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 TRANSACTIONS OF THE
 AMERICAN MATHEMATICAL SOCIETY
 Volume 284, NuLmber 2, August 1984

 NONDEGENERATE SYMMETRIC BILINEAR FORMS

 ON FINITE ABELIAN 2-GROUPS

 BY

 RICK MIRANDA1

 ABSTRACT. Let 92 be the semigroup of isomorphism classes of finite abelian

 2-groups with a nondegenerate symmetric bilinear form having values in Q/Z.

 Generators for 92 were given by C. T. C. Wall and the known relations among these
 generators were proved to be complete by A. Kawauchi and S. Kojima. In this
 article we describe a normal form for such bilinear forms, expressed in terms of
 Wall's generators, and as a by-product we obtain a simpler proof of the complete-
 ness of the known relations.

 1. Introduction. Let G be a finite abelian group. A symmetric bilinear form on G is

 a map b: G x G -- Q/Z such that b(x, y) = b(y, x) and b(x, -) is a group
 homomorphism from G to Q/Z for every x and y in G. The form b is nondegenerate

 if b(x, -) is not the trivial homomorphism for x # 0. Let 6 be the semigroup of
 isomorphism classes of nondegenerate symmetric bilinear forms on finite abelian

 groups, under orthogonal direct sum. It is not hard to see that any such form will

 split orthogonally into forms on the Sylow p-subgroups, so 6 is canonically

 isomorphic to E , where p is the semigroup of such forms on finite abelian
 p-groups.

 Wall [2] has shown that if p is odd, p is generated by forms on cyclic groups. If

 G = Z/pr, he denotes by Apr the form b with b(1, 1) = l/pr, and by Bpr the form b
 with b(1, 1) = n/pr with n a nonsquare mod p. Wall's theorem is that p is

 generated by {Aprr Bpr; r > 1) with the relations 2Apr = 2Bpr for each r when p is
 odd.

 The generators and relations for p = 2 are quite a bit more complicated and in his

 paper Wall only gave the following set of generators of g2:

 A2r on Z/2r, r > 1; b(l, 1) = 1/2r

 B2r on Z/2r, r > 2; b(l, 1) = -1/2r,

 C2r on Z/2r, r> 3; b(l,l) =5/2r,

 D2r on Z/2r, r > 3; b(l, 1) =5/2r,

 E2r on Z/2 r X Z/2r, r > 1; b(e, eJ) ( 1/2r if i 1J,
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 536 NONDEGENERATE SYMMETRIC BILINEAR FORMS

 F2, on Z/2r x Z/2r, r > 2; b(e,, ej) = 1/2r if i = j,

 where { el, e2 } generate Z/2r x Z/2r in the last two cases.
 The remaining problem is to determine all the relations among the above

 generators for 92, which Wall declined to do in his article. This problem was solved
 completely by Kawauchi and Kojima [1], who not only proved that a certain list of

 relations was complete, but also gave a complete system of invariants which

 distinguished between any two nonisomorphic forms.

 It is the purpose of this article to present a proof of Kawauchi and Kojima's

 theorem which is simpler and more straightforward than the original. As a by-prod-
 uct, a normal form for any nondegenerate symmetric bilinear form on a finite

 abelian 2-group is obtained and an algorithm is presented to put an arbitrary form
 into the normal form.

 Since I will be only concerned with 2-groups in this article, I will use the notation
 Ar for A2r, and similarly for the other forms; in addition, I will introduce the forms
 B1 = C1 = D1 (= A1), C2 (= A2), D2 (= B2) and F1 (= E1) for convenience.

 Finally, I will use the word form to denote a nondegenerate symmetric bilinear form.
 The main theorem can now be stated.

 THEOREM 1.1 [1, THEOREM 0.1]. The semigroup B2 is generated by { Ar, Br, Cr, Dr,

 Er, Fr; r > 1) and any relation among them is generated by the relations in the
 following table.

