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TRIPLE COVERS IN ALGEBRAIC GEOMETRY

By Rick MIRANDA*

1. Introduction. The main purpose of this article is to develop the
foundations of the theory of triple coverings in algebraic geometry, i.e. flat
finite maps of degree 3 between irreducible varieties over an algebraically
closed field k. The approach is ‘“‘from the bottom up,” i.e., given a variety
Y, what data is required to construct a triple cover of Y? Theorem (3.6) is
essentially the following.

THEOREM 1.1. A triple cover of Y is determined by a locally free
rank 2 Oy-module E and a map ®:S°E — A’E, and conversely.

The above result is in the spirit of the corresponding statement for
double covers, namely that a double cover of Y is determined by a line
bundle L on Y and a divisor D € | L ~2| (D is the branch locus of the cover).
Double covers have been used in a variety of ways to understand and con-
struct varieties and it is my belief that triple covers will play an increasingly
important role in this area as their properties become better understood.

The following results are obtained as corollaries to the general theory.

THEOREM 1.2. The general triple cover in dimension =2 has a sin-
gular branch locus.

THEOREM 1.3.  The general triple cover in dimension =4 1is singular.

THEOREM 1.4. The moduli space of trigonal curves of genus g is
connected, of dimension 2g + 1, and is unirational.

The final sections of the article are devoted mainly to the computation
of the standard invariants of varieties which are triple covers, especially
curves and surfaces. As one application, I propose a method for construct-
ing surfaces of general type with K2 arbitrarily close to 3e(X).

2. The local analysis. Let k be an algebraically closed field of char-
acteristic unequal to 2 or 3. Let Oy be a local k-algebra which is an integral
domain. Let Oy be a flat O y-algebra which is integral over Oy of rank 3.

Manuscript received June 6, 1983.
*Partially supported by NSF Grant No. MCS-82-02021.
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1124 RICK MIRANDA

Assume that Oy is also an integral domain. Oy naturally sits inside Oy,
and every a € Ox — Oy will satisfy a unique irreducible monic cubic poly-
nomial p,(x) over Oy.

Definition 2.1. The minimal cubic polynomial of a € O is the poly-
nomial p,(x)ifa ¢ Oyandis (x — a)’ifa € Oy.

LemMMA 2.2. Oy naturally splits as Ox = Oy @ E, where E is the
submodule of O consisting of those elements whose minimal cubic poly-
nomial has no square term.

Proof. For any a € Oy, write its minimal cubic polynomial as x> +
ca(a)x? + ¢y(a)x + co(a); define a map « from Oy to Oy by sending a to
—c,(a)/3. It is clear that « is the identity on Oy and the kernel of « is
precisely E. It remains to show that « is an O y-linear homomorphism. It
suffices to prove this after passing to the fraction fields Ky and Ky of Oy
and Oy, respectively, where we make the analogous definitions. In this
case K x is an extension of Ky of degree 3 and so Ky = K y(e) for some e €
Kx — Ky. Byreplacinge by e + c,(e)/3, we may assumee € E. Lete’ =
e? + 2¢(e)/3. A computation shows that e’ eE:(e’) — (ci(e)®/3)e’ —
(co(e)? + 2c,(e)3/27) = 0. Note that K is generated as a vector space
over Ky by 1, e and e’. A further calculation shows that for y, € Ky,

Yot yie+ ye’€E & yy=0,

and so the projection map is the map sending y, + y,e + ye’to ygandis
therefore K y-linear. Q.E.D.

The projection of Oy onto Oy is 1/3 of the trace map, and E is the
submodule of “‘trace-zero”” elements of Ox. The projection of Oy onto E is
given by the well-known Tschirnhausen transformation, or ‘‘completing
the cube”; if the minimal cubic polynomial for a € Oy is x° + c,x? +
cix + ¢y, send a to a + ¢,/3. For this reason I will call E the
Tschirnhausen module of O over Oy; it is a free O y-module of rank 2.

The multiplication in Oy is given by an O y-linear map Ox Qo, Ox —
Ox; since Oy = Oy @ E, this map can be rewritten as a map
(OyRo, Oy) DOy Ro, £) D (ERp, Oy) D(ERp, E) > Oy DE. The
first three coordinates of this map define the multiplication in Oy and the
left and right O y-module structure on E, respectively, and so are already
determined. The fourth coordinate is a map E ®p, E = Oy @ E, which
must factor through the second symmetric power S2E of E if the multipli-
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TRIPLE COVERS IN ALGEBRAIC GEOMETRY 1125

cation in Oy is to be commutative. Conversely, any Oy-linear map
¢:5? E = Oy @®E will define a commutative multiplication on Oy which is
Oy-linear. However, there are conditions on ¢ in order that the multiplica-
tion be associative and that the submodule E of Oy be the Tschirnhausen
module of Oy over Oy. To analyze these conditions, choose a basis {z, w}
for E as a free Oy-module. The induced basis of S*E is {z?, zw, w?}, and
so the map ¢ takes the form

¢(z?) =g+ az + bw
2.3) o(zw) = h + ez + fw
dw?) =i+ cz + dw

wherea, b, ...,iarein Oy.

LeMMA 2.4. The map ¢ induces an associative multiplication on Oy
if and only if

g =be + f* — af — bd, = bc — ¢f,

and

i =e?+ cf — ac — de.

Proof. Associativity will follow from the associativity of the triple
products in S°E, which is generated by z°, z?w, zw? and w?. Since the
multiplication is already commutative and there is only one way to write z3
and w® as products, associativity is equivalent to the satisfaction of the
equationsz - zw = w-z2and z - w? = w - zw in O. Using (2.3) to compute
these products via ¢, one finds that

zozw = (eg + fh) + (h + ae + ef)z + (be + 2w,
w-z2 = (ah + bi) + (ae + bc)z + (g + af + bd)w,
z-w? = (cg +dh) + (i + ac + de)z + (bc + df)w,
and
wezw = (eh + fi) + (€2 + ¢f)z + (b + ef + df)w.
This content downloaded from
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1126 RICK MIRANDA

Equating the corresponding coefficients of z and w in the above equations
leads to the conditions of the lemma. Moreover, these values for g, # and {
imply the equality of the O y coordinates above automatically, so no further
conditions are necessary. Q.E.D.

COROLLARY 2.5. A commutative and associative O y-algebra struc-
ture on Oy = Oy @ E is equivalent to an O y-linear map ¢,:S*E — E.

Proof. The equations of the previous lemma imply that the map ¢ is
determined by its second coordinate ¢,. Q.E.D.

LEMMA 2.6. A map ¢ :S*E — E in the form of (2.3) induces a multi-
plication on Oy for which E is the Tschirnhausen module for Oy over Oy if
andonly if f = —aand e = —d.

Proof. The submodule E of O @ E will be the Tschirnhausen mod-
ule if and only if the minimal cubic polynomials of the generators z and w
of E have no square term; this means that z° must be in the O y-span of 1
and z, and w> must be in the O y-span of 1 and w. Using (2.3) to compute
z% and w®, one finds that

z3 = (ag + bh) + (g + a* + be)z + (ab + bf)w,
and

ws = (ch + di) + (ce + cd)z + (i + cf + dP)w.

Hence, b(a + f) =cle +d) =0inOy. If b = 0, thenz?> = g + azin Oy
and so z would satisfy a monic quadratic polynomial over Oy ; after passing
to the fraction fields, z would generate an intermediate quadratic exten-
sion of K y under the cubic extension K y, a contradiction. Hence, b # 0,
and a similar argument with w shows that ¢ # 0. Since Oy is an integral
domain, we must havea + f =e +d = 0. Q.E.D.

The previous lemmas give all the conditions on the multiplication
in Ox.
THEOREM 2.7. Assume that Oy is a local k-algebra which is an inte-

gral domain.

2.7.1. Let Oy be aflat O y-algebra, which is an integral domain, and
integral over Oy of rank 3. Then

(a) Ox = Oy @ E where E is the free rank 2 Oy-submodule of Oy

This content downloaded from
129.82.95.71 on Fri, 22 Apr 2022 22:24:58 UTC
All use subject to https://about.jstor.org/terms



TRIPLE COVERS IN ALGEBRAIC GEOMETRY 1127

consisting of elements whose minimal cubic polynomial has no square
term.

