Tk JOHNS HOPKINS

UNIVERSITY PRESS

On the Stability of Pencils of Cubic Curves
Author(s): Rick Miranda

Source: American Journal of Mathematics, Dec., 1980, Vol. 102, No. 6 (Dec., 1980), pp.
1177-1202

Published by: The Johns Hopkins University Press

Stable URL: https://www.jstor.org/stable/2374184

REFERENCES
Chod eafa STOR_for this article:
47seq=1&cid=pdf+

'I"I'p'/l/xn.x. jcr ng/c::|’9741
reference#references_tab_contents
ou may need to Iog in to JSTOR 1o access the linked references.

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide
range of content in a trusted digital archive. We use information technology and tools to increase productivity and
facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at
https://about.jstor.org/terms

The Johns Hopkins University Press is collaborating with JSTOR to digitize, preserve and
extend access to American Journal of Mathematics

JSTOR

This content downloaded from
129.82.95.71 on Fri, 22 Apr 2022 21:57:13UTC
All use subject to https://about.jstor.org/terms


https://www.jstor.org/stable/2374184
https://www.jstor.org/stable/2374184?seq=1&cid=pdf-reference#references_tab_contents
https://www.jstor.org/stable/2374184?seq=1&cid=pdf-reference#references_tab_contents

ON THE STABILITY OF PENCILS OF CUBIC CURVES

By Rick MirANDA

1. Introduction. Fix an algebraically closed field k of characteristic
0. In this paper we study the classification of pencils of cubic curves in P2
up to projective automorphism. In particular, we construct a classification
space for cubic pencils, using geometric invariant theory.

The automorphism group PGL(3) of P2 acts naturally on the space G
of all cubic pencils, as described below. In the construction of the quotient
variety, which is the desired classification space, the central problem is to
determine the stable pencils (those whose orbit is closed and of maximal
dimension); it is for these pencils that the quotient variety is an orbit
space. We obtain explicit vanishing criteria on the Pliicker coordinates of
a pencil for both stability and semi-stability (see Propositions 4.3 and 4.4);
moreover, we give the equations defining pairs of generators for stable and
semi-stable pencils (Propositions 5.1 and 5.2).

Finally, a more geometric characterization of the stability of pencils
with smooth members is obtained by considering the elliptic surface Xp
associated to such a pencil (Xp is obtained by blowing up P2 at the base
points of the pencil P). We prove the

THEOREM. (1) Pis a stable pencil ¢ P contains a smooth member
and evexy fibre of X p is reduced.
(2) If P contains a smooth member, then P is a semi-
stable pencil ¢ Xp contains no fibre of type II*
IIT* or IV* (using Kodaira's notation for singular
fibres of elliptic surfaces).

The author would like to thank I. Dolgachev for his conversations on
this topic. The main part of this work was prepared while the author was a
student of M. Artin, and for his help and encouragement I am deeply
grateful.

Thanks are also due to Fred Flowers who typed the manuscript.

Manuscript received February 18, 1980.
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1178 RICK MIRANDA

2. The space of pencils. Let V be the vector space of sections
I'(P2, Op2(1)), and denote by S3V the third symmetric power of V,
naturally isomorphic to I'(P2, Op2(3)). The projective space P = P(S3V*)
is the parameter space for cubic curves in P2, Let G be the Grassman
variety of lines in this P%; a point of G then corresponds to a pencil of
plane cubic curves. G is naturally embedded in the projective space
P4 = P(A253V*) via the Pliicker coordinates described briefly below.

Choose coordinates [x, y, z] of P2, i.e., a basis for the space V. Let P
be a point of G, representing the line P in P9. (By abuse of notation we
shall use P for a point of G, the line in P? it represents, or the pencil of
cubics to which that line corresponds, depending on the context.) Choose
any two distinct points A and B on the line P. Let A and B represent the
cubics T a;xy/z37"/ and L b;x'y/z37/, respectively. Form the 2 X 10

matrix
o
by)
Let

_ a,«j Qe _
Mjre = = aijbke - akebij
b; by,

be the determinant of the corresponding 2 X 2 minor. The 45 coordinates
(i) are called the Plicker coordinates of P.

THEOREM [KL]. The coordinates (my,) of P are, up to scalar mul-
tiplication, independent of the choice of A and B and give rise to a well-
defined point of P**. Moreover, the map G — P* given by sending a point
to its Pliicker coordinates is a closed embedding.

The above theorem justifies the use of the Pliicker coordinates in
working with the space G. In particular, we wish to use these coordinates
to study the effect of applying a projective automorphism of the plane on
G. To define this action it is convenient to consider the canonical isogeny
SL(V) — Aut(P(V*)) = Aut(P2) which induces an action of SL(V) on
PZ; this action lifts to the natural action of SL(V) on V. Both groups act
with the same orbits, so there is no loss of structure in this reduction. The
group SL(V) acts canonically on V*, S3V*, and on A2S3V* which has as
coordinates the (m ;). (See [H] for details.) This action is again linear
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PENCILS OF CUBIC CURVES 1179

and induces an action of SL(V) on P# in which G is an invariant sub-
variety. The restricted action of SL(V) on G is the desired action.

To classify cubic pencils up to projective automorphism, we would
like to construct, using geometric invariant theory, the orbit space
G/SL(V), as a k-scheme. This quotient space unfortunately can not be
given a scheme structure, essentially due to the presence of non-closed
orbits. We will outline in the next section the standard method for con-
structing the quotient variety for the ‘semi-stable’ orbits and for deter-
mining which pencils are ‘unstable’ and must be deleted.

