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 ON THE STABILITY OF PENCILS OF CUBIC CURVES

 By RICK MIRANDA

 1. Introduction. Fix an algebraically closed field k of characteristic

 0. In this paper we study the classification of pencils of cubic curves in Pk2

 up to projective automorphism. In particular, we construct a classification

 space for cubic pencils, using geometric invariant theory.

 The automorphism group PGL(3) of p2 acts naturally on the space G

 of all cubic pencils, as described below. In the construction of the quotient

 variety, which is the desired classification space, the central problem is to

 determine the stable pencils (those whose orbit is closed and of maximal

 dimension); it is for these pencils that the quotient variety is an orbit

 space. We obtain explicit vanishing criteria on the Pluicker coordinates of

 a pencil for both stability and semi-stability (see Propositions 4.3 and 4.4);

 moreover, we give the equations defining pairs of generators for stable and

 semi-stable pencils (Propositions 5.1 and 5.2).

 Finally, a more geometric characterization of the stability of pencils

 with smooth members is obtained by considering the elliptic surface Xp

 associated to such a pencil (Xp is obtained by blowing up p2 at the base
 points of the pencil P). We prove the

 THEOREM. (1) P is a stable pencil X P contains a smooth member

 and everyfibre of Xp is reduced.
 (2) If P contains a smooth member, then P is a semi-

 stable pencil X Xp contains no fibre of type II*,

 III*, or IV* (using Kodaira's notation for singular

 fibres of elliptic surfaces).

 The author would like to thank I. Dolgachev for his conversations on

 this topic. The main part of this work was prepared while the author was a

 student of M. Artin, and for his help and encouragement I am deeply

 grateful.

 Thanks are also due to Fred Flowers who typed the manuscript.

 Manuscript received February 18, 1980.

 Americani Journial of Mathematics, Vol. 102, No. 6, pp. 1177-1202 1177
 0002-9327/80/1026-1177 $01.50

 Copyright ( 1980 by The Johns Hopkins University Press.
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 1178 RICK MIRANDA

 2. The space of pencils. Let V be the vector space of sections

 r(p2, (p2(1)), and denote by S3V the third symmetric power of V,

 naturally isomorphic to r(p2, Op2(3)). The projective space P9 P(S3 V*)

 is the parameter space for cubic curves in p2. Let G be the Grassman

 variety of lines in this P9; a point of G then corresponds to a pencil of

 plane cubic curves. G is naturally embedded in the projective space

 p44 = P(A2S3 V*) via the Pluicker coordinates described briefly below.

 Choose coordinates [x, y, z] of p2, i.e., a basis for the space V. Let P

 be a point of G, representing the line P in P9. (By abuse of notation we

 shall use P for a point of G, the line in P9 it represents, or the pencil of

 cubics to which that line corresponds, depending on the context.) Choose

 any two distinct points A and B on the line P. Let A and B represent the

 cubics E auxiyiZ3-i i and E b#jxiyiz3-iTi, respectively. Form the 2 X 10
 matrix

 kbij .

 Let

 aU ake

 M ijk = i k aijbke- akibii m - bij bkej Uf -

 be the determinant of the corresponding 2 X 2 minor. The 45 coordinates

 (mijke) are called the Plucker coordinates of P.

 THEOREM [KL]. The coordinates (mqike) of P are, up to scalar mul-
 tiplication, independent of the choice of A and B and give rise to a well-

 defined point of P44. Moreover, the map G _ P44 given by sending a point

 to its Plucker coordinates is a closed embedding.

 The above theorem justifies the use of the Plucker coordinates in

 working with the space G. In particular, we wish to use these coordinates

 to study the effect of applying a projective automorphism of the plane on

 G. To define this action it is convenient to consider the canonical isogeny

 SL(V) - Aut(P(V*)) = Aut(P2) which induces an action of SL(V) on

 p2; this action lifts to the natural action of SL(V) on V. Both groups act
 with the same orbits, so there is no loss of structure in this reduction. The

 group SL(V) acts canonically on V*, S3V*, and on A2S3V* which has as

 coordinates the (mijke). (See [H] for details.) This action is again linear
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 PENCILS OF CUBIC CURVES 1179

 and induces an action of SL(V) on P44 in which G is an invariant sub-

 variety. The restricted action of SL(V) on G is the desired action.

 To classify cubic pencils up to projective automorphism, we would

 like to construct, using geometric invariant theory, the orbit space

 G/SL(V), as a k-scheme. This quotient space unfortunately can not be

 given a scheme structure, essentially due to the presence of non-closed

 orbits. We will outline in the next section the standard method for con-

 structing the quotient variety for the 'semi-stable' orbits and for deter-

 mining which pencils are 'unstable' and must be deleted.

 For the purposes of the subsequent calculation we need to write down

 the action explicitly for diagonal elements of SL(V). Again choose coordi-

 nates [x, y, z] of p2, and let SL(3) act on these coordinates by the usual

 matrix multiplication: if g E SL(3) is diagonal and is given by the matrix

 O v O

 then

 g: [x, y, z] [ux, vy, wz].

 If (aip) is a point of S3V* representing the cubic form E ajxiyIZ3-i-j, then
 the action of g on S3 V* is given by

 g: (aij ) -* (uiVjW3-i-iaid)

 Finally, g acts on the Plucker coordinates mijk1 by

 g : (m Ukf) (ui+kvi+fw6-i--k-fm kf). (1.1)

 3. Relevant invariant theory. In this section we will collect the defi-

 nitions and results of geometric invariant theory required for the sequel.