 TABLE 1.2

 Relations among the generators of B2

 (0) Al=B,=C1=D1 (V) Ari1+Ar=Dr-I+Dr

 A 2 = C2 Ar 1 + Br = Br-, + Ar
 B2 = D2 Ar- 1 + CrA = Dri1 + Br

 E1 = F1 Ar-1 + Dr= Br-1 + Cr
 (I) Ar + Dr = Br + Cr Cr-I + Ar = Br-I + Dr

 Ar+ Br= Cr+ Dr Cr-i + Br= Dr-, +Ar
 2Ar= 2Cr Cr_I + Cr= Br-, + Br
 2Br 2Dr Cr_i + Dr= Dr-, + Cr

 (II) Ar + Er = 2Ar + Br (VI) Ar-1 + Er = Cr-1 + Fr
 Br + Er = Ar + 2Br Br_i + Er = Dr-, + Fr
 Cr + Er = 2Cr + Dr Cr_i + Er = Ari1 + Fr

 Dr + Er = Cr + 2Dr Dr-, + Er = Br-, + Fr
 (III) Ar + Fr = 3Dr (VII) Er-I + Ar = Fr-I + Cr

 Br+Fr=3Cr Eri1+Br=Fr>I+Dr

 Cr + Fr = 3Br Er-, + Cr = Fr-i + Ar
 Dr + Fr= 3Ar Eri1 + Dr= Fr_I + Br

 (IV) 2Er = 2Fr (VIII) Ar-2 + Ar = Cr-2 + Cr
 Ar-2 + Br = Cr-2 + Dr

 Ar-2 + Cr = Cr-2 + Ar

 Ar-2 + Dr = Cr-2 + Br

 Br-2 + Ar = Dr-2 + Cr

 Br-2 + Br = Dr-2 + Dr
 Br-2 + Cr = Dr-2 + Ar

 Br-2 + Dr = Dr-2 + Br

 (IX) 4Ar= 4Br = 4Cr 4Dr
 3Ar + Cr = 3Br + Dr
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 RICK MIRANDA 537

 The relations in (IX) are consequences of those in (I), (II) and (III), so I have put

 them last; they are useful in determining the normal forms for homogeneous groups.

 The reader may verify that the relations in Table 1.2 do hold; it is our intent only

 to verify their completeness.

 2. The signature invariants. Let G be a finite abelian 2-group. Let Gk = {x E

 GI2kx = 0}; Gk is a subgroup of G, Go = (0), Gk C GkIl for every k, and Gk = G
 for k sufficiently large. Define Pk(G) = Gk/(Gk-1 + 2Gk?l) This group is either 0
 or is a 2-group with exponent 1; if G Ek(Z/2 ) then pk(G) (Z/2)r(k). Let

 b be a form on G. Then b induces a form bk on pk(G), defined by

 bk(x, Y) = 2k b(x, y),

 where x andy are in Gk and x, y are their images in pk.(G).

 Using the relation A1 + El = 3A1, one can easily see that any form b on (Z/2)N is
 isomorphic to either NAI or (N/2)E1, the latter occurring only if N is even. These
 are nonisomorphic: every element x of (N/2)E1 satisfies b(x, x) = 0, which is not

 the case for NA1. We will say that b is of type A or of type E, respectively.

 Let b be a form on an arbitrary 2-group G and assume that bk is of type E. In this

 case the function qk: G/Gk -* Q/Z defined by qk(x) = 2k-lb(x, x) is well defined,
 where x is any preimage in G of x- in G/Gk. Let

 Sk (b)= =lGk 1E2 exp(21Tiqk(X)).
 IGI'72 x EG GAG

 LEMMA 2.1. If bk is of type E, then Sk(b) is a complex eighth root of unity.

 PROOF. See [1, Lemma 2.1 and Corollary 2.1].

 Kawauchi and Kojima's signature invariant can now be defined. Let Z8 = Z/8 u
 {c } be the semigroup with 9 elements 0,.. ., 7, oo whose operation is defined by
 addition mod 8 within Z/8 and i + o0 = o0 + i = o0 + o0 = o0.

