Lemma 5.1(b), g E m since X is smooth. Therefore,

 27h2 = d - 4g3 E m, forcing h e m also. However, h 0 m2 by Lemma
 5.1(a). Q.E.D.

 COROLLARY 5.8. Assume that f: X -- Y is a triple cover, X anid Y
 are both smooth, and p E Y is a point over which there is total ramifica-

 tion.

 (i) If the dimension of X and Y is one, then the branch locus

 {D = 0 } has an ordinary double point at p.

 (ii) If the dimension of X and Y is two, then the branch locus

 {D = 0} has a double point at p, with one tangent. Generally,

 {D = 0} has an ordinary cusp at p.

 Proof. If X is defined by an equation of the form z3 + gz + h = 0,

 then the branch locus is defined by d = 4g3 + 27h2 = 0 at p. By Lemma

 5.7, we may take h to be a local parameter for Y at p. If the dimension is

 one, then h must divide g so that d = h 2(27 + 4g') defines an ordinary

 double point at p. If the dimension is two, then d = 4g3 + 27h 2 is double

 at p with the one tangent h = 0. Generically, g will be another parameter

 at p, so the branch locus will have an ordinary cusp at p. Q.E.D.

 In the case of surfaces, even though the branch locus D is singular at a

 point over which there is total ramification, generically the ramification

 divisor R and the residual divisor Ro = f *D - 2R is smooth.

 LEMMA 5.9. Assume that f: X Y is a triple cover, X and Y are
 both smooth surfaces, and p E Yis an isolated singular point of the branch

 locus which is an ordinary cusp. Then both the ramification divisor R and

 the residual divisor R0 in X are smooth over p and they are tangent there.

 Proof. We may assume as above that X is defined by z3 + gz +

 h = 0. If d = 4g3 + 27h2 = 0 defines an ordinary cusp at p, then g and h
 must form a system of parameters for Y at p. The branch locus can then be

 parametrized near p by g = -3t2, h = 2t3 for some parameter t. The
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 TRIPLE COVERS IN ALGEBRAIC GEOMETRY 1145

 inverse image of this branch locus is now described by the equation z3 -

 3t2z + 2t3 = 0 over p which factors as (z - t)2(z + 2t) = 0. The ramifica-

 tion divisor is clearly the locus z = t and the residual divisor is the locus

 z = -2t (confirming the formulas determined in the proof of Lemma 4.5);

 both are smooth over p and they meet transversally. Q.E.D.

 6. The split case. In this section I will analyze the triple cover data

 in the case where the Tschirnhausen module E is split. Assume that E

 L-1 ?) M-1 where L and M are line bundles on Y. Then S3E L3 L 3
 L -2M-1 ?L -1M-2 ?)M-3 and A2E -1 (M 1, so that the building
 map 4b is a section of S3E* (? A2E -(L2 ?M-1) eL (?M?( (L -?&M2).
 If we choose a local basis z and w for E such that z generates L - and w

 generates M-1, then using the notation of (3.4) it follows that

 a eH0(L)

 (6.1) b E H0(L2 M1)

 c eH0(L-1 M2),

 and

 d E H?(M).

 Moreover, if X is to be irreducible neither b nor c can be identically

 zero; therefore,

 (6.2) L2>M and M2>L.

 The branch locus {D = 0 } is in this case a divisor whose line bundle is

 L2 (0 M2.

 7. The Galois case and normalization. Let f :X -+ Y be a triple
 cover which is the quotient of a ,U3 action on X. Such a cover will be called a

 Galois triple cover. Let P be a primitive cube root of unity, generating t,3.

 PROPOSITION 7.1. If f: X --Y is a Galois triple cover, then:

 (a) f*0Ox splits into eigenspaces as O y ?3L -l ?3M- 1 where ( y, L-
 and M-1 are the eigenspaces for 1, P and t2, respectively.