(b) The multiplication in Oy is determined by an O y-linear map
¢:S*E > Oy@DE. If {z, w}are a basis of E over Oy, then ¢ is of the form

é(z%) = 2(a®> — bd) + az + bw
d(zw) = —(ad — bc) — dz — aw
d(w?) = 2(d? — ac) + ¢z + dw

where a, b, c and d are in Oy and be # 0. The map ¢ is determined by its
second coordinate ¢,:S’E — E.

2.7.2. Conversely, given a free rank 2 Oy-module E with basis
{z, w}, let ¢5:S’E — E be of the form

$,(z%) = az + bw
¢r(zw) = —dz — aw
dr(w?) = cz + dw

for a, b, ¢ and d in Oy with bc # 0. Then the map ¢:S*E = Oy D E
defined as in (2.7.1(b)), whose second coordinate is ¢, induces a commu-
tative and associative O y-algebra structure on Oy = Oy @ E making Oy
into a flat and integral Oy-algebra of rank 3, for which E is the
Tschirnhausen module.

Proof. The first part now follows by writing g, £ and { in terms of «,
b, ¢ and d using Lemmas 2.4 and 2.6. The converse also follows from the
lemmas; in fact, one need not have bc # 0 for the converse, but it follows
from the arguments in the proof of Lemma 2.6 that if either b or ¢ is zero,
then Oy is not an integral domain. Q.E.D.

Remarks.

2.8.1. It does not seem easy to give a simple criterion in terms of a,
b, ¢ and d for Oy to be an integral domain. If b # 0, we may tensor with
K y and solve for w in terms of z using the equation for é(z%). Then © xisan
integral domain if and only if the minimal cubic polynomial
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1128 RICK MIRANDA

23 4+ 3(bd — a®)z + (Babd — 2a°® — b%c)

is irreducible over Ky. If ¢ = 0, it is not; z + a is a factor. However, there
may be other values of ¢ for which it is also reducible.

2.8.2. If we think of z and w as variables over Oy and let

F(z, w) = z* — az — bw — 2(a? — bd),
Gz, w) =zw + dz + aw + (ad — bc),

and
H(z, w) = w? — ¢z — dw — 2(d*® — ac),

then Oy can be thought of as the quotient ring Oy [z, w]/(F, G, H). f X =
Spec Ox and Y = Spec Oy, then X is embedded as a codimension 2 subva-
riety of A%; since Oy is free over Oy, it is Cohen-Macauley over Oy and
therefore the embedding of X into A% should be determinantal [4]. In our
case this representation is easy to see; F, G and H are the 2 x 2 minors of

<z +a w—2 c >
b z—2a w+d

3. The global analysis. Let f:X — Y be a flat, finite map of degree
3 between irreducible k-schemes X and Y. I would like to use the results of
the previous section to understand and construct such maps from a more
global viewpoint. For this purpose I need to eliminate, in the local case, the

dependency of the description of the relevant maps ¢, ¢; and ¢, on the
choice of basis for the Tschirnhausen module E.

Definition 3.1. Let E be a locally free rank 2 Oy-module. A homo-
morphism ¢,:S%E — E is a triple cover homomorphism if it is locally of
the form

¢2(22) = az + bw

3.2) ¢y(zw) = —dz — aw
¢2(w2) =cz + dw
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TRIPLE COVERS IN ALGEBRAIC GEOMETRY 1129

for some (local) basis {z, w} of E over Oy. The set of triple cover homomor-
phisms will be denoted by TCHom(S ’E, E).

It is not difficult to check that the above local form for a map
¢,:S’E — E is independent of the choice of basis and that
TCHom(S?E, E) is a linear submodule of Hom(S2E, E).

PropositioN 3.3. There is a natural isomorphism between
TCHom(S?E, E) and Hom(S*E, A’E).

Proof. Assume ¢, € TCHom(S 2E, E) is in the above form with re-
spect to a basis {z, w} of E. The induced map

¢, Qid
S)]EQE —> EQE —> AE

sends z2®z to —hb(z A w), zZ2ZQ@w and zw ® z to a(z A w), zw @ w and
wi®zto —d(z Aw), and w?>@w to c¢(z A w). Hence, it factors through the
canonical map from § 2E QE to SE (which identifies z> @w and zw ®z as
22w and zw @ w and w? ® z as zw?), and induces a map & :S°E > A’E
which is the image of ¢, under the isomorphism.

The inverse isomorphism is constructed as follows. We seek a natural

element of
Hom(Hom(S3E, A’E), Hom(S?E, E))

which is an isomorphism onto TCHom(S2E, E). Note that
Hom(Hom(S*E, A’E), Hom(S?E, E)) = Hom(S°E*® A’E, S’E*QE)
=S’ EQAE*Q S E*QE
= Hom(A’E ® S*E, E® S°E).

The desired element here is the map sending e; A e, @ ezesin A2ERQ S ’E
toe; Rejezes — e;Xeezey, where e; € E. In this form it is apparent that
the isomorphism does not depend upon a choice of basis for £ and is there-
fore natural. To check that this does map Hom(S’E, E) isomorphically
onto TCHom(S2E, E) and is the inverse of the map above, choose a basis
{z, w} for E. Write ¢, as in (3.2). Then the induced map & : S°F —» A’E is
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1130 RICK MIRANDA
d() = —b(z Aw)
®(z2w) = alz A w)
3.4
tI)(zwz) = —d(iEzAw)
d(w3) = c(z Aw).
Conversely, the natural transformation given above sends

CAWRzZZ to zQz*w —w®:z®,

CAWRzw to z®zw? — w® 22w,
and

CAWRwW? to zQw’ — w®zw?
as an element in Hom(A2E ® S2E, E ® S°E), and is therefore the element
CAWFRE*RERzw —w®z%)
+ EAWFR W ® (z®zw? — w®zw)
+ EAWFQ W Rz Qw® — w®:zw?)

in A2E*®S2E*®E RS°E, using the obvious notation for the dual bases.
As an element in Hom(S3E* ® A%E, S’E* @ E), it sends

EFREAw) to —ED*Qw,
EwFER @AW to )Rz — (w)*@w,
@) Q@ Aw) to (w*Rz — W)H*Qw,
and
WFR @z Aw) to WiEe:
If & is in the form of (3.4), then it is the element (—b(z*)* + a(z*w)* —
This content downloaded from
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TRIPLE COVERS IN ALGEBRAIC GEOMETRY 1131

dewh* + c(w’)*) @ z A w in S3E* @ A2E, so the image of ® under the
natural transformation is bz2)* @ w + a(E)* R z — (zw)* @ w) —
d(zw)* @z — WH*R@w) + c(w?)* ®z in S2E*Q E. As an element in
Hom(S2E, E), it sends z2 to az + bw, zw to —dz — aw, and w? to
cz + dw; therefore, it is the desired map ¢,. Q.E.D.

PropositioN 3.5. There is a natural transformation from
TCHom(S2E, E) to Hom(S2E, Ovy) which sends a map ¢, in the form of
(3.2) to a map ¢ which has the form

¢1(z%) = 2(a® — bd)
¢1(zw) = —(ad — bc)
¢ 1(w?) = 2(d* — ac),

L.e. ¢y Is the first coordinate of the multiplication map ¢ for Oy @ E.

Proof. The map ¢, induces a map A2¢,: A2S?E — A’E, or equiva-
lently a map'a :A%S?E @ A’E* > Oy. The desired map ¢; is then the
composition of « with a natural transformation in Hom(S ’E s A%S’E X
AE® = Hom(AzE ® S2E, A’S’E). This transformation sends
(e1 Ney)Rejzesto —(ejez3 ANesey + ejeq Aeges). If ¢, is in the form (3.2),
then A2, sends

ZZAzw to (—a®+ bd)z Aw,

z2Aw? to (ad — bc)z A w,
and

wAw? to (—d?+ ac)z A w;
therefore, « is the map sending
CEAzw)RGE Aw)* to bd — a?,

EAWHRGE AW to ad — be,
and

Ew Aw) Rz Aw)* to ac — d2.
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1132 RICK MIRANDA

The natural transformation above sends

22 to —@E*Azw + 22 Azw) @ (2 A w)k = —2(z2 A zw) ® (z A w)¥,
2w to —EZAW+zw Azw) @z Aw)* = —(22 Aw?) ® (z A w)¥,
and
w2 to —@w AW+ zw AW @G Aw)E = —2@Ew A w?) @ (z A w)*.