 DEFINITION 2.2. Let b be a form on G. If bk is of type E, let uk(b) be the element

 of Z/8 such that SkA(b) = exp(7iJk (b)/4). If bk is of type A, let uk (b) = 00.
 Hence ak;(b) is an element of Zx for any k.

 LEMMA 2.3. (1) If b and b' are forms on G and G', respectively, then (b, b') is a form

 on G D G' and uk(b, b') = ahk(b) + ak (b') for every k.
 (2) If G - (Z/2r)N and b is a form on G, then ak;(b) = O for k > r.

 (3) ak(Ak) = ak(Bk) = ak(Ck) = (k(Dk) = xc and uk(Ek) = ak(FA) = O for k >
 1.

 (4) 0k_1(Ak) = Ak-1(Ck) = 1, 0yk_1(Bk) = ak_h(Dk) = 7, ak._(Ek) = 0, and
 Uk-l(Fk) = 4 for k >? 2.

 (5) ak-2(AA) = 1, a0k2(Bk) = 7, ak-2(Ck) = 5, ak-2(Dk) = 3,and 0Ak2(EA)
 ak-2(Fk) = 0 for k > 3.

 PROOF. See [1, Lemma 2.1 and Corollary 2.2].
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 538 NONDEGENERATE SYMMETRIC BILINEAR FORMS

 3. Normal forms for homogeneous groups. The group G is homogeneous if G-

 (Z/2r)N; r is the exponent of G and N is the rank of G. In this section I will present

 normal forms for forms on homogeneous 2-groups, which differ from those given in
 [1].

 DEFINITION 3.1. Let b be a form on a homogeneous 2-group. The form b is of type

 A if it is isomorphic to NAr. It is of type B if the form can be written in terms of Ar

 and Br. It is of type C if it can be written in terms of Ar and Cr. It is of type D if it

 can be written in terms of Ar, Br, Cr and Dr. It is of type E if it is isomorphic to MEr,
 where 2M is the rank of the group, and it is of type F if it can be written in terms of

 Er and Fr.

 This terminology agrees with the previously introduced notion of type for expo-

 nent-one groups. It is easy to see (using the relations (II) and (III) of Table 1.2) that

 every form on a homogeneous group has a type. However, some forms may be of

 more than one type. (For example, every form of type E is of type F.)

 In Table 3.2 the desired normal forms for forms on homogeneous 2-groups are

 given, together with their types and the three most useful signature invariants.

 TABLE 3.2

 Normal forms for forms on homogeneous 2-groups of exponent r and rank N

 exponent r rank N normal form Ur Ur-i r- 2 type

 1 N >?1 NA1 00 --- --- A

 1 Neven (N/2)E1 0 --- --- E

 2 N > 1 NA2 00 N --- A

 2 N>1 (N-1)A2+B2 oo N+6 --- B

 2 N>2 (N-2)A2+2B2 oo N+4 --- B

 2 N>3 (N-3)A2+3B2 oo N+2 --- B
 2 N even (N/2)E2 0 0 --- E
 2 Neven ((N/2)- 1)E2 + F2 0 4 --- F

 r > 3 1 Dr 00 7 3 D
 313, 2 Br + Dr 00 6 2 D

 "13, 3 2Br + Dr 00 5 1 D
 " N > 1 (N-I)Ar + Cr 00 N N + 4 C
 "1, N>2 (N-2)Ar+Br+ Cr oo N+6 N+ 2 D

 N) 3 (N-3)Ar+ 2Br+ Cr O N+4 N D

 N > 4 (N-4)Ar + 3Br + Cr 00 N + 2 N + 6 D

 " N > 1 NAr 00 N N A

 " N > 1 (N-I)Ar + Br 00 N + 6 N + 6 B
 N>2 (N-2)Ar+2Br 00 N+4 N+4 B

 N>3 (N-3)Ar+3Br oo N+2 N+2 B
 "13, Neven (N/2)Er 0 0 0 E

 "13, Neven ((N/2) - I)Er + Fr 0 4 0 F

 That any form may be brought to one of the above forms is an immediate

 consequence of the relations (0), (I), (II), (III), (IV) and (IX). An inspection of the
 above signature invariants shows that the normal forms above are all distinct.