 (b) The Tschirnhausen module Efor f is the sum of eigenspaces

 L-1 (M-1.
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 1146 RICK MIRANDA

 (c) The building map b for f sends

 z3 to -b(z A w)

 w3 to c(z A w),

 and

 z2w and zw2 to 0,

 where z generates L- and w generates M-1 (locally) and b and c E (9 y.
 (d) The multiplication map 0: S2E -- (90y (DE has the form

 0(z2) = bw

 4 (zw) = bc

 O(W 2) = cz.

 Proof. It is clear thatf*(9x must split into eigenspaces for the action

 of A3 . Since f: X -- Y is the quotient space, the eigenspace for 1 is exactly
 (9 y. Both other eigenvalues ? and t2 must occur since if x is in Ox and is in
 the eigenspace for ?, then x2 is in the eigenspace for ?2 and vice-versa. This
 proves (a).

 To show (b), it suffices to prove that E is preserved by the I3 action; it
 must then be a sum of eigenspaces. Let z be in E, i.e., assume that the

 minimal cubic polynomial for z has the form z3 + rz + s. Then the mini-

 mal cubic polynomial for z = Vz is z-3 + (P2r)O + s, so z- is in E also.
 For the rest, work locally on Y; choose z E L -1 and w E M- 1 generat-

 ing E. Then z2 E M-1, zw E e y and w2 eL -1 since they are also eigenvec-
 tors. However, by Theorem 2.7. 1(b),

 z2 = az + bw + 2A,

 zw =-dz - aw - B,

 and

 w2 = cz + dw + 2C,

 with a, b, c and d E 9 y, so that necessarily a = 2A = -d =-a = d=

 2C = 0 or equivalently, a = d 0 O. This proves (c) and (d). Q.E.D.
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 TRIPLE COVERS IN ALGEBRAIC GEOMETRY 1147

 Note that the form of 7.1(c) for the building map 4D is exactly what is

 required to have 4D be compatible with the induced actions of t,3 on S3E
 and A2E.

 Definition 7.2. Galois triple cover data over Y consists of a pair of

 line bundles L and M on Y and two sections

 b EH0(L2?M-1), c EH?(L1 H ( M2).

 By the above proposition and the analysis of Section 6, the giving of

 Galois triple cover data over Y is equivalent to giving triple cover data over

 Y which build a Galois triple cover.

 The explicit local description of X in this case is quite simple:

 COROLLARY 7.3. If f:X - Yis a Galois triple cover and Yis affine,

 then X- Spec Oy[z, w]/(z2 - bw, zw - bc, w2 - cz).
 The analysis of singularities in the Galois case can be carried out more

 explicitly (and more simply) than in the general case.

 PROPOSITION 7.4. Let ODy be an integral k-algebra and let Ox =
 (Dy[z, w]/(z2 - bw, zw - bc, w2 - cz) for b, c E (Dy. Let Ky be the
 fraction field of ( y. Then

 (a) (Ox is an integral domain X b2c is not a cube in Ky X bc2 is not a

 cube in Ky.
 (b) The discriminant D = b2c2 defines the branch locus on Y.

 (c) Assume b2c is not a cube in Ky and that ( y is a U.F.D. Let D =
 bc. Then X is normal X D has no square factors.

 (d) Assume Y is smooth. Then X is singular X {D = O} is singular

 (scheme-theoretically).

 Proof. Assume (Ox is an integral domain and let Kx be its fraction
 field. The minimal polynomial of z over Ky is z3 - b2c; this must be irre-

 ducible, so b2c can't be a cube in Ky.
 If b2c is not a cube in Ky, then c * 0 and b2c = (bc2)2c -3; therefore,

 bc2 can't be a cube either.

 To finish the proof of (a), assume bc2 is not a cube. Then c * 0, and

 the minimal cubic polynomial w3 -b2 is irreducible over Ky. Therefore,

 Ky(w) is a field and since c * 0, z = c-1w2 and w are both in Ky(w), so
 (Ox C Ky(w). Therefore, Ox is an integral domain.