 The ultimate reference for all definitions and details is [GIT]; a more

 pedestrian account is given in [SPV].

 Fix an algebraically closed field k, and a reductive algebraic group G

 defined over k. Let V be an n-dimensional representation of G, and let x

 be a vector in V. Let G *x denote the orbit and Gx the stabilizer of x.
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 1180 RICK MIRANDA

 Definition 3.1. (a) x is unstable if 0 E G x

 (b) x is semi-stable if 0 0 G.x
 (c) x is properly stable (or simple stable) if G x is closed and Gx is

 finite

 (d) x is strictly semi-stable if x is semi-stable but not stable.

 Let P(V*) be the projective space of 1-dimensional subspaces of V.

 A point p of P(V*) will be called unstable if any non-zero vector x of V

 lying over p is unstable. Analogous definitions are made for stability and

 semi-stability. Let V, and V,, be the open cones of stable and semi-stable
 vectors of V, and let P,(V*) and P,,(V*) be the open sets of stable and
 semi-stable points of P(V*). The following theorem is the main result:

 THEOREM 3.2. Let V be an n-dimensional representation of G, in-

 ducing an action of G on P(V*). Let Y C P(V*) be a closed G-invariant

 subscheme of P(V*); Y is then a projective scheme on which G acts. Let

 Y,,= Y n P,,(V*) and Y. = Y n P,(V*). Then (a) a universal categori-
 cal quotient (X, 7r) of Yss by G exists, and X is a projective k-scheme, (b)

 there is an open set Xs of X such that (X., r j I Y) is a universal geometric
 quotient of Ys by G.

 We see that the image X. of Y. is an actual orbit space for those orbits

 in Y.; however, in general, two orbits are identified in X if they have com-
 mon closure in YSS

 The above results are testimony to the central importance of the con-

 cepts of stability, semi-stability, and instability. That it is also relatively

 computable makes them not only theoretically interesting notions but also

 honestly useful tools in modern invariant theory. In particular, there is a

 strong numerical criterion for stability which we now describe.

 Definition 3.3. Let V be a representation of Gm. Since Gm is re-

 ductive, V splits into a sum of eigenspaces as V = Gnfz Vn where the

 action of t E Gm on Vn is given by scalar multiplication by tn. For any
 x E V, write x as E xn where xn E V". The weights of x with respect to this
 representation of Gm is the set of integers n such that xn is not zero.

 Definition 3.4. Let V be a representation of an algebraic group G.

 Let X: Gm G be a 1-parameter subgroup of G, and let x be a point of V.

 The X-weights of x are the weights of x with respect to the induced
 representation of Gm on V given by X. If p is a point of P(V*), the

 X-weights of p are the X-weights of any vector x in V lying over p (they are

 all equal).

 The numerical criterion for stability can now be stated.
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 PENCILS OF CUBIC CURVES 1181

 THEOREM 3.5. Let G be a reductive algebraic group acting linearly

 on the vector space V, and let x be a vector in V. Then (a) x is unstable

 X there exists a 1-parameter subgroup X of G such that the X-weights of x

 are all positive, (b) x is semi-stable X no such 1-parameter subgroup of G

 exists, (c) x is stable X x has both positive and negative weights with re-

 spect to every non-trivial 1-parameter subgroup of G.

 Condition (c) is often more useful in the form

 (d) x is not stable X* there exists a non-trivial 1-parameter subgroup X of
 G such that the X-weights of x are all non-negative.

 Statements (c) and (d) give numerical criteria for stable vectors, i.e.,
 those whose orbits are closed and of maximal dimension. A slight gen-
 eralization gives a criterion for any closed orbit:

 (e) G * x is closed X for every 1-parameter subgroup X of G, either the
 X-weights of x are both positive and negative, or 0 is the only X-weight of x.

 4. The criterion for the stability of cubic pencils. As we have seen,
 the analysis of stability is of central importance in the classification of

 cubic pencils. We shall now determine which pencils are unstable and not

 properly stable using the numerical criteria (3.5). The conditions for

 stability will be expressed in terms of the Plucker coordinates (mUke).

 By (3.5(a)), a pencil P is unstable if there exists a 1-parameter sub-

 group X: Gm - SL( V) such that the weights of P with respect to X are all

 positive. Let us compute these weights explicitly as follows:

 Assume P is an unstable pencil. Let X be the 1-parameter subgroup
 with respect to which the weights of P are all positive. We may choose co-

 ordinates [x, y, z] of p2 such that the induced action of Gm on [x, y, z] is

 diagonal. Let us say that in these coordinates the action of Gm is given by

 X(t): [XI y, Z] [trxx, tryy, trzz]

 where

 rx 2 ry 2 rz, rx # O, and rx + ry + rz = 0.

 The action of X(t) on the Plucker coordinates (mUke) will then be

 X(t) : (mijke) (trx(i+k)+ry(i+ C)+rz(6-i--k - O)mUk e)
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 1182 RICK MIRANDA

 by (1.1). The weights of the point (mike) with respect to X are the expo-

 nents of t for which mi,ke is non-zero. By setting r, = -r. - ry, the ex-
 ponent can be written in terms of r, and ry as

 r,(2i + 2k + j + e - 6) + ry(2j + 2Q + i + k - 6).

 The criterion for instability can now be stated as follows:

 Assume P is an unstable pencil. Then there exists integers rx, ry (with

 r, ? ry r - ry and r. > 0) and coordinates in p2 such that if P is
 represented by the point (myjke) of P44 in these coordinates, then myjkf = 0
 whenever r,(2i + 2k + j + Q- 6) + ry(2j + 2e + i + k - 6) < 0.