 4. Normal forms for forms on an arbitrary 2-group. Given a form b on an arbitrary

 finite abelian 2-group G, we may write b = (Db(r), where b(r) is a form on a

 homogeneous 2-group of exponent r. Each b(r) may be independently put into a
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 RICK MIRANDA 539

 normal form as in the previous section, using the relations (O)-(IV). In this section I

 will describe how to use the relations (V), (VI), (VII) and (VIII) to put the entire

 form b into a normal form. For what follows, I will say that the trivial group is of

 type 0.

 The algorithm to put b(r) into normal form works inductively from above. The

 key step is to put b(r) into normal form by using the relations of Table 1.2 and to

 do so without affecting b(s), unless s = r - 2 or r - 1. Of course, if b(r) is of type

 0, there is nothing to do, so I will assume that this is not the case.

 Table 4.1 gives an algorithm for the first step in this process. The first three

 columns contain the type of Pr-2(G), Pr-I (G) and pr(G), and should be regarded as
 the input to the algorithm. In the fourth column is the type in which b(r) may be

 put, using the relations in the fifth column (together with the relations (0)-(IV)).

 TABLE 4.1

 Pr_2(G) Pr-I(G) pr(G) type of b(r) relations used

 O,A,orE OorE E F ---
 O, A, orE A E E (VI)

 OorE 0 A D ---

 A 0 A B (VIII)

 O orE E A B (VII)

 A E A B (VII) or (VIII)

 O orE A A C (V)

 A A A A (V) and (VIII)

 The verification of Table 4.1 is easy, given the following observation. Note that

 Pk(Ak) = Pk(Bk) = Pk(Ck) = Pk(Dk) = A1 and Pk(Ek) = Pk(Fk) = E1. Therefore,
 if Pk(G) is of type A there must exist a summand in b(k) of the form Ak, Bk, Ck or
 Dk in any decomposition of b and b(k). Similarly, if pk(G) is of type E, b(k) must

 be of type F (i.e., every summand is Ek or Fk) in every decomposition of b and b(k).

 Using this remark, I will check Table 4.1 in one representative case, leaving the

 rest to the reader. Let us examine the second line of the table, where pr(G) is of type

 E and pril(G) is of type A. By the above, b(r - 1) must contain one of
 Ari , Bri , Cr-I or Dr-I as a direct summand. Moreover, by Table 3.2, b(r) may be
 put in the form MEr or (M - I)Er + Fr, where 2M is the rank of b(r). If
 b(r) = MEr, there is nothing to do; b(r) is already of type E. If b(r) = (M - I)Er

 + Fr, then as the table indicates, we may use one of the relations of (VI) to change
 the Fr to an Er since one of Ari, Bri, Cri, or Dr is present. This verifies the
 second line of Table 4.1 and illustrates the general argument.

 If one decrees that p 2(G) and p l(G) are of type A, then Table 4.1 applies where

 r = 1 and r = 2, also.

 We will say that an expression for b in terms of the generators Ar, Br, Cr, Dr, Er

 andlr is in intermediate normal form if each b(r) is in one of the normal forms of

 Table 3.2 and the type of b(r) is consistent with the types of Pr-2(G), pr-,(G) and
 pr(G) as determined by Table 4.1.