 Statement (b) is merely the definition of D given in Section 4. To

 prove (c), assume that bc has a square factor x2 where x is irreducible and

 is not a unit in (r . Since ( y is a U.F.D., there are three cases to consider.
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 1148 RICK MIRANDA

 Case 1. x2 divides b. Then (x-1z)2 = (x-2b)w inKx, sox- z is in

 the normalization (9x of Ox but is not in Ox.

 Case 2. x2 divides c. Then, as in Case 1, (x-1w)2 = (x-2c)z, so

 x- w is in (9x-9x.

 Case 3. x divides both b and c. Then (x-z)3 = (x-lb)2(x - lc) and

 (x - 1w)3 = (x -1b)(x -1c)2, so both x - lz and x - lw are in O-x - Ox
 For the converse, assume that p is in (9 - Ox. The action 3

 extends to (9x, which then splits into eigenspaces as 0 y L1 -I M- 1.
 Writing p = r + sz + twv- (where z and wv generate L - 1 and M 1, respec-

 tively), it is clear that one of z or wv must be in Ox - Ox. Hence we may
 assume that p = E. Since z E Kx, it must be a Ky-linear combination of
 w-1, z and z-1w. Write E = Pw-' + sz + i-1w, with r, s and [in Ky.
 Then E = (rz + sz2w + TW2)/zw = z * (F + sbc + tc)/bc so in fact

 E EKyz. Writez = (x-1y)z withx, y in (Dy. If x-lz is in Oxthen so isz,
 so we may assume z = x - lz. The minimal cubic polynomial for E is of the

 form Z3 - f for some f e (Dy since E is in the eigenspace for t. Therefore,
 b 2C = Z3 = X3(X 1Z)3 = x3f, So X3 divides b 2C, implying x2 divides bc
 where xl is a prime factor of x.

 The proof of (d) is a jacobian calculation. Let {Y1, ..., y,, } be local
 parameters at a point p E Y. Then X is singular at a point q over p if and

 only if the jacobian matrix

 2z -b (-biw)

 w z (-biC- bci)

 -c 2w (-ciz)

 has rank 1 at q where bi and ci are the derivatives of b and c with respect to

 yi. Since D must vanish at a singular point, either b or c must be zero; we
 may assume by symmetry that b = 0 at p. This forces z = w = 0 over p, so

 the top row of the above matrix is zero over p. Therefore, the matrix has

 rank 1 if and only if either c = 0 or (bc)i = 0 for every i at p. In our

 situation, if c = 0, then (bc)i = 0 for every i automatically and the result
 follows.

 An alternate proof is provided by using the conditions of Proposition

 5.2. In this casea = d =A = C = 0, andB = -bc = -D, so that the

 seven conditions of 5.2 reduce to the following three:
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 TRIPLE COVERS IN ALGEBRAIC GEOMETRY 1149

 (i) b, c Em

 (ii) b Om, c em2
 (iii) c Om, b Em2

 It is easy to see that these are equivalent to the single condition bc E m2
 which is (d). Q.E.D.

 The proof of (7.4c) actually indicates the normalization process, as
 follows.

 PROPOSITION 7.5. Let Y be a factorial variety over k and let line

 bundles L, M and sections b E H0(L2 (D M- 1), c E H?(L -1 0 M2) define
 Galois triple cover data over Y which builds the irreducible cover

 f: X -- Y. Let Db and D, be the divisors of zeros of b and c, respectively, so

 that Db + Dc is the divisor of bc = D. Define Lb and M, to be the largest
 effective divisors on Y such that 2Lb c Db and 2MC < DC; define N to be
 the largest effective divisor on Ysuch that 2N C Db + DC - 2Lb - 2M,.
 Writing Lb, Mc and Nfor the line bundles associated to these divisors also,

 let f, g and h be the sections of Lb, Mc and N defining these divisors. Then
 the Galois triple cover data given by the line bundles

 L =LL i'0N (9N-1, M= M?(MC-1 x N-1

 and the sections

 b=f-2gh-2beH0(L2?M- 1), fg-2h-1ceH0( -10M2)

 builds the normalization X of X.