 There is a slightly less cumbersome form of the numerical criterion

 which is useful in this case. Let r = ry/r.. The conditions r. > ry >
 - rx-ry translate to -1/2 c r c 1. By dividing the inequality above by
 the positive integer rx we obtain the following restatement of the numeri-
 cal criterion:

 PROPOSITION 4.1. P is an unstable pencil in G if and only if there

 exist a rational number r E [- 1/2, 1] and coordinates in p2 such that if P
 is represented by the point (m(,kg) in these coordinates, then

 mijke = 0 whenever eijkf(r) < 0,

 where eakc(r) = (2i + 2k + j + e- 6) + r(2j + 2Q + i + k - 6).
 The criterion for stable pencils in G can be expressed similarly, using

 (3.5(d)):

 PROPOSITION 4.2. P is not properly stable if and only if there exist a

 rational number r E [ - 1/2, 11 and coordinates in p2 such that if P is repre-

 sented by the point (mpkf) in these coordinates, then

 mijkf = 0 whenever eqkf(r) < 0,

 where eqkC(r) is as above.
 We wish to remove from the above propositions the dependency on

 the existence of the rational number r. A priori, given a coordinate system

 on p2, one would need to check all the rationals in [- 1/2, 11 to determine

 the conditions on the (mykf) for instability (or non-proper-stability). Note

 however that the conditions eUkf(r) < 0 (respectively eykf(r) < 0) for all
 appropriate i, j, k, and Q subdivide the interval [ - 1/2, 1] into a finite
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 PENCILS OF CUBIC CURVES 1183

 number of subintervals within which the truth or falsity of the inequalities

 are constant. Hence we need check only one rational r in each sub-

 interval. Moreover, a careful inspection of the conditions on the (mijkc) in
 each of the sub-intervals shows that these conditions are not independent

 and in fact the number of sub-intervals giving 'minimal' conditions on the

 (make) for instability (or non-proper-stability) is two (respectively, three).

 Let us merely summarize the results of performing this calculation below.

 PROPOSITION 4.3. A pencil P is unstable if and only if there exist

 coordinates in p2 such that, if (mijke) are the induced coordinates of P.
 then either

 Case 1.

 mOOOI, m0002, m0003, MOOI10, MOOI, M0012, M0020, M0021,

 M0102, M0103, M0110, M0111, M0112, M0120, M0121,

 M0203, M0210, M0211, M0212, M0220,

 M0310, M0311,
 mi1011, mi1012

 all vanish, or

 Case 2.

 m001, M0002, M0003 Mi0010, M0011, M0012, M0020, M0021, M0030

 M0102, M0103, M0110, M0111, M0112, M0120, M0121,

 M0210, M0211, M0220'

 M0310,

 mi1011, m 1012, m 1020

 all vanish. In Case 1, an r E (- 1/5, 0) will exhibit P as unstable and in

 Case 2 an r in (1/4, 1) will work, using Proposition 4.1.

 PROPOSITION 4.4. A pencil P is not properly stable if and only if

 there exist coordinates of p2 such that, if (mi,ke) are the induced coordi-

 nates of P, then either

 Case 3:

 Mi0001, M002, M0003 Mi0010, M0011, M0012,

 M0102, M0103, Mi0110 M0111, M0112,

 M0203, M0210, M0211, M0212,

 M0310, M0311, M0312
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 1184 RICK MIRANDA

 all vanish, or

 Case 4:

 MOOOn , Mm002, M0003, MOOI10, MOOI, M0012, M0020, M0021,

 M0102, M0103, M0110, M0111, M0112, M0120,

 M0203, M0210, M0211,

 M03109

 Mloll

 all vanish, or

 Case 5:

 m0001i M0002, M0003, M0010, M0011, M0012, M0020, M0021, M0030,

 M01029 Moiioi Mn00 in0M120,

 M0210,

 mloil l, m 1020

 all vanish. In Cases 3, 4, and 5 the rational number r exhibiting P as not

 properly stable is - 1/2, 0, and 1 respectively, using Proposition 4.2.

 Remark. Propositions 4.3 and 4.4 actually give the criteria for sta-

 bility and semi-stability for any point of P(A2S3 V) in terms of the Plucker

 coordinates, not just for cubic pencils (which correspond to decomposable

 2-forms).

 5. The Stability condition in terms of generators of a pencil. Hav-
 ing computed the criteria for instability and non-proper stability in terms

 of the Plucker coordinates, one is still left with the question of a geometric

 characterization: what property or properties do the unstable (respec-

 tively, non-properly stable) pencils have? We claim that the vanishing

 conditions of Propositions 4.3 and 4.4 translate directly to various base

 conditions on the pencil. To see this, we assume that two cubics A and B

 generate an unstable (or non-properly stable) pencil P. Choose coordi-

 nates [x, y, z] of p2 SO that one of the vanishing conditions of Proposition

 4.3 (or Proposition 4.4) are satisfied. In these coordinates we write

 A: axiyiz3i-i = 0

 and

 B: b bjxyiz3-i- = 0.
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 PENCILS OF CUBIC CURVES 1185

 Since the Plucker coordinates mijkc equal aijbkf-akebiy, each set of van-
 ishing conditions gives equations involving the coefficients aij and bke.
 After some algebraic manipulation, these equations are easily seen to be

 equivalent to the vanishing of certain of the coefficients of some pair of

 cubics A', B' in the pencil P (not necessarily the original pair A, B). I

 will omit this part of the analysis and present the result of these calcula-

 tions below. We use the notation (M1, M2, ..., MK> to denote the sub-

 space of the vector space of cubic forms in x, y, and z generated by the

 monomials Mi.