 This is only an intermediate normal form because there is one other set of

 relations which can be deduced from those in (V) and which can be further applied.
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 540 NONDEGENERATE SYMMETRIC BILINEAR FORMS

 The situation in which they come to play is that of the second-to-last line of Table

 4.1, i.e., pr(G) and pr_i(G) are of type A and pr_2(G) is of type 0 or type E. In this
 case one can use the relations of (V) to change Br's and Dr's to Ar's and Cr's in b(r)

 and achieve a type C form for b(r). Note that then b(r) must equal NAr or

 (N - I)Ar + Cr by Table 3.2; this is a consequence of the relation 2Cr = 2Ar.
 It is possible in certain circumstances to put b(r) into type A form in this case,

 i.e., change the Cr to an Ar. For this one uses the following set of relations:

 (X) 2Ari1 + Cr = Br-, + Dr-, + Ar

 2Cr_ + Cr = Br-1 + Dr-, + Ar

 ArnI + Cr-I + Cr = 2Brij + Ar

 2Br_j + Cr = Ar-I + Cr-I + Ar

 2Dr_j + Cr = Ar-I + Cr-I + Ar

 Br-, + Dri, + Cr = 2Ar-1 + Ar.

 Each of these relations can be obtained from two of the relations in (V), used

 successively. For example, 2Ari1 + Cr = Ar-I + Dr-, + Br = Br-, + Dr-, + Ar. I
 will leave the rest to the reader. Using these relations, we have the following.

 LEMMA 4.2. Assume b is in intermediate form with pr(G) and Pri1(G) of type A, and

 Pr-2(G) of type 0 or type E. Then b(r) may be put into type A form, i.e., b(r) = NA
 if either:

 (a) the rank of b(r - 1)> 3, or

 (b) the rank of b(r - 1) = 2 and ur-2(b(r - 1)) # 0, i.e., b(r - 1) is one of the six

 types 2Ar- 1' Ar_ 1 + Cr- 1, 2Cr- 1, 2Br- 1, Br- 1 + Dr- 1, or 2Dr- 1.

 PROOF. Part (b) follows from the relation of (X) and a computation of Pr-2 for the

 10 possible rank-two type D exponent r - 1 forms. To prove (a), it suffices to show
 that if the rank of b(r - 1) > 3, then one of the six types which can be used in (X)
 must occur in b(r - 1). Since b(r - 1) is in normal form, this follows from an

 inspection of Table 3.2. Q.E.D.

 DEFINITION 4.3. An expression for b is in normalform if it is in intermediate form

 and if the hypotheses of Lemma 4.2 are satisfied for b for any r, then b(r) is in type
 A form.

 By Table 4.1 and Lemma 4.2, every form on a finite abelian 2-group G may be put
 into a normal form by using the relations of (0)-(VIII). The main result can now be
 proved.

 THEOREM 4.4. Let G be a finite abelian 2-group. Let b be a nondegenerate symmetric

 bilinear form on G. Then b has only one expression as a direct sum of the generators of

 22 which is in normalform.

 PROOF. Let N(r) be the rank of pr(G), so that G e ED (Z/2r)N(r). I will show that
 the numbers N(r) and the elements ar(b) E Z8 determine the normal form for b.
 The normal form will be developed by descending induction on r; since N(r) = 0
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 RICK MIRANDA 541

 for r large enough, the induction may begin without any analysis. Let us then assume

 that for k > r, it has been shown that there is only one expression for b in exponent

 k, which is in normal form. It will suffice to show that the normal form expression

 for the exponent r piece of b is determined. There are several cases to consider. Write

 or for ar(b) for every r > 1 and b(r) for the exponent r piece of b. We may assume

 N(r) > 1.

 Case 1. or # Xc. Here, by Table 3.2, the normal form for the exponent r piece of b

 is written in terms of Er and Fr so pr(G) is of type E. If ori,(G) = oo, then pri,(G)
 is of type A and Table 4.1 requires b(r) to be of type E, which forces b(r) =

 (N(r)/2)Er. If ari-(G) # oo, then pri,(G) is of type 0 or type E, so that any
 expression for b(r - 1) must be of type F, and the contribution to or-, from

 b(r - 1) is zero by Table 3.2. Since b(k) is determined for k > r, or-, determines
 b(r) in this case; the two possibilities (N(r)/2)Er and ((N(r)/2) - I)Er + Fr have

 or- 1 differing by 4.
 Case 2. or = Xc. By Table 3.2, the normal form expression for b(r) is written in

 terms of Ar, Br, Cr and Dr, so that pr(G) is of type A. There are several subcases to
 consider.