 Proof. Locally, let z and w generate L-1 and M-1, respectively.
 ThenZ = f1h-lz and g-lh-lw generatesL- and M-1. More-
 over,

 Z2 = f-2h-2z2 = (f-2gh-lb)(g-lh-1w) =

 zw = f lg-Ih2zW = f -lg-1h-2bc = bc,

 and

 w2 = g-2h -2w2 = (fg-2h h1c)(f-1h'1z) = CZ,
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 1150 RICK MIRANDA

 so that the above Galois triple cover data builds a triple cover X to which

 the normalization of X maps. However, by the definition of Lb, M, and N,
 the function bc has no square factors locally, so this triple cover is normal

 by (7.4c). Hence X is the normalization of X. Q.E.D.

 Remark 7.6. In the special case when M = L2, one gets the more

 familiar construction of a Galois triple cover. In this case b E H0(O y), so if

 Y is complete, b must be constant. We can normalize b to be 1 and solve

 for w; then locally Ox is generated by 1, z and z2= w with the relation
 z3= c e H0(L3). Therefore, f X -- Y is completely specified by a line
 bundle L on Y and a section c of L3.

 If the triple cover f :X -1 Y is Galois and etale, and Y is complete,
 then it must be of the above form. For then both b and c are nowhere zero

 so both L2 (D M-1 and L-1 (0 M2 are trivial; this forces M = L2 and
 3 = c.

 8. Trisections of ruled varieties. Let Y be an irreducible k-variety

 and let F be a locally free rank 2 0 y-module. Let P = P(F) be the associ-
 ated projective line bundle with i: P -- Y as structure map. Let S be a
 divisor in P whose line bundle is Op(l).

 Assume thatX C P is a trisection of 7r and thatf = 7r X -* Yis flat

 so that f is a triple covering. As a divisor in P, X is linearly equivalent to
 3S + 7r*T for some divisor T on Y.

 PROPOSITION 8.1. In the above situation, the Tschirnhausen mod-

 ule for E is (F 0 A2F 0x 0 y(T))*.

 Proof. The exact sequence which defines Ox is

 0 9Op(-3) 0 wx*O y(-HT) 1Op 9x 0.

 Since 7r*(Op(-3) (8) 7r*Oy(-T)) = 0 and 7r*Op = Oy, one gets

 0 (Dy --: r* Ox -- (R1 r* 0p(-3)) 09y(-yT) 0

 after applying ir* and using the projection formula. Therefore, E-
 (R17r*0p(-3)) 0 Oy(-T) which is (F 0 A2F)* (D0 y(-T) by
 duality. Q.E.D.

 Note that if S is an effective irreducible divisor (which can always be
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 TRIPLE COVERS IN ALGEBRAIC GEOMETRY 1151

 achieved by tensoring F with a line bundle), then the restriction of X to S

 will be an isomorphism. In particular, 7r* (S -* wT) = T so that

 (8.2) Oy (T) = Oy(7r*(X * S)) 0 (A2F) -3

 since 7r* (S - S) _ A2F. Therefore, the Tschirnhausen module can also be
 realized as

 (8.3) E (FO&(A2F)200y(X))*

 where 0 y(X) is the line bundle of 7r (X * S).

 COROLLARY 8.4. Assume that X is a trisection of an affine line bun-

 dle V(L-1) for some L E Pic Y and that the structure map f: X -Y is a
 triple cover. Then the Tschirnhausen module for X is L -? 0L -2.