 PROPOSITION 5.1. A pencil P is unstable if and only if there exist

 coordinates [x, y, z] of p2 and two generators A, B of P with equations

 FA(X, y, z) = 0, FB(X, y, z) = 0, respectively, satisfying one of the fol-
 lowing five conditions:

 (1) FA E (x3>
 FB E (z33 yz2, y2z, Y3, xz2, xyz, xy 2, x2z, x2y X3>

 (2) FAE (x2y, X3>

 FB E (y2Z, Y3, xz2, XYZ, XY2, x2z, x2y X3>
 (3) FAE (x2z, x2y X3>

 FB E (Y3, xz2, xyz, xy2, x2z, x2y, X3>
 (4) FAE ( y3,9xy2, x2y X3>

 FB E( y2Z, Y3, xyz, xy2, x2z, x2y X3>
 (5) FAE (XyZ,Xy2, X2Z,X2y, X3>

 FB E( y3, XyZ, Xy2, X2Z, X2y, X3>

 A pencil with generators A, B, having the form of cases (1) or (3) has

 Pluicker coordinates (mijkc) which satisfy the vanishing conditions of Case
 1 of Proposition 4.3. A pencil with generators in cases (4) or (5) has

 Plucker coordinates which satisfy Case 2 of Proposition 4.3. A pencil with

 generators in case (2) has Plucker coordinates which satisfy both cases

 of Proposition 4.3.

 PROPOSITION 5.2. A pencil P is not properly stable if and only if

 there exist coordinates [x, y, z] of p2 and two generators A, B of P with

 equations FA = 0,FB = 0 respectively, satisfying one of thefollowingfive

 conditions:

 (6) FAE (x2z, x2y, X3>
 FB E (Z3, yz2 y2z Y3, xz2, xyz, xy 2 x2Z, x2y X3>

 (7) FA E (xz2, XYZ xy2 x2Z x2y X3>
 FB E (xz2, xyz, xy2, x2Z, x2y, X3>
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 1186 RICK MIRANDA

 (8) FA E (xy2, X2z, X2y, X3 >

 FB E < y2z, y3, XZ2, xyz, Xy2, X2Z, x2y, X3>

 (9) FA E( <Y3, .Xy29 X2y9 X3 >

 FB E( yz2 y2z y3, XZ2, xyz, xy2, x2z, x2y, X3>
 (10) FAE (y3, xyZg xy2, x2z,9x2y, X3>

 FB E (y2Z, y3, XyZ, Xy2, X2Z, X2y, X3 >

 A pencil with generators in cases (6) and (7) has Pluicker coordinates
 which satisfy Case 3 of Proposition 4.4. A pencil with generators in case

 (8) has Plucker coordinates which satisfy Case 4 of Proposition 4.4. A
 pencil with generators in cases (9) and (10) has Plucker coordinates which
 satisfy Case 5 of Proposition 4.4.

 Notice that in all the cases (1)-(10), the subspace in which FB is con-
 strained to lie contains the subspace in which FA is constrained to lie.

 Thus any linear combination of FA and FB will lie in the subspace con-

 taining FB. One can therefore think of B as a 'general' member of the
 pencil P and of A as the 'special' member. A quick inspection of the
 geometric configuration of the two cubics A and B in each of the 10

 cases bears this out; if one assumes that the generators A and B are

 general enough, one can easily draw a representative graph in each case,

 illustrating this property. See Figures 5.3 and 5.4.

 6. The associated elliptic surface and instability. Let us call a pen-
 cil P of cubics smooth if some member of the pencil P is a smooth cubic.

 If P is a smooth pencil, then the general member of P is a smooth cubic
 and by blowing up the nine base points of the pencil (some possibly
 infinitely near) we obtain in a natural way an elliptic surface X fibred

 over Pl. This elliptic surface has a section; if we perform the nine blow-

 ups of p2 in some order, the final exceptional curve will be a section of the

 elliptic structure. (There will in general be many others, also.) Finally,
 note that X is a smooth rational surface. Conversely, every smooth ra-

 tional elliptic surface with a section may be obtained in this way; the
 proof of this is elementary and since we do not require it, we will leave it to

 the reader. Let us call the rational elliptic surface X obtained from P as
 above the induced elliptic surface; X is determined up to isomorphism, in-

 cluding the elliptic fibration, but no section is canonically given.

 We wish to use the induced elliptic surface to characterize the stabil-

 ity of cubic pencils in a more geometric way; although the classification of

 generators for unstable pencils given in section 5 is complete, the list is not
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 PENCILS OF CUBIC CURVES 1187

 A A-triple line

 B = arbitrary cubic

 A

 (2)

 A = double line U other line

 / D<B B = tangent to double line at the
 point of intersection

 A

 (3)A  A ) B A = double line U other line
 B meets double line at only one

 point

 (4) \ / / \~ A = three concurrent lines
 B is double at the point of

 A concurrency

 A

 (5)

 A = conic U line

 B is double at a point of inter-
 section of the conic and the line,

 with one tangent equal to the

 B line.

 Figure 5.3 Graphs of 'general' unstable pencils
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 1188 RICK MIRANDA

 (6) A

 A = double line U other lines
 B > / , B is arbitrary

 A

 (7)

 A and B share a line

 B

 A

 (8)

 A = conic U tangent line

 B is also tangent to the line at the

 same point.

 (9) A = three concurrent lines

 B passes through the point of

 A concurrency

 B

 (10)
 A and B share a singular point.