Hence the composite map with « sends
z2 to 2(a® — bd),

zw to —(ad — bc),
and

w? to 2(d? — ac),

and is exactly the desired map ¢ :S*E = Oy. Q.E.D.

Because the relevant maps are now described without coordinates, us-
ing natural transformations, the local analysis of Section 2 ‘sheafifies’ to
give the following theorem.

THEOREM 3.6. Let f:X — Y be a flat finite map of degree 3 be-
tween irreducible k-schemes. Then

(@) f$Ox = Oy @ E where E is the locally free rank 2 O y-submodule
of Oy consisting (locally) of elements whose minimal cubic polynomial has
no square term. E will be called the Tschirnhausen module for f: X — Y.

(b) The multiplication in Oy is determined by a map ¢:S’E = 0,®
E whose second coordinate ¢, is a triple cover homomorphism and whose
first coordinate ¢ is the image of ¢, of the natural transformation from
TCHom(S2E, E) to Hom(S2E, Oy) given in Proposition 3.5.

(c) The triple cover homomorphism ¢, determines a unique O y-lin-
ear map ®:S3E — A’E.

(d) Conversely, given a locally free rank 2 Oy-module E, any O y-
linear map ®:S3E — A’E determines a unique triple cover homomor-
phism ¢, via the natural isomorphism from Hom(S SE, A2E) to
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TRIPLE COVERS IN ALGEBRAIC GEOMETRY 1133

TCHom(S%E, E) given in Proposition 3.3. If ¢, is the image of ¢, in
Hom(S’E, Oy), then ¢ = ¢, @ ¢,:S’E — Oy D E defines a commutative
and associative multiplication on O y @ E for which E is the Tschirnhausen
module. If X = Specg (Oy ® E), then the canonical map f:X — Yis a
Sflat finite map of degree 3.

Definition 3.7. Fix the variety Y. A flat finite map f: X — Y of de-
gree 3 will be called a triple cover of Y. A pair (E, ®), where E is a locally
free rank 2 Oy-module and ®:S3E — A’E is an Oy-linear map, will be
called triple cover data over Y. The map ® will be called the building map
and if (£, ®) induces the triple cover f: X — Y as in (3.6(d)), I will say that
® builds f: X — Y, or builds X on Y. Two pairs (£, ®,) and (E,, ®,) are
isomorphic as triple cover data if there exists an isomorphism «: E; — E,
such that the diagram

S3E1 .S’3_a> S3E2

2
AE, 2> A2,

commutes; isomorphic triple cover data corresponds to isomorphic triple
covers, i.e. an isomorphism g:X; — X, making the diagram

———)Xz

N/

commute (where ®; builds X; and ®, builds X;).

It is clear from Theorem 3.6 that given a triple cover f: X — Y be-
tween irreducible k-schemes, one gets unique triple cover data (E, ®) over
Y up to isomorphism. Conversely, given triple cover data (E, &), there is a
triple cover f: X — Y which & builds.

Remark. 1 will sometimes abuse notation and regard the building
map ® as a section of AE® SPE*

Proposrtion 3.8. If f: X — Y is a triple cover with Tschirnhausen
module E, then X naturally embeds into the geometric rank 2 vector bun-
dle V(E) as a codimension two subvariety.
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1134 RICK MIRANDA

Proof. IfS(E) = @®,,»0S™E is the symmetric algebra of E, then the
multiplication in f,Ox induces a surjection S(E) = Oy ® F = f,0x
(which is the identity on Oy @ E C S(E)). This surjection corresponds to
the embedding X = Specy (Oy @ E) = Specy , S(E) = V(E). Q.E.D.

It will become necessary to know the kernel of the map ¢, : S2E - Oy
in Section 10.

ProrositioN 3.9. Given the building map ®, there is a naturally
induced Oy-linear map y:E ® A2E — S2E such that the sequence 0 —
EQ®AE 4 SE S Oy is exact, unless ¢ is the zero map.

Proof. We seek a natural element of
Hom(Hom(S°E, A’E), Hom(E ® A’E, S2E))
which carries the building map ® to the desired map . Note that
Hom(Hom(S3E, A’E), Hom(E ® A’E, S*E))
= Hom(SE*® A’E, E*® A’E*® S’E)
= SSEQNE*QE*® NE*R S°E
= Hom(A’E ® E ® A’E, S’E ® S*E)

via natural isomorphisms. Consider the element of this final Hom group
which sends (e; A ey) ez ® (e4 A es) to

erezes Qeres — erezes @ejrey — erezesPejes + erezesDeey.
I’ll leave it to the reader to check that this element, considered as a trans-

formation from Hom(S°E, A%E) to Hom(E ® A’E, S2E), sends a building
map ® in the local form of (3.4) to a map ¥ which is locally in the form

Yz ® (z Aw) = —dz? — 2azw — bw?
Yw ® (z Aw)) = cz? + 2dzw + aw?.

This map v is injective because the local functions A = a?> — bd, B =
ad — be and C = d? — ac are not identically zero and they are the 2 x 2
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TRIPLE COVERS IN ALGEBRAIC GEOMETRY 1135

minors of the local matrix for . The image of ¢ is in the kernel of ¢,
because of the identities d4 — aB + bC = cA — db + aC = 0. This
proves the proposition. Q.E.D.

4. The ramification and branch locus of a triple cover. To deter-
mine the ramification for the triple cover fX — Y defined by the map
¢:S*E = 0y @ E, I will work locally at first. Let Oy be a local integral k-
algebra and let E be a free Oy-module of rank 2, with basis {z, w}. Let
¢:S°E — A’E build X, where & is given by (3.4). I will consider X as
embedded in A? X Y as in 2.8.2. Let

A=d%>— bd,
4.1)

B = ad — bec,
and

C=d?— ac.

Then X € A? X Y is defined by the three equations

F(z, w) = z2 — az — bw — 24,

4.2)

Gz, w) =zw + dz + aw + B,
and

H(z, w) = w? — ¢z — dw — 2C.

Let
Piz,w) =az + bw + A,

(4.3) QGz, w) = dz + aw + %B,
and

R(iz,w)=cz +dw + C.

LemMaA 4.4. The ramification locus in X is defined by the ideal
(P, Q,R) in Oy.
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1136 RICK MIRANDA

Proof. The ramification locus is the locus where the jacobian matrix
for F, G and H with respect to the variables z and w does not have maximal
rank. This matrix is

2z —a —b
wt+d z+a |,
—c 2w — d
and its 2 x 2 minors are
2z —a)z+a)+bw+d =2z24+az+bw—A
= 2F + 3P,
2z —a)2w — d) — bc = 4zw — 2dz — 2aw + B

=4G — 6Q,

and
Cw—dw+d) +cz+a)=2w?>+cz+dw—C
= 2H + 3R.

Hence the ideal of the ramification locus is 2F + 3P, 4G — 60,
2H + 3R) = (P, Q,R) in Oy. Q.E.D.

Let
D = B2 — 44C

= b%? — 3a%d? + 4a’c + 4bd® — 6abcd.

LeMMA 4.5. The branch locus in Y of the triple cover is defined by
D =0.

Proof. Let us work in the ambient space A?> X Y. By the previous
lemma, any point of ramification in X must satisfy the linear equations
P = Q = R = 0. These three equations in the two unknowns z and w have
a solution in A? if and only if the determinant
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TRIPLE COVERS IN ALGEBRAIC GEOMETRY 1137

a b A
1 1
Bl = —=
d a 3 2D
c d C

equals zero. Hence the branch locus is contained in the locus D = 0. An
alternate proof of this is that because of the identities

cA —dB +aC=dA —aB + bC =0,

one can write D = —12(CP — BQ + AR), and so D is in the ramification
ideal (P, Q, R).

To show that if D = 0, then there is ramification of the triple cover, I
must show that there is a solution to P = Q@ = R = 0 which satisfy F, G
and H and so lies in X. There are several cases to consider. The rank of the
above determinant is

three if D # 0,

two if D=0 butoneofd,BorC # 0,

one if A=B=C=0 butoneofa,b,cord 0,
and

zero if a=b=c=d=0.