 Case 2A. ar-2 = ar-1 = ??. Here, by Table 4.1, b(r) is of type A so that
 b(r) = N(r)Ar is its normal form.

 Case 2B. or-2 = 00, o-1 ? c. In this case pr-2(G) is of type A and pri(G) is of
 type 0 or E, so that by Table 4.1 the normal form for b(r) is of type B and is, in

 fact, b(r) = (N(r) - i)Ar + iBr for some i between 0 and 3. Again the contribution

 from b(r - 1) to or - is zero, and by Table 3.2 or - distinguishes between the above
 four possibilities, so b(r) is determined.

 Case 2C. ar-2 cc, or-l # oc. If N(r - 1) = 0 so that pri,(G) is of type 0, then
 (since in this case Pr-2(G) is of type 0 or E), Table 4.1 implies that nothing can be
 done to alter b(r), and any of the normal forms of Table 3.2 are possible. In this

 case there is no contribution to either ar-2 or or-1 from b(r - 2) and b(r - 1);
 moreover, by Table 3.2, these invariants distinguish between all of the normal forms

 with or = cc. Hence b(r) is determined.

 If N(r - 1) > 1, then pr-i(G) is of type E, so by Table 4.1 the normal form for
 b(r) is of type B. Here the argument is as in Case 2B; or distinguishes between the
 four possibilities for b(r), so it is determined.

 Case 2D. or-2 cc, or -1 = cc. In this case Pr -2(G) is of type 0 or E and pr_i(G)
 is of type A, so by Table 4.1 the intermediate normal form for b(r) is of type C. Put

 b(r - 1) into a normal form. If N(r - 1) > 3 or N(r - 1) = 2 and Or-2(b(r - 1))
 # 0, then Lemma 4.2 applies and the normal form for b(r) is of type A, so that
 b(r) = N(r)Ar. Assume N(r - 1) = 2 but ur-2(b(r - 1)) = 0. Then there is no
 contribution to ar-2 from either b(r - 2) or b(r - 1); since the two possibilities
 N(r)Ar and (N(r) - I)Ar + Cr are distinguished by Or-2 by Table 3.2, b(r) is
 determined. Finally, assume N(r - 1) = 1. Again there is no contribution to ar-2

 from b(r - 2). The two possibilities for b(r) yield a difference of 4 in ar-2; if they
 are both possible, then this difference of 4 must be offset by a difference of 4

 contributed from b(r - 1). However, N(r - 1) = 1, so that the possibilities for

 b(r - 1) are Ar-1' Br-,, Cri, or Dr-, and by Lemma 2.3(4), their contributions to
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 542 NONDEGENERATE SYMMETRIC BILINEAR FORMS

 Ur-2 are either 1 or 7. Hence a difference of 4 cannot be contributed by b(r - 1),

 and b(r) is again determined. Q.E.D.

 COROLLARY 4.5 [1, THEOREM 4.1]. Any two forms b and b' with the same signature

 invariants or and ranks N(r) for every exponent r are isomorphic.

 PROOF. From the proof of the previous theorem, the normal forms for b and b' are

 determined by the invariants ar and the rank N(r). Since these normal forms are

 identical, b and b' are isomorphic. Q.E.D.

 COROLLARY 4.6. The relations of Table 1.2 are complete.

 PROOF. Assume there is a relation of the form b _ b', where b and b' are expressed

 in terms of the given generators for -42. By using the relations of Table 1.2, both b

 and b' may be brought to normal form. By Theorem 4.4, these normal forms must be

 identical. By reversing this procedure, the relation b _ b' is obtained from those of

 Table 1.2. Q.E.D.
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