 B

 Figure 5.4 Graphs of 'general' non-properly stable pencils
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 PENCILS OF CUBIC CURVES 1189

 very informative as it stands. We claim that instability for smooth pencils

 is characterized however by the existence of certain singular fibres on the

 induced elliptic surface X.

 THEOREM 6.1. Let P be a smooth pencil of cubic curves in p2, in-

 ducing the elliptic surface X. Then P is unstable

 X X contains a singularfibre XO = E niCi with ni > 3 for some i
 X X contains a fibre of type II*, III*, or IV* in Kodaira 's notation of

 singular fibres of elliptic surfaces [Ko].

 Proof. Note that the second equivalence is an immediate conse-

 quence of Kodaira's classification of possible singular fibres on X; these

 three singular fibres are the only ones with a component of multiplicity

 larger than 2.

 To prove the first equivalence, assume first that the pencil P is

 unstable. By the classification given by Proposition 5.1, there must exist

 generators A, B of P such that A and B are of the form demanded by

 either case (1), (2), or (3). We shall address each of these cases in turn.

 Case 1. Note that in this case the member A of the pencil is a triple

 line; the proper transform of this triple line on the elliptit surface X will be

 a component of multiplicity 3 in its fibre.

 Case 2. In this case we have A given by an equation a21x2y +

 a3OX 3= 0. If a21 = 0 in fact we see that A is a triple line and proceed to
 argue as in case 1. If a21 ? 0 then the member A is the double line x2 = 0

 plus another line through (0, 0, 1). Since the general member of P is

 smooth, B must be smooth at (0, 0, 1). Thus the coefficient b1o of xz2 in

 the equation of B must be non-zero. Also one of the coefficients bo1, bo3 of
 y2z, y3 respectively must be non-zero; otherwise B would contain the line

 x = 0 as well as A. In either case, B passes thru the point (0, 0, 1) and is

 tangent to the line x = 0 there. Thus to separate A and B we must blow up

 the point (0, 0, 1) and also the infinitely near point to (0, 0, 1) in the direc-

 tion of the line x = 0. It is easily seen that the exceptional curve for this

 second blow-up has multiplicity 3 in the fibre over A after further blowing

 up to obtain X.

 Case 3. In this case, A is given by the equation a20x2z + a21x2y +

 a3OX 3= 0 and is thus composed of the double line x = 0 and some other
 line a20z + a21y + a30x = 0. The member B must again be smooth at

 (0, 0, 1), and so b Io ? 0. In this case also the coefficient bo3 of y3 must be
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 1190 RICK MIRANDA

 non-zero; otherwise B would contain the line x = 0. We thus see that B

 has a flex at (0, 0, 1) with tangent line x = 0. To separate the members A

 and B we must blow up the point (0, 0, 1), the infinitely near point in the

 direction of the line x = 0, and the doubly infinitely near point in the

 direction of the line x = 0. It is again easily seen that the exceptional curve

 for this third blow-up has multiplicity 3 in its fibre in X.

 The converse is slightly more complicated. Assume P is a pencil of

 plane cubics such that the rational elliptic surface F has a fibre of type II*,

 III*, or IV*. The problem is to find generators A and B of P satisfying the

 conditions of one of the unstable cases 1, 2, or 3. We shall proceed using a
 series of reductions.

 LEMMA 6.2. P must contain a memberA which is singular at one of

 the base points.

 Proof. We need only note that given a pencil {Cx}, the induced

 pencil {C0} on the surface R obtained by blowing up the base point p of

 {CW} is {lr*C, - E} where ir is the blow up map and E is the exceptional
 curve for ir. Thus given any member A of the pencil, the induced member

 on R isA + (mp(A) - 1)E whereA is the proper transform of A on R and
 mp(A) is the multiplicity of the point p on A. Thus if, at every base point,

 every member of the pencil P is smooth, mp(A) = 1 for every p and A.
 Thus the induced pencil on R consists of only the proper transforms of the

 curves in the original pencil. This argument can be applied to each blow-

 up, and in particular the fibres of X must be only proper transforms of the

 members of the pencil. But each of the fibres II*, III*, and IV* have at

 least seven components and hence cannot be the proper transform of a

 cubic in the plane. This contradiction proves the lemma. Q.E.D.

 LEMMA 6.3. P must contain a member A which is either

 (a) a cuspidal cubic, with cusp at a base point,

 (b) 3 concurrent lines, whose common point is a base point,

 (c) a line and a conic tangent to the line, the point of tangency a base
 point,

 (d) a double line and another line, or

 (e) a triple line.

 Proof. Using Lemma 6.2, some member of P must be singular at

 some base point. The list above contains all singular cubics except

This content downloaded from 
�������������129.82.95.71 on Fri, 22 Apr 2022 21:57:13 UTC�������������� 

All use subject to https://about.jstor.org/terms



 PENCILS OF CUBIC CURVES 1191

 (1) a nodal cubic,

 (2) three non-concurrent lines,

 (3) a conic and a non-tangent line.

 It is elementary to see that none of the above members of a pencil P

 can induce a fibre of type II*, III*, or IV* on X. Let us only examine case
 (1) of a nodal cubic A. Upon 1 blow-up at the node, the pencil on the blow

 up has corresponding member A + E where A is the proper transform of

 the nodal cubic A and E is the exceptional curve. Notice that the singu-

 larities of this member are still only double points with distinct tangents,

 and there is no component of multiplicity larger than 1. This situation

 remains true after each blow-up; thus on the surface X no component will

 have multiplicity greater than 1. Cases (2) and (3) above are handled iden-

 tically; again the crucial fact to be noticed is that at each blow-up, the cor-

 responding member has only "normal crossings" and reduced com-

 ponents. Q.E.D.