Case 3. D # 0 at the closed point y € Y. Then there is no ramifica-
tion over y and f: X — Y is étale at the three distinct points lying over y.

Case2. D =0butoneof A,B,C #+ 0Qatye Y. Here, then, there is
a unique solution (zy, wy) to the system P = Q = R = 0. There are several
subcases to consider.

Case2A. D =0,A # 0aty. Inthiscase P = Q = 0define(zq, wy)
and therefore

zg = %(——aA + %B), and wy = %(dA - %B).
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1138 RICK MIRANDA

Note that since A # 0, the matrix (;a _ba//zz) is nonsingular, so thatifzy =

wg = 0, necessarily A = B = 0, a contradiction. Hence (z(, wg) # (0, 0).
One can easily verify that (z, wq) satisfy F, G and H; in fact, we have

the identities

2
A’F = <Az — <—aA + %B))(aP — bQ) — A’P + bTD,

A’G = (aP — bQ)aQ — dP) + A?Q — (ab/4)D + (—aA + (b/2)B)(aQ
— dP) + (dA — (a/2)B)aP — bQ), and

2
A’H = <Aw + <dA — %B))(aQ — dP) — A’R + “TD,

so that F, G and H vanish if P, Q, R and D do, and 4 # 0.
A calculation shows that (z{, w;) = (—2z(, —2wy) also satisfy F, G
and H in this case:

F(zq, wy) = 4z3 + 2azo + 2bwy — 24
= 4F(Z(), Wo) + 6P(Zo, WQ) = 0,
G(Zl, W]) = 4ZoW0 - 2dZo - 2aw0 + B

= 4G(zq, wy) — 6Q(zg, wy) = 0,
and

H(zy, wy) = 4w} + 2cz + 2dwy, — 2C
= 4H(zy, wg) + 6R(zg, wy) = 0.

Since (zg, wg) # (0, 0), (z;, w;) # (29, wo) and over y there is ramifi-
cation of type (2, 1): f : X — Y is simply ramified at (z¢, wy) and is étale at
(Z] y Wi )

Case 2C. D = 0, C # 0. Inthis case Q = R = 0 define (zq, wy),
and

_1(_4 —1(ep_
Zg — C< ZB +aC>, Wo C< B dC),
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TRIPLE COVERS IN ALGEBRAIC GEOMETRY 1139

with (zg, wg) # (0, 0). If (z4, wy) = (—2z;, —2w,), then both (zq, wg)
and (z{,w;)lieon X and f : X — Y is simply ramified at (z(, wo) and étale
at (zy, wy).

Case 2B. D = 0, B # 0. Since D = B? — 4AC, AC # 0 too so
actually both of the above subcases hold. However, to be complete, P =
R = 0 define (z, wy), and

2o = %(—dA +BC),  wy= %(cA — a0),

and (Zo, W()) * (0, 0)

Cases 1,0. A = B = C = 0 aty. In this case there is no longer a
unique solution to P = Q = R = 0 and one can’t expect all solutions to lie
on X.

Claim. IfA = B = C = 0 at y, the only point of X lying over y is
(z, w) = (0, 0), and f: X — Y is totally ramified there.

Proof of the claim. Under the hypotheses, z and w must satisfy
2=+ aF +bG and w'=(w + dH + G,

so that if F(z, w) = G(z, w) = H(z, w) = 0, necessarily z = w = 0. The
point (0, 0) certainly satisfiessP = Q = R = 0, so f : X — Y must be totally
ramified here.

This completes the proof of Lemma 4.5. Q.E.D.

COROLLARY 4.6. The locus in Y over which there is total ramifica-
tion is defined by the ideal (A, B, C) in Oy and is generally codimension
twoin Y.

For a more global viewpoint, there is the following:

Prorosition 4.7. Let f:X — Y be a triple cover with
Tschirnhausen module E. Then the branch locus {D = 0} in Y is a divisor
whose associated line bundle is (A*E) 2.

Proof. Consider the multiplication map ¢ : S*E — O, @ E. This in-
duces A3¢: A3S3E — A3(Oy @ E) which (locally) sends

ZZAzw Aw? to D(1AzAw).
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1140 RICK MIRANDA

Hence {D = 0} is the zero locus of this map between two line bundles. In
particular we can consider D as a section of A3S2E*® A3(Oy D E). Since
E has rank 2, A3S’E = (A’E)® and A3(Qy ® E) = A’E; the result
follows. Q.E.D.

It is clear from the equation D for the branch locus that even when X
and Y are smooth, {D = 0} may be singular. This contrasts with the case
of double covers where, if Y is smooth, then X is smooth if and only if the
branch locus is smooth. More precisely, we have:

LEmMA 4.8. Assume f: X — Yis atriple cover and X and Y are both
smooth. Then the branch locus {D = 0} is singular at a point p € Y if and
only if there is total ramification over p, i.e., if A, B and C vanish at p.

Proof. If there is only simple ramification over p, then locally on X
the covering map is either étale or is analytically a double cover over Y.
Therefore, since X and Y are smooth, the branch locus must be smooth.
Conversely, if there is total ramification over p, then the local functions A,
B and C must all vanish at p by (4.6), soD = B? — 4AC is at least double
at p. Q.E.D.

Slightly more can be said about the precise nature of the singularities
of the branch locus when both X and Y are smooth, especially in low di-
mensions. I will defer this until the next section, in which explicit criteria
are given for the nonsingularity of X, given that Y is smooth.

5. The singularities of a triple cover. To analyze the singularities of
the variety X, where f : X — Y is a triple cover, I will again work locally on
Y and in addition assume that Y is smooth at a point p. Choose a system of
local parameters y = {y;, ..., y,} at p.

LEMMA 5.1. Assume that X is defined by an equation of the form
f@) =2+ g(y)z + h(y)

as a subset of A' X Y, where g and h are regular functions on Y at p. Letm
be the maximal ideal at p, and let d(y) = 4g(y)* + 27h(y)? be the dis-
criminant function for f. Then X is singular over p if and only if either

(a) g emand h em?, or
(b) g ¢m but d e m®. (In this case necessarily h & m.)
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TRIPLE COVERS IN ALGEBRAIC GEOMETRY 1141

Proof. Assume (a). Then the equation f(z) defining X is in the
square of the maximal ideal (z, m) in 05,1 ® Oy, so X is singular at the
point z = 0 over p.

Assume (b). Setz =z + 3h( ¥)/2g(y). Then changing coordinates in
A to z transforms £ (z) to

-\ _ 3 9h _, d _ hd
A A
and so fis in the square of the maximal ideal (z, m) of O 51 ® O . Therefore
X is singular at the point z = —3h/2g over p.

For the converse, assume X is singular at a point g over p; then neces-
sarily d € m. Let m, be the maximal ideal of Oy at g.

Assume g em. Since d € m, this forces h e m, and since fer_ng , z must
be in m, . Therefore b = f — z% — gz is inm? and we have (a).

Assume g ¢ m. Make the change of coordinates toz = z + 3h/2g,
transforming £ (z) to f(Z) as above. Since d € m, f(Z) has a double root at
z = 0 and a single root at z = 94/2g over p. Therefore g is the pointz = 0
over p, andz e m,. Since f € ng,,

hd _ s _ 9

_ d _ =,._
3 z 2% 2 + 4gzz—f(z)

2

is in m?; since k and g are units at p, d e m* and we have (b). Q.E.D.

The above lemma is preliminary to the analysis in the general case.

ProposiTiON 5.2. Assume f:X — Y is a triple cover, locally de-
fined at p € Y as a subset of A> € Y by the three equations F, G and H as in
(4.2). Let m be the maximal ideal of p. Then X is singular over p if and
only if one of the following conditions hold:

(i) a,b,c,dem
(i) a,cem,bem
(iii) b,dem,c em
(iv) b ¢m, A em, bB — 2aA e m?
V) cgm, Cem,cB — 2dCer_n2
(vi) bgm, A ¢m, D em?

(vii) c¢m, C¢m, D er_nz.