 Proof. By embedding V(L -l ) into P = P(0 y (3 L -1), we can con-
 sider X as a trisection of P which does not meet the section S at infinity.

 Hence, 0 y(X) - O y and the result follows from (8.3). Q.E.D.

 In the above situation, if Y is complete, then the section b E H0(L2 (D
 L -2) = H0(0 y) must be a constant; therefore, one can globally solve for w
 in terms of z. Hence X is given, as a subvariety of V(L- 1), by a single

 equation of the form z3 + rz + s 0 O where z is the global coordinate in

 the fibers of V(L-1).

 COROLLARY 8.5. Let X C pN+1 be a hypersurface of degree d 2 3.
 Let p E pN be a point of multiplicity d - 3 on X. (If d = 3, p is not on X.)

 Then projection from p gives a triple cover f X pN (where X is the
 proper transform of X in the blow-up of pN+ 1 at p) and the Tschirnhausen

 module for f is

 E _OpN(2 - d) & pN(l- d).

 Proof. Let pN 1 be the blow-up of pN+ 1 at p; then pN+l is naturally

 the P 1 -bundle P =P(OpN DOpN(-1)) over pN in which X sits as a trisec-
 tion. The intersection of X with the canonical section S in 9p (1) is a hyper-

 surface (in S _ pN) of degree d - 3. Therefore, by (8.3), E -[[OpN )
 OpN(-1)] 0 OpN(2) 0 OpN(d - 3)]*, which gives the result. Q.E.D.

 9. Triple covers of curves and trigonal curves. In this section I will

This content downloaded from 
�������������129.82.95.71 on Fri, 22 Apr 2022 22:24:58 UTC�������������� 

All use subject to https://about.jstor.org/terms



 1152 RICK MIRANDA

 restrict myself to triple covers f: X -+ Y between smooth curves. If E is the
 Tschirnhausen module forf, then the degree of the ramification divisor on

 X is the degree of the branch locus on Y, and therefore it is the degree of

 (A2E)-2. Hence, by the Hurwitz formula,

 2g(X) - 2 = 3(2g(Y) - 2) + degree(A2E),

 or

 (9.1) g(X)= 3g(Y) - 2 + degree(A2E)1,

 where g(X) and g(Y) are the genera of X and Y, respectively.

 Let us specialize to the case of trigonal curves, i.e., triple covers of P1.

 In this case the Tschirnhausen module E must split as E _ /9pl(-m) ?

 pci (-n) (i.e., E is of type (m, n)), so the analysis of Section 6 applies with
 L = (Op (m) and M = (Op (n). By (6.1), the local functions a, b, c and d
 are forms of degrees n, 2n - m, 2m - n and m, respectively; moreover,

 n c 2m and m s 2n by (6.2) and the branch locus is of degree 2(m + n).

 This forces m 2 0 and n 2 0 with m = 0 X n = 0. However, if m =

 n = 0, then the local functions a, b, c and d must be constants and the

 cover X is pulled back from a triple cover of Spec k, so cannot be irreduc-

 ible. Therefore,

 (9.2) m > 0, n > 0, m c 2n, and n < 2m.

 Since A2E = (p (-m - n), the genus of the cover X is

 (9.3) g(X) = m + n-2.

 It is a result of Petri that all trigonal curves lie on scrolls [3]. Assume

 that X is trigonal and that X is a trisection in Fk = P(OpI ?) (Opl(-k)),
 with k 2 0. Write X - 3S + i-*T as in Section 8, where T is a divisor on

 P1 of degree t and assume that the Tschirnhausen module for X is
 Op (-im) ? (pI(-n), with m < n. Then, by (8.1),

 (9pi(m) O9pi(n) _Opi ((9 Opl (k ( p-k)(t (- p(t)

 O(p1i(t -2k) () /9p i (t -k),
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 TRIPLE COVERS IN ALGEBRAIC GEOMETRY 1153

 so that

 m = t-2k, n t t-k, and k=n-m, t = 2m-n.