 LEMMA 6.4. P must contain a member A which is either

 (d) a double line and another line, or

 (e) a triple line.

 Proof. We must eliminate cases (a), (b), and (c) of Lemma 6.3. The

 argument is slightly different from these reductions than as before; we can

 conceivably obtain a component of multiplicity three in the fibre if we

 blow up enough times at the singular point, as is illustrated below for case

 (b)
 2

 3~~~~

 2 2 1 1

 (The numbers are the multiplicity of the component in the pencil; the

 circled points are the points blown up at each stage.)

 To see that this cannot occur, we will show that in order to separate

 the member A from a smooth cubic B through the singular point p, we

This content downloaded from 
�������������129.82.95.71 on Fri, 22 Apr 2022 21:57:13 UTC�������������� 

All use subject to https://about.jstor.org/terms



 1192 RICK MIRANDA

 need never apply the above sequence of blow-ups (or any other sequence

 leading to a multiplicity 3 component). Let us argue first in case (b).
 There are several cases to consider for the smooth cubic B:

 (Case 1): B passes through the singular point p with tangent dif-
 ferent from the three lines

 (Case 2): B is simply tangent to one of the lines at p.

 (Case 2): B is tangent, to order 3, to one of the lines at p.

 In each of these cases we separate A from B explicitly and see what

 results:

 (Case 1):

 1 1 1 2 1

 (Case 2):
 B~~~~~~~

 2~~~~~~~~~~

 1 1 1 2 222

 2 ~~~~~~~~~2

 ,/ 1 - / 1~~~

 ~\1 11

This content downloaded from 
�������������129.82.95.71 on Fri, 22 Apr 2022 21:57:13 UTC�������������� 

All use subject to https://about.jstor.org/terms



 PENCILS OF CUBIC CURVES 1193

 (Case 3):

 B I

 B
 I I 1 2

 2 2

 B B

 2 2

 B ~~B

 1 1

 2 2B

 1 :1

 2 2

This content downloaded from 
�������������129.82.95.71 on Fri, 22 Apr 2022 21:57:13 UTC�������������� 

All use subject to https://about.jstor.org/terms



 1194 RICK MIRANDA

 We see by inspecting these three cases that the result follows for the

 case (b).

 To complete the proof we note that the situation of case (b) is ob-

 tained as soon as one blow up is performed on the cubic of case (c):

 So any smooth cubic B passing through the base point in case (c) will,

 after one blow-up, look like a cubic satisfying one of the 3 cases of base

 (b). The argument for case (b) above then applies. In case (a), one blow-

 up yields the situation of case (c):

 1 1

 So, arguing by reduction to case (b), the lemma is proved. Q.E.D.

 Lemma 6.4 allows us to complete the proof of Theorem 6.1. Suppose

 we are in case (e) and there exists a member A of the pencil P which is a

 triple line. Then if B is any other member of P, the pair A, B of generators

 satisfy the conditions of case 1 for instability. Thus the pencil P is

 unstable.

 Suppose we are in case (d) and there exists a member A of the pencil

 consisting of a double line L and another line M. The possibilities for a

 second smooth member B are the following.
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 PENCILS OF CUBIC CURVES 1195

 (1) B passes thru p = L n M, and has a flex there with tangent L.

 (2) B passes thrup, and is tangent toL atp, and meetsL in one other

 point q.

 (3) B passes thru p, with tangent distinct from L, and meets L in two

 other points q, r.

 (3) B passes thru p, with tangent distinct from L, and meets L in one

 other point q, with tangent L.

 (4) B meets L in three distinct points, and p 0 B.

 (5) B is tangent to L at a point q ? p, and passes thru another point

 r ? p, onL.

 (6) B is tangent to L to order 3 at a point q ? p.

 Now in cases (1) and (2) the pair A, B satisfies the conditions of case 2

 for instability. In case (6), the pair A, B satisfies the conditions of case 3.

 By explicitly separating the two members A, B by a sequence of blow-ups

 one can compute, as in the proof of Lemma 3.4, that in cases (3), (4), and

 (5) no component of multiplicity greater than two ever appears in the

 fibres of X. I shall omit the tedious verification of this fact. The theorem is

 proved. Q.E.D.

 There are a few remarks to be made. Note first that for smooth pen-

 cils, instability is completely determined by the rational elliptic surface X.

 Thus if two distinct pencils give rise to the same rational elliptic surface,

 they are either both unstable or both semi-stable. This offers evidence that

 the moduli of cubic pencils is closely related to that of rational elliptic sur-

 faces with section.

 Secondly, note that certain pencils are semi-stable even though they

 have no smooth members! For example, the pencil generated by the cubic

 yz2 = X3 and the cubic X2Z = y2z is semi-stable. However, all properly

 stable pencils have smooth members. It is the computation of the properly

 stable pencils which we shall now present.

 7. The characterization of properly stable pencils. Since we have a

 complete classification of properly stable pencils given by Proposition 5.2,

 we would like some characterization of them similar to the characteriza-

 tion of unstable pencils given by Theorem 6.1. In particular, if P is a prop-

 erly stable pencil having a smooth member, then P will induce a rational

 elliptic surface X and we can ask what properties of X are implied by the

 stability of P. Conversely, given the surface X induced by a pencil P, we
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 1196 RICK MIRANDA

 can ask what properties of X imply the stability of P. Again the answer to

 these questions can be expressed in terms of the singular fibres of X:

 THEOREM 7.1. Let P be a smooth pencil of cubics in p2, inducing

 the rational elliptic surface X. Then

 (i) P is not properly stable X X contains a fibre XO = E niCi with ni
 2 2for some i.