2
2
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1142 RICK MIRANDA

Proof. Assume b ¢ m. Then, using the equation F, one may solve for
w in terms of z and X will be defined by the equation

z® — 34z + (bB — 2aA) =0

(see Remark 2.8.1) as a subset of A! X Y. Therefore, by the previous
lemma, X is singular over p if and only if either

—34Aem and bB —2aAem’, or —3A¢m and D en?

since 4(—3A4)? + 27(bB — 2aA)® = 27b2D. In the first case we have (iv)
and in the second case, (vi).

If ¢ ¢ m, by symmetry X will be singular over p if and only if (v) or (vii)
hold. Therefore let us assume that b and ¢ are both inm. X will be singular
over p if and only if the 3 x (n + 2) jacobian matrix of ¥, G and H with
respect to the coordinates z, w, yi, ..., y,, has rank one at some point g
over p. This matrix is

2z —a —b (—24; — a;z — b;w)
wt+d z-+a (B; +d;z + a;w)
—c 2w —d (—2C; — c;z — dw)

where a;, b;, ..., etc., are the derivatives with respect to y;.

Since b and ¢ both vanish at p, the equations F, G and H can be easily
solved for z and w over p; the three solutions are (z, w) = (—a, —d),
(—a, 2d), and (2a, —d). Since D must vanish at p for X to be singular over
p, and D = —3a?d? modulo m, we may assume either a em or d e m.

If a em, then z = 0 over p and w = —d at the ramification point g
over p. The jacobian matrix at ¢ = (0, —d) over p is now

0 0 (3db)
0 0 0
0 —3d (3dd;)

modulo m, so the vanishing of the 2 x 2 minors 9d°b; and —9d*(b;d; —

b;d;) is equivalent to the singularity of X at g. Assume d € m; this gives

condition (i). If d ¢ m, then b; € m for each i, so that b € sz; this is (ii).
If a ¢ m, then d € m and by symmetry we get condition (iii). Q.E.D.
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The seven conditions of Proposition 5.2 may seem a bit daunting at
first. However, there is a simple and surprising corollary.

COROLLARY 5.3.  Assume the dimension of Y is at least 4. Then the
general triple cover of Y is singular.

Proof. Let ® be a building map for a triple cover f:X — Y and
consider ® as a section of the rank 4 bundle S3E* ® A’E. For general E,
such a section will have a zero if dim Y = 4. Using the local description
(3.4) for ®, one sees that a zero of & is precisely a point p € Y wherea, b, ¢
and d all vanish; by condition (i) of the proposition, X will be singular over
such a p. Q.E.D.

Note that there may well be special Tschirnhausen bundles £ for
which the general building map ® has no zeros, so no singularity of the
triple cover is forced in this case. If this is so, then necessarily the top chern
class ¢, of S*E*® A’E must vanish; a chern class computation shows that
c4(SPE* Q@ A’E) = c,(E)9c,y(E) — 2¢,(E)?).

COROLLARY S5.4. Assume f:X — Y is a triple cover with Ts-
chirnhausen module E. If X and Y are both smooth, then

c2(E)9¢c,(E) — 2¢1(E)?) =0

in the Chow ring of Y.

ExampleS.5. LetY = P", and let E = Opu(—1) D Opn(—2). Iden-
tifying A%(Y) with Z, we have c,(E) = 2 and ¢, (E)? = 9, so a triple cover
with Tschirnhausen module E could be smooth. In fact, as we will see
later, such covers are the cubic hypersurfaces in P"*! and the covering
map f is a projection from a point not on the cubic; certainly the general
such cover is smooth.

We are now in a position to analyze the singularities of the branch
locus {D = 0} more closely. Let p € Y be a point over which there is total
ramification of the cover f:X — Y and assume that X is smooth at the
point g over p.

LEMMA 5.6.  With the above assumptions, the local functions b and
¢ cannot both vanish at p.

Proof. Assume b and ¢ are both zero at p. Then, at p, A = a?,

B = ad, and C = d? all vanish by Corollary 4.6, so a and d must vanish at
p. In this case X is singular over p, by Proposition 5.2(i). Q.E.D.
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Let us assume that b is not zero at p; then, locally near p, we can solve
for w in terms of z and X will be defined by an equation of the form z° +
g(y)z + h(y) = 0 over a neighborhood of p, as in Lemma S.1.

LEMMAS.7. Ifmis the maximal ideal at p, then the local functions g
and h are both inm and h & m>.

Proof. Since there is total ramification over p, the discriminantd =
4y3 + 27h* € m?; by Lemma 5.1(b), g € m since X is smooth. Therefore,
27h* = d — 4g* € m, forcing h € m also. However, h ¢ m?> by Lemma
S.1(a). Q.E.D.

COROLLARY 5.8. Assume that f: X — Y is a triple cover, X and Y
are both smooth, and p € Y is a point over which there is total ramifica-
tion.

(i) If the dimension of X and Y is one, then the branch locus
{D = 0} has an ordinary double point at p.

(ii) If the dimension of X and Y is two, then the branch locus
{D = 0} has a double point at p, with one tangent. Generally,
{D = 0} has an ordinary cusp at p.

Proof. If X is defined by an equation of the form z* + gz + h = 0,
then the branch locus is defined by d = 4g® + 27h% = 0 at p. By Lemma
5.7, we may take & to be a local parameter for Y at p. If the dimension is
one, then # must divide g so thatd = h227 + 4g’) defines an ordinary
double point at p. If the dimension is two, then d = 4g> + 27h? is double
at p with the one tangent 2 = 0. Generically, g will be another parameter
at p, so the branch locus will have an ordinary cusp at p. Q.E.D.

In the case of surfaces, even though the branch locus D is singular at a
point over which there is total ramification, generically the ramification
divisor R and the residual divisor Ry = f*D — 2R is smooth.

LeEMMA 5.9. Assume that f : X — Y is a triple cover, X and Y are
both smooth surfaces, and p € Y is an isolated singular point of the branch
locus which is an ordinary cusp. Then both the ramification divisor R and
the residual divisor Ry in X are smooth over p and they are tangent there.

Proof. We may assume as above that X is defined by z° + gz +
=0.Ifd = 4g> + 27h* = 0 defines an ordinary cusp at p, then g and 2
must form a system of parameters for Y at p. The branch locus can then be
parametrized near p by g = —3¢2, h = 2¢3 for some parameter 7. The
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TRIPLE COVERS IN ALGEBRAIC GEOMETRY 1145

inverse image of this branch locus is now described by the equation z3 —
3t’z + 23 = 0 over p which factors as (z — £)2(z + 2¢) = 0. The ramifica-
tion divisor is clearly the locus z = ¢ and the residual divisor is the locus
z = —2t (confirming the formulas determined in the proof of Lemma 4.5);
both are smooth over p and they meet transversally. Q.E.D.

6. The split case. In this section I will analyze the triple cover data
in the case where the Tschirnhausen module E is split. Assume that £ =
L™'@® M~ where L and M are line bundles on Y. Then S°E = L3 ®
LML 'M2®M 3and A’E = L™'®M ™", so that the building
map ® is a section of S’ E*QA’E = (L2 QM HYOLOMO L 'Q@M?).
If we choose a local basis z and w for E such that z generates L ! and w
generates M ~1 then using the notation of (3.4) it follows that

aeHYL)
(6.1) beHL?’QM™Y)

ce H(L'® M?),
and

d e H'(M).

Moreover, if X is to be irreducible neither b nor ¢ can be identically
zero; therefore,

(6.2) L’>M and M?=1L.

The branch locus { D = 0} is in this case a divisor whose line bundle is
L*Q M>.

7. The Galois case and normalization. Let f:X — Y be a triple
cover which is the quotient of a u3 action on X. Such a cover will be called a
Galois triple cover. Let { be a primitive cube root of unity, generating p3.

ProrositioN 7.1. If f: X — Y is a Galois triple cover, then:

(a) f4Ox splits into eigenspaces as Oy ®L ™' ® M~ where Oy, L ™!
and M~ are the eigenspaces for 1, { and {2, respectively.

(b) The Tschirnhausen module E for f is the sum of eigenspaces
L'oM™.
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(¢) The building map ® for f sends

22 to —bEAw)

we to cz Aw),

and

z’w and zw’t0 0,

where z generates L' and w generates M ™" (locally) and b and ¢ € Oy.
(d) The multiplication map ¢: S’E — Oy @ E has the form

o(z%) = bw
o(zw) = be
dw?) = cz.