 The conditions (9.2) on m and n are equivalent to

 (9.4) either k = 0 and t 2 1, or k > 1, t 2 3k.

 These conditions are, of course, exactly the conditions for which an irre-

 ducible curve in the class of 3S + -r*T exists in Fk.

 The number of moduli for trigonal curves with E- (pl(- m) ?

 Opl(-n) can be computed as dim HO(S3E*?A2E) - dim Autpi(E) -

 dim Autk(P1), considering the building map 4b as a section of S3E* ( A2E.

 Since S3E*(OA2E= Opi(m) ?) Op/1(2m - n) Op/1(2n - m) Op/1(n),
 dim Autpl(E) = 4 (if m = n) or n - m + 3 (if m < n), and dim

 Autk (P 1) = 3, we have

 (9.5) the number of moduli of trigonal curves with E of type (m, n)

 (2(m + n)-3 if m = n

 (3m +n-2 if m <n.

 For fixed genus g, the bundles E with fixed m + n which are most

 general are those with minimum n - m. Hence, for even genus g = 2p,
 the most general trigonal curve of genus g has m = n = p + 1; for odd

 genus g = 2p + 1, the general curve has m = p + 1, n = p + 2. Using

 (9.5), the number of moduli for the general trigonal curve of genus g is

 equal to 2g + 1 in either case.

 Of course, this is the moduli of the covering map f: X - P1, not just
 the curve X. Even for X = P 1 there is one modulus for this problem. For
 low values of g, the moduli can be seen quite geometrically.

 If g = 0, the map f: P1 -+ P1 will have 4 branch points; the cross-
 ratio of these 4 points is a function of the modulus.

 For g = 1, every elliptic curve X should be trigonal in dimension 2

 ways since the moduli space for the curves themselves has dimension 1. To

 see this more geometrically, let N be the line bundle associated to the triple

 cover f: X - P 1. The degree of N is three and since all degree 3 line bun-
 dles on X are equivalent under the action of internal translation of C, there
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 1154 RICK MIRANDA

 is no moduli for N. The map f is obtained by using the sections of N to map
 X to P2 and then projecting X from some point p E p2 to a line. It is the

 point p which has two moduli.

 If 2 s g c 4, then 2g + 1 > 3g - 3, so the general curve of genus g

 should be trigonal in dimension (2g + 1) - (3g - 3) = 4 - g ways.

 If g = 2, any divisor on X of degree 3 maps X to P 1 and the 2 moduli

 come from the jacobian variety of X which parametrizes line bundles of

 degree 3.

 If g = 3, the general curve X should be trigonal in dimension 1 ways.

 If X is nonhyperelliptic, these ways are parametrized by the points of X;

 given a point p E X, embed X into P2 canonically as a quartic and project

 from p to a line.

 If g = 4, one expects only a finite number of trigonal structures on the

 general curve X. As is well known [1], there are two: the canonical model of
 X sits in P3 as a curve of type (3, 3) on a quadric Q, and the two rulings of

 Q give two g' s on X.

 If g 2 5, the general curve of genus g is not trigonal. However, the

 following classical result should be clear.

 PROPOSITION 9.6. The moduli space of trigonal curves of genus g is

 connected and unirational.

 Proof. An open set of this locus is covered by an open set of

 P(H0(S3 E* A2E)), where E is of type (m, n) and m and n are chosen to

 minimize In - m subject to m + n - 2 = g. Q.E.D.

 Note that in the case g = 1, the coverf : X - P 1 can be the quotient of

 a /A3 action if and only if j (X) = 0, where j is the elliptic modulus. In such
 a case, if f is represented as the projection of the cubic curve X from a point

 p not on X, then the three ramification points of f must be flexes of X and

 the three flexed lines are concurrent at p. Hence, we have recovered the

 following well-known proposition.