 X X contains a fibre of type IN*, IV*,

 III*, or II* in Kodaira's notation for

 singular fibres of elliptic surfaces.

 (ii) P is properly stable X allfibres of X are reduced.

 Proof. (ii) is simply a restatement of the first equivalence of (i), and

 the second equivalence of (i) is an immediate consequence of Kodaira's

 classification of singular fibres of X and the first equivalence. Hence it

 suffices to demonstrate the first equivalence.

 Assume first that the pencil P is not properly stable. Since P has a

 smooth member, there must be coordinates in p2 and generators A, B of P

 satisfying either case 6, case 8, or case 9 of Proposition 5.2. In case 6, the

 generator A consists of a double line and one other line, or is a triple line.

 In either case the fibre it induces on X will have a multiple component.

 In case 9, A is either three concurrent lines, a double line plus

 another line, or a triple line. As above if A is one of the latter two, A

 clearly induces on X a fibre with a multiple component. If A is three con-

 current lines, meeting at the point Q, we see that in case 9, Q is a base

 point of the pencil P. To resolve the pencil we must then blow up the point

 Q at least once; the exceptional curve for this blow-up will have multiplic-

 ity two in the pencil, and so its proper transform on X will have multiplic-

 ity two in its fibre.

 In case 8, A is either a conic plus a tangent line, a double line plus

 another line or a triple line. If A is one of the latter two, we are done as

 above. If A is a conic plus a tangent line L, tangent at the point Q, and B

 is a cubic smooth at Q, and also tangent to the line L, (as is the situation

 in case 8), then to resolve the pencil we must blow up the point Q and the

 point infinitely near to Q in the direction of L. The exceptional curve for

 the second blow-up will have multiplicity two in the pencil, and its proper

 transform on X will then have multiplicity two in its fibre.

 This establishes one direction of the equivalence.

 The converse is more complicated, as in the proof of Theorem 6.1.

 However, some of the intermediate results obtained in the course of that
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 PENCILS OF CUBIC CURVES 1197

 proof are still valid in our situation. Assume now that P induces the ellip-

 tic surface X which has a fibre with a multiple component.

 LEMMA 7.2. P must contain a member A which is either

 (a) a cuspidal cubic, with cusp at a base point,

 (b) three concurrent lines, whose common point is a base point,

 (c) a line and a conic tangent to the line, the point of tangency a base

 point,

 (d) a double line and another line, or

 (e) a triple line.

 The proof is identical to that of Lemma 6.3 and will not be repeated.

 To prove that P is not properly stable, we will use the classification in

 Table 5.2 of non-properly stable pencils. Note that if P has a member A

 which is one of cases (b), (d), or (e), then P is not properly stable in cases

 9, 6, and 6 respectively. We will take up cases (a) and (c) in turn. We will

 show that in these cases there are further restrictions on the pencil P, forc-

 ing P to be non-properly stable.

 Assume P contains a member A which is a cuspidal cubic, with cusp

 at a base point Q of P. P has a smooth member by hypothesis so every

 other member of P is smooth at Q. To resolve the pencil we must blow up

 Q at least once; the exceptional curve E for this blow-up will have

 multiplicity 1 in its fibre on X since the multiplicity of Q on A is 2. The

 proper transform of any other member B of P will intersect E transversally

 since B must be smooth at Q. The proper transform of A is a smooth ra-

 tional curve tangent to E. There are two cases to consider:

 Casel. BfnE n Q? 0.

 Case 2. BnEn Q = 0.

 In either case, it is easy to see that no multiple component is in-

 troduced in resolving the pencil.

 E

 E E

 B

 X E < E_____ B

 B 1 1 1 1 1

 B ~ ~ ~ ~
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 1198 RICK MIIRANDA

 EE

 B~~~~~~~~

 1 1

 Assume finally that P contains a member A which consists of line L

 and a conic C tangent to the line, the point Q of tangency a base point. If

 any other member B of P is either singular at Q or tangent to L at Q, then
 P is not properly stable in case 8. Thus assume all other members B of P

 pass thru Q meeting L transversally. It is then easy to see as above that no
 multiple component is introduced in resolving the pencil:

 L

 C
 L

 B

 B B

 This completes the argument and finishes the proof of the theo-

 rem. Q.E.D.

 As a final remark, let us observe that if P is a properly stable pencil

 then P always induces a rational elliptic surface.

 THEOREM 7.3. Let P be a properly stable pencil of cubics in p2.

 Then P has a smooth member and induces a rational elliptic surface X

 containing no fibres with non-reduced components.

 Proof. We will assume P has no smooth members and show it is not

 properly stable using the classification of Proposition 5.2 of non-properly

 stable pencils.
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 PENCILS OF CUBIC CURVES 1199

 Assume then that P has no smooth members. It follows from Bertini's

 theorem [Sh] that one of the following conditions must hold:

 (i) There is a base point of P at which all members of P are singu-

 lar.

 (ii) The base locus of P contains a line.

 (iii) The base locus of P contains a conic Q and P is the pencil Q + P

 where P is a pencil of lines through a point R of Q.

 (iv) The base locus of P contains a conic Q and P is the pencil Q + P

 where P is a pencil of lines through a point R not in Q.

 We shall show that in all of these cases, P is not properly stable.