Proof. Itis clear that f, Oy must split into eigenspaces for the action
of u3. Since f: X — Y is the quotient space, the eigenspace for 1 is exactly
Oy. Both other eigenvalues ¢ and ¢ must occur since if x is in Oy and is in
the eigenspace for ¢, then x? is in the eigenspace for ¢ and vice-versa. This
proves (a).

To show (b), it suffices to prove that E is preserved by the 3 action; it
must then be a sum of eigenspaces. Let z be in E, i.e., assume that the
minimal cubic polynomial for z has the form z° + 7z + s. Then the mini-
mal cubic polynomial for z = {z is z° + ({?r)z + s, so Z is in E also.

For the rest, work locally on Y; choose z € L ! and w € M ™! generat-
ing E. Thenz2e M ™!, zw € Oy and w? € L ™! since they are also eigenvec-
tors. However, by Theorem 2.7.1(b),

22 =az + bw + 24,

zw = —dz — aw — B,
and
w2 =cz + dw + 2C,

with a, b, c and d € Oy, so that necessarilya =24 = —d = —a =d =
2C = 0 or equivalently, a = d = 0. This proves (c) and (d). Q.E.D.
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TRIPLE COVERS IN ALGEBRAIC GEOMETRY 1147

Note that the form of 7.1(c) for the building map & is exactly what is
required to have & be compatible with the induced actions of u; on S°E
and A’E.

Definition 7.2. Galois triple cover data over Y consists of a pair of
line bundles L and M on Y and two sections

beHIL>’QM™Y), ceHL'QM?).

By the above proposition and the analysis of Section 6, the giving of
Galois triple cover data over Y is equivalent to giving triple cover data over
Y which build a Galois triple cover.

The explicit local description of X in this case is quite simple:

CororrLARY 7.3. If f: X — Yis a Galois triple cover and Y is affine,
then X = Spec Oy[z, wl/(z> — bw, zw — bec, w? — cz).

The analysis of singularities in the Galois case can be carried out more
explicitly (and more simply) than in the general case.

ProrosiTioN 7.4. Let Oy be an integral k-algebra and let Oy =
Oylz, wl/(z? — bw, zw — bc, w? — cz) for b, c € Oy. Let Ky be the
fraction field of Oy. Then

(a) Oy is an integral domain & b’cis not a cube in Ky © bc? is not a
cubein Ky.

(b) The discriminant D = b%c? defines the branch locus on Y.

(c) Assume b’cis not a cube in K yand that Oyisa U.F.D. Let D =
be. Then X is normal & D has no .s:quare factors.

(d) Assume Y is smooth. Then X is singular ¢ {D = 0} is singular
(scheme-theoretically).

Proof. Assume Oy is an integral domain and let Ky be its fraction
field. The minimal polynomial of z over K y is z> — b2c; this must be irre-
ducible, so b’ can’t be a cube in K.

If b%c isnot a cube in K y, thenc # 0 and b%c = (bc?)%c ~3; therefore,
bc? can’t be a cube either.

To finish the proof of (a), assume bc? is not a cube. Then ¢ # 0, and
the minimal cubic polynomial w3 — bc? is irreducible over K . Therefore,
Ky(w) is a field and sincec # 0,z = ¢ 'w? and w are both in K y(w), so
Ox € Ky(w). Therefore, Oy is an integral domain.

Statement (b) is merely the definition of D given in Section 4. To
prove (c), assume that bc has a square factor x2 where x is irreducible and
is not a unit in Oy. Since Oy is a U.F.D., there are three cases to consider.
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Case 1. x* divides b. Then (x " !2)? = (x 2b)w in Ky,sox zisin
the normalization Oy of Oy but is not in Oy.

Case 2. x? divides c. Then, as in Case 1, (x 'w)? = (x %)z, so

1W is in @)X - Ox.

-

Case 3. x divides both b andc. Then (x " 'z)? = (x "'b)%(x "!¢) and
(7 w)? = (x7'b)(x 'c)?, so both x "'z and x " !w are in Oy — Oy.

For the converse, assume that p is in Oy — Ox. The action of u;
extends to Oy, which then splits into eigenspaces as Oy @L_:l @M.
Writing p = r + sZ + tw (where Z and w generate L ~! and M ™!, respec-
tively), it is clear that one of Z or w must be in Oy — Ox. Hence we may
assume that p = 2. Since Z € Ky, it must be a K y-linear combination of
w1, zandz lw. Writez = fw ™! + §z + iz 'w, with 7, § and 7 in K y.
Then £ = (7z + §z°w + tw?)/zw = z-(7 + §bc + fc)/bc so in fact
ze€Ky-z WriteZ = (x 'y)z withx, yin Oy. If x "'z isin Oy then so is z,
so we may assume Z = x _'z. The minimal cubic polynomial for 7 is of the
form £° — f for some f € Oy since £ is in the eigenspace for {. Therefore,
bl =27 = x3(x_lz)3 = x3f, so x° divides bZc, implying x% divides be
where x; is a prime factor of x.

The proof of (d) is a jacobian calculation. Let {y;, ..., y, } be local
parameters at a point p € Y. Then X is singular at a point g over p if and
only if the jacobian matrix

2z —b (=b;w)
w z (’—biC - bCi)

—c 2w (—c;z)

has rank 1 at g where b; and c; are the derivatives of b and ¢ with respect to
y;. Since D must vanish at a singular point, either b or ¢ must be zero; we
may assume by symmetry that b = 0 at p. This forcesz = w = 0 over p, so
the top row of the above matrix is zero over p. Therefore, the matrix has
rank 1 if and only if either ¢ = 0 or (bc); = 0 for every i at p. In our
situation, if ¢ = 0, then (bc); = 0 for every i automatically and the result
follows.

An alternate proof is provided by using the conditions of Proposition
5.2. Inthiscasea =d = A = C =0, and B = —bc = —D, so that the
seven conditions of 5.2 reduce to the following three:
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TRIPLE COVERS IN ALGEBRAIC GEOMETRY 1149

(i) b,cem
(i) b gm, cem?
(iii) ¢ g m, b e m?.

It is easy to see that these are equivalent to the single condition bc € m?
which is (d). Q.E.D.

The proof of (7.4c) actually indicates the normalization process, as
follows.

ProrositioN 7.5. Let Y be a factorial variety over k and let line
bundles L, M and sections b € H'(L? @M ™"), c € H'(L ™' @ M?) define
Galois triple cover data over Y which builds the irreducible cover
f:X =Y. Let D, and D, be the divisors of zeros of b and c, respectively, so
that D, + D, is the divisor of bc = D. Define L, and M, to be the largest
effective divisors on Y such that 2L, < Dy and 2M. < D,; define N to be
the largest effective divisor on Y such that 2N < D, + D, — 2L, — 2M...
Writing Ly, , M, and N for the line bundles associated to these divisors also,
let f, g and h be the sections of L,, M, and N defining these divisors. Then
the Galois triple cover data given by the line bundles

L=LQL,"®N"'", M=MM;'QN"!,
and the sections
b=f"%rh beH'T*QM™"), ¢=fg*h lceH T 'QM?
builds the normalization X of X.

Proof. Locally, let z and w generate L~! and M ™!, respectively.
Thenz = f~'h~'z and w = g~ 'h~'w generates L~! and M. More-
over,

22 =f2h7 %2 = (f2%gh T 'b)g T 'R 'w) = bw,

W= f g7 htw = f g7 h 2be = be,
and

WZ — g—Zh—ZWZ — (fg—Zh—lc)(f—lh—lz) = &3,
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1150 RICK MIRANDA

so that the above Galois triple cover data builds a triple cover X to which
the normalization of X maps. However, by the definition of L;, M, and N,
the function 5¢ has no square factors locally, so this triple cover is normal
by (7.4c). Hence X is the normalization of X. Q.E.D.

Remark 7.6. In the special case when M = L?, one gets the more
familiar construction of a Galois triple cover. In this case b € H G y), so if
Y is complete, b must be constant. We can normalize b to be 1 and solve
for w; then locally Oy is generated by 1, z and z2 = w with the relation
23 = ¢ € H°(L®). Therefore, f:X — Y is completely specified by a line
bundle L on Y and a section ¢ of L°.