 PROPOSITION 9.7. Three flexed lines to a smooth cubic X c p2 are

 concurrent if and only if X is the Fermat cubic.

 10. Triple covers of surfaces. Let f : X -+ Y be a triple cover. In this
 section I will assume that X and Y are smooth complete surfaces. More-

 over, I will restrict the discussion to general triple covers, by which I mean

 thatf has no total ramification in codimension one and that the only singu-

 lar points of the branch locus D are ordinary cusps. The goal is to compute
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 TRIPLE COVERS IN ALGEBRAIC GEOMETRY 1155

 the standard invariants of X in terms of those of Y and the Tschirnhausen

 module E. Let ci denote the ith chern class of E.

 LEMMA 10.1. The number of cusps of the branch locus D is 3 degree

 c2(E).

 Proof. Let I be the ideal sheaf of the points of Y over which there is

 total ramification. By Corollary 4.6, I is locally generated by A, B and C

 and is exactly the image of 0 1: S2E 9y. Therefore, by Proposition 3.9
 we have an exact sequence

 0 -- E(A2E -S2E -52 I -0,

 so the chern polynomial ct(I) is the quotient ct(S2E)/ct(E (0 A2E) in the
 Chow ring of Y. A computation shows that

 ct(S2E) = 1 + 3cIt + (2c2 + 4c2)t2

 and

 ct(E & A2E) = 1 + 3cIt + (2c2 + c2)t2.

 Long division gives ct(I) = 1 + 3c2t2; since the number of cusps of D is
 the degree of c2(I), the result follows. Q.E.D.

 Let R be the ramification divisor and R 0 = f*D - 2R be the residual

 divisor on X. By Lemma 5.9, they are both smooth and therefore they are

 both isomorphic to the normalization of D. In the following, I will abuse

 notation and consider elements of the codimension two-piece Chow ring of

 Y as integers via the degree map.

 LEMMA 10.2. The genus of R is 2c2 - cjKy + 1 - 3c2.
 Proof. The arithmetic genus of the branch locus D is

 Pa (D) = 2(D 2 + DKy) + 1
 2

 by Riemann-Roch; since D = -2cI by Proposition 4.7, and since the ge-
 nus of R differs from the arithmetic genus of D by the number of cusps, the

 result follows from the previous lemma. Q.E.D.

 I will use the standard notation for invariants of curves and surfaces in

 what follows.
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 1156 RICK MIRANDA

 PROPOSITION 10.3. The following formulas compute the standard

 invariants of X.

 (i) h'(Ox) = h'(0 y) + h'(E) for i > 0.

 (ii) X(Ox) = X(Oy) + X(E) = 3X(Oy) + (1/2)c2 - (1/2)c1Ky -
 C2.

 (iii) K2 = 3K 2 - 4c1Ky + 2c2 - 3C2.

 (iv) e(X) = 3e(Y) - 2c1Ky + 4c 2-9c2.

 Proof. The first statement follows from the splitting f* Ox = (9 Y
 E and the finiteness of f. Statement (ii) is Riemann-Roch for the bundle E

 which calculates x(E). By decomposing X into strata, one sees that

 e(X) = e(X - f-1(D)) + e(f 1(D) - R) + e(R).

 Since f:X - f1(D) -+ Y - D is an unbranched cover,

 e(X-f - 1(D)) = 3e(Y - D) = 3(e(Y) - e(D)).

 The stratum f -1(D) - R is the residual divisorR0 minus the 3c2 points of

 total ramification; hence, e(f 1(D) - R) = e(R0) - 3c2 = e(D) - 3c2.

 In addition, e(R) = e(D) = 2 - 2(2c2 - c1Ky + 1 - 3c); putting this
 together yields

 e(X) = 3e(Y) - e(D) - 3c2

 = 3e(Y) - 2 + 4c2 - 2c1Ky + 2 - 6C2- 3C2

 = 3e(Y) - 2c,Ky + 4c 2-9c2.