 In case (i), P is not properly stable in case 10 of Proposition 5.2. In

 case (ii), P is not properly stable in case 7 of Proposition 5.2. In case (iii),

 P is not properly stable in case 10 again; the point R is a singular point of

 every member of P. In case (iv), we note that there is a member of P which

 consists of the conic Q and one of the two lines through the point R

 tangent to Q. Take this member as the generator A of P. Let B be any

 other member of P. We see then that A and B generate P, A consists of a

 conic Q and a line L tangent to the conic and B is also tangent to the line L

 at the point Q n L. Thus P is unstable in case 8 of Proposition 5.2.
 Q.E.D.

 This completes the analysis of proper stability for pencils of cubics in

 p2. We note that the stability or instability of a pencil P depends only on
 the induced elliptic surface X; if two pencils induce isomorphic elliptic

 surfaces, then the pencils are either both unstable, both strictly semi-

 stable, or both stable.

 8. The characterization of strictly semi-stable smooth pencils. Let

 P be a strictly semi-stable smooth pencil; recall that then P is not properly

 stable, but not unstable (Definition 3.1). Combining Theorems 6.1 and

 7.1, we have

 THEOREM 8.1. Let P be a smooth pencil of cubics in p2, inducing

 the rational elliptic surface X. Then

 P is strictly semi-stable X X contains a fibre of type IN*

 (using Kodaira's notation).

 Proof. We must show that if X contains a fibre of type IN*, then X

 does not contain a fibre of type II*, III*, or IV*. For this we use the
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 1200 IRIC'K MIRIANDA

 'canonical bundle formula' of Kodaira: let M(T) be the number of

 singular fibres of type T or an elliptic surface X with section. Then

 12X(Og N-1 NM(IN) + NE l(N + 6)M(IN*) N=1N=

 + 2M(II) + 3M(III) + 4M(IV)

 + 1OM(II*) + 9M(III*) + 8M(IV*). [Ko]

 In our situation, X is rational so X(0g) = 1. However, if X contains a fibre
 of type IN* and one of type II*, III*, or IV*, the right side of the equation

 is bigger than 12. Q.E.D.

 We will now describe the strictly semi-stable smooth pencils whose

 orbits are closed. By using the numerical criterion (Theorem 3.7(e)) and

 by applying arguments similar to those used in section 4, one can easily

 derive the following vanishing criterion for such pencils.

 PROPOSITION 8.2. A strictly semi-stable pencil P has a closed orbit

 if and only if there exist coordinates in p2 such that, if (mijke) are the in-
 duced coordinates of P, then either

 Case 1. All mijkevanish except possibly

 M0020, M0021, M0120, M0121, M0220, M0221, M0320,

 M0321, M1IOI, M1012, and i1112,

 or

 Case 2. All mijkevanish except possibly

 Mi0030, Mi0121, Mi0212, Mi0220, Mi0311, Mi1012, and i1020.

 As is the case for instability, one can express these vanishing criteria

 in terms of 'standard' generators for the pencil P. The result of this calcu-

 lation is given below.

 PROPOSITION 8.3. A strictly semi-stable smooth pencil P has a

 closed orbit if and only if there exist coordinates [x, y, z] of p2 and two
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 PENCILS OF C'UBIC CURVES 1201

 generators A, B of P with equations FA = 0, FB = 0, respectively, satisfy-

 ing either

 Case 1. FA = x2z, FB = b0z3 + bo1yz2 + bO2y2z + bO3y3, boo ? 0,
 FB factors into distinct linear factors,

 or

 Case 2. FA = x(a12Y2 + a20xz), FB = z(bo2y2 + b1oxz), a12a20b02b10
 ? 0, al2b10 - a20b02 ? 0.

 In Case 1, A is a double line plus a single line, and B is three concur-

 rent lines meeting at a point on the single line of A. In Case 2, both A and

 B are smooth conics plus tangent lines; moreover, the two conics are

 tangent to each other at the points of tangency with the lines. See Figure
 8.4.

 (Case 1)

 A Ni.

 B T / 01

 (Case 2)

 B

 A

 A B

 Figure 8.4 Graphs of smooth strictly semi-stable pencils with closed orbits
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 1202 RICK MIRANDA

 The characterization of smooth strictly semi-stable pencils with

 closed orbits in terms of the induced rational elliptic surface X is as

 follows:

 THEOREM 8.5. Let P be a smooth strictly semi-stable pencil of cubic

 curves in p2 inducing the rational elliptic surface X. Then the orbit of P is

 closed X* X contains two singular fibres of type Io*.
 The implication (=*) can be proved using Proposition 8.3; the two

 singular fibres are precisely the transforms on X of the given generators A

 and B. The converse can be verified using arguments identical to those of

 sections 6 and 7 and this will be omitted.

 Note that by the canonical bundle formula, a rational elliptic surface

 X with section, which has two fibres of type Io*, has no other singular

 fibres. Moreover, since the j-function (associating to every point p of the

 base curve PI of X, thej-invariant of the fibre overp) is a rational function

 on PI, and since thisj-function is finite at smooth fibres and at fibres of
 type I0* (see [Ko]), this j-function in our case must be a constant. In the

 situation of Case 1 for example, thisj-value corresponds to the cross-ratio

 of the four points (on the double line of the generator A) obtained by inter-

 section with the three lines of B and the other single line of A.

 Remark. To produce rational elliptic surfaces X with section as

 above, we may start with a pencil P of cubics with generators satisfying

 Case 1 or Case 2. The two cases are clearly not projectively equivalent.

 However, they are birationally equivalent, i.e., any rational elliptic sur-

 face as above can be blown down to p2 in (at least) two ways, one of which

 leads to a pencil with generators in case (1), the other to one with

 generators in case (2).

 UNIVERSITY OF CHICAGO
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