If the triple cover f: X — Y is Galois and érale, and Y is complete,
then it must be of the above form. For then both b and ¢ are nowhere zero
soboth LZ® M~ and L™' ® M? are trivial; this forces M = L? and
L3 = Oy.

8. Trisections of ruled varieties. Let Y be an irreducible k-variety
and let F be a locally free rank 2 O y-module. Let P = P(F) be the associ-
ated projective line bundle with =:P — Y as structure map. Let S be a
divisor in P whose line bundle is Op(1).

Assume that X € P is a trisection of 7 and that f = 7|, : X — Yis flat
so that f is a triple covering. As a divisor in P, X is linearly equivalent to
38 + «*T for some divisor T on Y.

ProrosiTioN 8.1. In the above situation, the Tschirnhausen mod-
ule for E is (F @ A’F @ O y(T))*.

Proof. The exact sequence which defines Oy is
0 0p(—3)@n*0p(—T) = Op = Ox = 0.
Since 74 (0p(—3) @ m*0y(—T)) = 0 and 7, O0p = Oy, one gets
0-0y— 1,05 > R 0p(—=3) ROy (—T)— 0
after applying =, and using the projection formula. Therefore, £ =

(R'1,0p(—3)) ® Oy(—T) which is (F ® A*F)* ® Oy(—T) by
duality. Q.E.D.

Note that if S is an effective irreducible divisor (which can always be
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TRIPLE COVERS IN ALGEBRAIC GEOMETRY 1151

achieved by tensoring F with a line bundle), then the restriction of 7 to §
will be an isomorphism. In particular, w (S - 7*T) = T so that

(8.2) Op(T) = Oy(m(X - 8) ® (A’F) 73

since . (5-S) = A’F. Therefore, the Tschirnhausen module can also be
realized as

(8.3) E = (FQRUAF)2Q0yX)*

where Oy(X) is the line bundle of 7, (X - 5).

COROLLARY 8.4. Assume that X is a trisection of an affine line bun-
dle V(L ™) for some L € Pic Y and that the structure map f:X — Yisa
triple cover. Then the Tschirnhausen module for X is L™' ® L 2.

Proof. By embedding VL YHinto P = POy @ L"), we can con-
sider X as a trisection of P which does not meet the section .S at infinity.
Hence, Oy(X) = Oy and the result follows from (8.3). Q.E.D.

In the above situation, if Y is complete, then the section b € H N’®
L™ 5=H 0((‘) y) must be a constant; therefore, one can globally solve for w
in terms of z. Hence X is given, as a subvariety of V(L ™!), by a single
equation of the form z° + rz + s = 0 where z is the global coordinate in
the fibers of V(L 1),

CoROLLARY 8.5. Let X € P! be a hypersurface of degree d = 3.
Let p € PV be a point of multiplicityd — 3on X. (Ifd = 3, p is not on X.)
Then projection from p gives a triple cover f:X — PN (where X is the
proper transform of X in the blow-up of PNT! at p) and the Tschirnhausen
module for f is

E = 0pnv2 — d) D Opnv(1 — d).

Proof. Let P’Y *1be the blow-up of PVt at p; then PV is naturally
the P!-bundle P = P(Opn ® Opn(—1)) over P¥ in which X sits as a trisec-
tion. The intersection of X with the canonical section S in Op(1) is a hyper-
surface (in § = PV) of degree d — 3. Therefore, by (8.3), E = [[Opn @
Opn(— 1] ® Opn(2) ® Opn(d — 3)]*, which gives the result. Q.E.D.

9. Triple covers of curves and trigonal curves. In this section I will
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1152 RICK MIRANDA

restrict myself to triple covers f: X — Y between smooth curves. If £ is the
Tschirnhausen module for £, then the degree of the ramification divisor on
X is the degree of the branch locus on Y, and therefore it is the degree of
(A2E)~2. Hence, by the Hurwitz formula,

2¢(X) — 2 = 3(2g(Y) — 2) + degree(A’E),

or
9.1) g(X) = 3g(Y) — 2 + degree(A’E) !,

where g(X) and g(Y) are the genera of X and Y, respectively.

Let us specialize to the case of trigonal curves, i.e., triple covers of P 1
In this case the Tschirnhausen module E must split as £ = Opi1(—m) @
Op1(—n) (i.e., E is of type (m, n)), so the analysis of Section 6 applies with
L = Opi1(m) and M = Opi(n). By (6.1), the local functions a, b, c and d
are forms of degrees n, 2n — m, 2m — n and m, respectively; moreover,
n < 2m and m =< 2n by (6.2) and the branch locus is of degree 2(m + n).
This forces m = 0 and n = 0 withm = 0 © n = 0. However, if m =
n = 0, then the local functions a, b, ¢ and d must be constants and the
cover X is pulled back from a triple cover of Spec &, so cannot be irreduc-
ible. Therefore,

9.2) m >0, n>0, m < 2n, and n < 2m.

Since A2E = Op1(—m — n), the genus of the cover X is
(9.3) gX)=m+n — 2.

It is a result of Petri that all trigonal curves lie on scrolls [3]. Assume
that X is trigonal and that X is a trisection in F, = P(Op1 @ Op1(—k)),
with k& = 0. Write X ~ 35 + «*T as in Section 8, where T is a divisor on
P! of degree ¢t and assume that the Tschirnhausen module for X is
Op1(—m) @ Op1(—n), with m < n. Then, by (8.1),

Op1(m) ® Op1(n) = (Op1 D Op1(—k)) ® Opi1(—k) ® Op1 (1)

= Op1(t — 2k) D Op1(t — k),
This content downloaded from

129.82.95.71 on Fri, 22 Apr 2022 22:24:58 UTC
All use subject to https://about.jstor.org/terms



TRIPLE COVERS IN ALGEBRAIC GEOMETRY 1153

so that

m=1t— 2k, n=t—k, and k=n —m, t=2m — n.
The conditions (9.2) on m and n are equivalent to

9.4) either k=0 and ¢t =1, or k=1, t = 3k.

These conditions are, of course, exactly the conditions for which an irre-
ducible curve in the class of 3§ + =*T exists in Fy.

The number of moduli for trigonal curves with £ = Opi(—m) @
Op1(—n) can be computed as dim H'(S°E* ® A’E) — dim Autpi(E) —
dim Aut, (P'), considering the building map & as a section of S3E*® A’E.
Since SE* @ A’E = 0p1(m) @ Op12m — n) ® 0p1(2n — m) @ Opi(n),
dim Autpi(E) = 4 (if m = n)orn — m + 3 (if m < n), and dim
Aut, (P!) = 3, we have

(9.5) the number of moduli of trigonal curves with E of type (m, n)

{2(m+n)—3 if m=n

3Im+n—2 if m<n

For fixed genus g, the bundles £ with fixed m + r which are most
general are those with minimum » — m. Hence, for even genus g = 2p,
the most general trigonal curve of genus g hasm = n = p + 1; for odd
genus ¢ = 2p + 1, the general curve hasm = p + 1,n = p + 2. Using
(9.5), the number of moduli for the general trigonal curve of genus g is
equal to 2g + 1 in either case.

Of course, this is the moduli of the covering map f:X — P!, not just
the curve X. Even for X = P! there is one modulus for this problem. For
low values of g, the moduli can be seen quite geometrically.

If g = 0, the map f:P! — P! will have 4 branch points; the cross-
ratio of these 4 points is a function of the modulus.

For g = 1, every elliptic curve X should be trigonal in dimension 2
ways since the moduli space for the curves themselves has dimension 1. To
see this more geometrically, let N be the line bundle associated to the triple
cover f:X — PL. The degree of N is three and since all degree 3 line bun-
dles on X are equivalent under the action of internal translation of C, there
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is no moduli for N. The map f is obtained by using the sections of N to map
X to P? and then projecting X from some point p € P2 to a line. It is the
point p which has two moduli.

If2 < g < 4,then2g + 1 = 3g — 3, so the general curve of genus g
should be trigonal in dimension (2g + 1) — (3g — 3) = 4 — g ways.

If g = 2, any divisor on X of degree 3 maps X to P! and the 2 moduli
come from the jacobian variety of X which parametrizes line bundles of
degree 3.