 The final statement (iii) follows from (ii) and (iv) using Noether's

 formula. Q.E.D.

 If y = p2 and the Tschirnhausen bundle is split, we have the follow-
 ing corollary.

 COROLLARY 10.4. Assume that f:X p_ P2 is a triple cover with
 Tschirnhausen module eDp2(-m) e p2(- n). Then

 (i) q(X) = 0

 (ii) pg(X) = 1/2(m2 + n2 -3m - 3n) + 2
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 TRIPLE COVERS IN ALGEBRAIC GEOMETRY 1157

 (iii) K2 = 2(m + n - 3)2 - 3(mn - 3)

 (iv) e(X) = 9 + 4(m + n)2 - 6(m + n) - 9mn.

 As in the case of curves, for'low values of m and n these surfaces are

 quite familiar.

 Table 10.5

 Invariants of triple covers of p2, with E of type (m, n)

 m n pg (X) K2 e(X)

 1 1 0 8 4

 1 2 0 3 9

 2 2 0 -1 13

 2 3 1 -1 25

 2 4 3 3 45

 3 3 2 0 36

 3 4 4 5 55

 If (m, n) = (1, 1), the surface X is the Steiner cubic in P4 and the

 triple cover map is projection. If (m, n) = (1, 2), X is a cubic hypersurface

 in P3 (as Corollary 8.5 indicates).

 If (m, n) = (2, 2), the surface X is the blow-up of P1 X P1 at nine

 points; the map to the plane is given by curves of bidegree (2, 3) through

 the nine base points. When (m, n) = (2, 3), X is a quartic surface blown up

 at one point and the map is projection from the point. When (m, n) =

 (2, 4), X is a surface of general type with pg = Kk = 3 andf is the canoni-
 cal map. In the (3, 3) case, X is an elliptic surface over P1 (the elliptic
 structure being given by the canonical map) and the triple covering is de-

 fined by a linear system of genus 4 trisections of the elliptic structure. If

 (m, n) = (3, 4), X is a quintic surface in P3 with a double point p andf is

 projection from p.

 Of course, there are other familiar bundles on p2 which could be used

 to construct triple covers. As an example, we have the following calcula-

 tion.

 COROLLARY 10.6. Assume that f :X -_ p2 is a triple cover with
 Tschirnhausen module Ip2(-m), with m 2 0. Then
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 1158 RICK MIRANDA

 (i) q(X) = O if m > 1; q(X) = 1 if m = 0.

 (ii) Pg(X) = m - 2 if m > 1; pg(X) = Oif m = 0.
 (iii) K2 = m(5m -9).

 (iv) e(X) m(7m + 9).

 When m 0, X is a ruled surface and when m = 1, X is the 13-fold

 blow-up of the plane, mapped to p2 via quartics through 13 base points

 which impose only 12 conditions on quartics.

 I will close with a brief sketch of a construction of surfaces of general

 type X which have c /c2 arbitrarily close to the upper bound 3 [2]. The

 construction is iterative; assume that the surfaceXN has been built. Let EN

 be a rank two bundle onXN such that cl (EN) =-3KXN , and c2(EN) =

 4K2N. Let bN:S3EN-- A2EN be a building map, and let XN+l be the
 triple cover of SN which 4IN builds. By Proposition 10.3, K2N?I = 21K N2

 and e(XN+l) = 6KXN + 3e(XN). If abN = KkN/e(XN), then NN+
 7cYN/(2cYN + 1). As N -? Co, aN+1 I 3 monotonically from below.

 There is no trouble in constructing the bundles EN with the proper

 chern classes; see [1], page 731, for example, the weakness of this method

 is that I have not yet been able to show that sufficiently general building

 maps IN exist, to ensure that XN+1 is a smooth surface.

 COLORADO STATE UNIVERSITY
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