If g = 3, the general curve X should be trigonal in dimension 1 ways.
If X is nonhyperelliptic, these ways are parametrized by the points of X;
given a point p € X, embed X into P? canonically as a quartic and project
from p to a line.

If g = 4, one expects only a finite number of trigonal structures on the
general curve X. As is well known [1], there are two: the canonical model of
X sits in P? as a curve of type (3, 3) on a quadric @, and the two rulings of
Q give two gi’s on X.

If g = 5, the general curve of genus g is not trigonal. However, the
following classical result should be clear.

ProPoOSITION 9.6.  The moduli space of trigonal curves of genus g is
connected and unirational.

Proof. An open set of this locus is covered by an open set of
P(H(SPE*® A%E)), where E is of type (m, n) and m and r are chosen to
minimize |n — m| subjecttom + n — 2 = g. Q.E.D.

Note that in the case g = 1, the cover f: X — P! can be the quotient of
a p3 action if and only if j (X) = 0, where j is the elliptic modulus. In such
a case, if f is represented as the projection of the cubic curve X from a point
p not on X, then the three ramification points of f must be flexes of X and
the three flexed lines are concurrent at p. Hence, we have recovered the
following well-known proposition.

ProOPOSITION 9.7.  Three flexed lines to a smooth cubic X < P? are
concurrent if and only if X is the Fermat cubic.

10. Triple covers of surfaces. Let f:X — Y be a triple cover. In this
section I will assume that X and Y are smooth complete surfaces. More-
over, I will restrict the discussion to general triple covers, by which I mean
that f has no total ramification in codimension one and that the only singu-
lar points of the branch locus D are ordinary cusps. The goal is to compute
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the standard invariants of X in terms of those of Y and the Tschirnhausen
module E. Let ¢; denote the i? chern class of E.

LemMA 10.1.  The number of cusps of the branch locus D is 3 degree
Cz(E).

Proof. Let I be the ideal sheaf of the points of Y over which there is
total ramification. By Corollary 4.6, [ is locally generated by A, B and C
and is exactly the image of ¢,:S52E — Oy. Therefore, by Proposition 3.9
we have an exact sequence

0> EQAE - S’E—>1-0,

so the chern polynomial c,(I) is the quotient c,(S2E)/c,(E @ A%E) in the
Chow ring of Y. A computation shows that
c,(S?E) =1 + 3¢t + 2c? + 4c,)t?
and
c,(EQAE) =1+ 3¢;t + Q¢ + ¢,)t2.
Long division gives ¢,(I) = 1 + 3c,t?; since the number of cusps of D is
the degree of ¢,(I), the result follows. Q.E.D.

Let R be the ramification divisor and Ry = f*D — 2R be the residual
divisor on X. By Lemma 5.9, they are both smooth and therefore they are
both isomorphic to the normalization of D. In the following, I will abuse
notation and consider elements of the codimension two-piece Chow ring of
Y as integers via the degree map.

LEMMA 10.2. The genus of R is 2¢ — ¢;Ky + 1 — 3c,.

Proof. The arithmetic genus of the branch locus D is
Pu(D) = 2(D? + DKy) + 1

by Riemann-Roch; since D = —2¢; by Proposition 4.7, and since the ge-
nus of R differs from the arithmetic genus of D by the number of cusps, the
result follows from the previous lemma. Q.E.D.

I will use the standard notation for invariants of curves and surfaces in
what follows.
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ProposritioN 10.3.  The following formulas compute the standard
invariants of X.

(i) K'(Ox) = hi(Oy) + hY(E) fori = 0.
(ii) x(0x) = x(Oy) + x(E) = 3x(0y) + (1/2)c} — (1/2)c, Ky —
CH.
(iii)) K% = 3K% — 4¢,Ky + 2¢} — 3c,.
(iv) e(X) = 3e(Y) — 2¢;Ky + 4c? — 9c,.
Proof. The first statement follows from the splitting f,Ox = O, @

F and the finiteness of f. Statement (ii) is Riemann-Roch for the bundle E
which calculates x (E). By decomposing X into strata, one sees that

eX) =eX — fUD)) + e(f HD) — R) + e(R).

Since f: X — f~!(D) = Y — D is an unbranched cover,
e(X — fUD)) = 3e(Y — D) = 3(e(Y) — e(D)).

The stratum £~ (D) — R is the residual divisor R, minus the 3¢, points of
total ramification; hence, e(f_l(D) — R) =e(Ry) — 3¢, = e(D) — 3c,.
In addition, e(R) = e(D) = 2 — 2(2¢} — ¢, Ky + 1 — 3c,); putting this
together yields

e(X) = 3e(Y) — e(D) — 3¢,
=3e(Y) — 2+ 4c? — 2¢,Ky + 2 — 6cy — 3¢,
= 3e(Y) — 2¢,Ky + 4c? — 9c,.
The final statement (iii) follows from (ii) and (iv) using Noether’s

formula. Q.E.D.

If Y = P? and the Tschirnhausen bundle is split, we have the follow-
ing corollary.

CoroLLARY 10.4. Assume that f:X — P? is a triple cover with
Tschirnhausen module Op2(—m) @ Op2(—n). Then

(@) gXx) =0
(i) pg(X) = 1/2(m?* + n® — 3m — 3n) + 2
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(i) K% =2(m + n — 3)> — 3(mn — 3)
(iv) eX) =9 + 4(m + n)®> — 6(m + n) — Ymn.

As in the case of curves, for'low values of m and n these surfaces are
quite familiar.

Table 10.5

Invariants of triple covers of P2, with E of type (m, n)

m n Pe(X) K% e(X)
1 1 0 8 4
1 2 0 3 9
2 2 0 —1 13
2 3 1 —1 25
2 4 3 3 45
3 3 2 0 36
3 4 4 S 5§

If (m, n) = (1, 1), the surface X is the Steiner cubic in P* and the
triple cover map is projection. If (m, n) = (1, 2), X is a cubic hypersurface
in P3 (as Corollary 8.5 indicates).

If m, n) = (2, 2), the surface X is the blow-up of P! X P! at nine
points; the map to the plane is given by curves of bidegree (2, 3) through
the nine base points. When (m, n) = (2, 3), X is a quartic surface blown up
at one point and the map is projection from the point. When (m, n) =
(2, 4), X is a surface of general type with p, = K 2 = 3 and f is the canoni-
cal map. In the (3, 3) case, X is an elliptic surface over P! (the elliptic
structure being given by the canonical map) and the triple covering is de-
fined by a linear system of genus 4 trisections of the elliptic structure. If
(m, n) = (3, 4), X is a quintic surface in P with a double point p and fis
projection from p.

Of course, there are other familiar bundles on P2 which could be used
to construct triple covers. As an example, we have the following calcula-
tion.

COROLLARY 10.6. Assume that f:X — P2 is a triple cover with
Tschirnhausen module Q{)z(—m), with m = 0. Then
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D) gX)=0ifm=1;9X)=1ifm = 0.

(ii) pe(X) =m?> — 1ifm = 1; p,(X) = 0if m = 0.
(iii) K% = m(5m — 9).

(iv) e(X) = m(Tm + 9).

When m = 0, X is a ruled surface and when m = 1, X is the 13-fold
blow-up of the plane, mapped to P? via quartics through 13 base points
which impose only 12 conditions on quartics.

I will close with a brief sketch of a construction of surfaces of general
type X which have c¢?/c, arbitrarily close to the upper bound 3 [2]. The
construction is iterative; assume that the surface Xy has been built. Let Ey
be a rank two bundle on X such that ¢;(Ey) = —3Kx, , and c3(Ey) =
4K%,. Let @y:S°Ey — A’Ey be a building map, and let Xy, be the
triple cover of Sy which &y builds. By Proposition 10.3, K%, , = 21K%,,
and e(Xy11) = 6K%, + 3e(Xy). If ay = K%, /e(Xy), then ayiy =
Tay/QRay + 1). As N = o, ay4; = 3 monotonically from below.

There is no trouble in constructing the bundles £y with the proper
chern classes; see [1], page 731, for example, the weakness of this method
is that I have not yet been able to show that sufficiently general building
maps P exist, to ensure that Xy is a smooth surface.

COLORADO STATE UNIVERSITY
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