For the purposes of the subsequent calculation we need to write down
the action explicitly for diagonal elements of SL(V'). Again choose coordi-
nates [x, y, z] of P2, and let SL(3) act on these coordinates by the usual
matrix multiplication: if g € SL(3) is diagonal and is given by the matrix

u 0 0
0 v 0],
0 0 w

then
g:lx, y, z]~~~[ux, vy, wzl.

If (a;) is a point of §3V* representing the cubic form L a;xy/z37i~/, then
the action of g on $3V* is given by

g:(ay) ammnr (uiviw3~7ay).
Finally, g acts on the Pliicker coordinates m ;, by
g (mjg) mmne (Wi TR H WOkt gy ), (1.1)

3. Relevant invariant theory. In this section we will collect the defi-
nitions and results of geometric invariant theory required for the sequel.
The ultimate reference for all definitions and details is [GIT]; a more
pedestrian account is given in [SPV].

Fix an algebraically closed field k, and a reductive algebraic group G
defined over k. Let V be an n-dimensional representation of G, and let x
be a vector in V. Let G-x denote the orbit and G, the stabilizer of x.
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1180 RICK MIRANDA

Definition 3.1. (a) x is unstable if 0 € G-x

(b) x is semi-stable if 0 ¢ G-x

(c) x is properly stable (or simple stable) if G-x is closed and G, is

finite

(d) x is strictly semi-stable if x is semi-stable but not stable.

Let P(V*) be the projective space of 1-dimensional subspaces of V.
A point p of P(V*) will be called unstable if any non-zero vector x of V
lying over p is unstable. Analogous definitions are made for stability and
semi-stability. Let V, and V, be the open cones of stable and semi-stable
vectors of V, and let P,(V*) and P, (V*) be the open sets of stable and
semi-stable points of P(V*). The following theorem is the main result:

THEOREM 3.2. Let V be an n-dimensional representation of G, in-
ducing an action of G on P(V*). Let Y C P(V*) be a closed G-invariant
subscheme of P(V*); Y is then a projective scheme on which G acts. Let
Yo=Y NP (V¥ and Y, =Y N P(V*). Then (a) a universal categori-
cal quotient (X, 7) of Y, by G exists, and X is a projective k-scheme, (b)
there is an open set X, of X such that (X,, 7| Y) is a universal geometric
quotient of Y by G.

We see that the image X of Y is an actual orbit space for those orbits
in Y,; however, in general, two orbits are identified in X if they have com-
mon closure in Y.

The above results are testimony to the central importance of the con-
cepts of stability, semi-stability, and instability. That it is also relatively
computable makes them not only theoretically interesting notions but also
honestly useful tools in modern invariant theory. In particular, there is a
strong numerical criterion for stability which we now describe.

Definition 3.3. Let V be a representation of G,,. Since G, is re-
ductive, V splits into a sum of eigenspaces as V = @,z V, where the
action of ¢t € G,, on V,, is given by scalar multiplication by ¢”. For any
x € V, write x as L x,, where x,, € V,,. The weights of x with respect to this
representation of G,, is the set of integers n such that x,, is not zero.

Definition 3.4. Let V be a representation of an algebraic group G.
Let A\:G,, — G be a 1-parameter subgroup of G, and let x be a point of V.
The \-weights of x are the weights of x with respect to the induced
representation of G,, on V given by \. If p is a point of P(V*), the
\-weights of p are the N\-weights of any vector x in V lying over p (they are
all equal).

The numerical criterion for stability can now be stated.
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PENCILS OF CUBIC CURVES 1181

THEOREM 3.5. Let G be a reductive algebraic group acting linearly
on the vector space V, and let x be a vector in V. Then (a) x is unstable
& there exists a 1-parameter subgroup \ of G such that the N\-weights of x
are all positive, (b) x is semi-stable & no such 1-parameter subgroup of G
exists, (c) x is stable & x has both positive and negative weights with re-
spect to every non-trivial 1-parameter subgroup of G.

Condition (c) is often more useful in the form

(d) x is not stable ¢ there exists a non-trivial 1-parameter subgroup \ of
G such that the N\-weights of x are all non-negative.

Statements (c) and (d) give numerical criteria for stable vectors, i.e.,
those whose orbits are closed and of maximal dimension. A slight gen-
eralization gives a criterion for any closed orbit:

(e) G-x is closed & for every 1-parameter subgroup \ of G, either the
\-weights of x are both positive and negative, or 0 is the only N\-weight of x.

4. The criterion for the stability of cubic pencils. As we have seen,
the analysis of stability is of central importance in the classification of
cubic pencils. We shall now determine which pencils are unstable and not
properly stable using the numerical criteria (3.5). The conditions for
stability will be expressed in terms of the Pliicker coordinates ().

By (3.5(a)), a pencil P is unstable if there exists a 1-parameter sub-
group A:G,, — SL(V) such that the weights of P with respect to A are all
positive. Let us compute these weights explicitly as follows:

Assume P is an unstable pencil. Let A be the 1-parameter subgroup
with respect to which the weights of P are all positive. We may choose co-
ordinates [x, y, z] of P2 such that the induced action of G,, on [x, y, z] is
diagonal. Let us say that in these coordinates the action of G,, is given by

A®):[x, y, z] [trxx, tyy, t"=z]
where

reZr, 27, re20, and r.+r, +r,=0.
The action of A(¢) on the Pliicker coordinates (mjx¢) will then be

NORGTD) (R G0 +ro6=i=i k=0 )
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1182 RICK MIRANDA

by (1.1). The weights of the point (m;,) with respect to X are the expo-
nents of ¢ for which m, is non-zero. By setting r, = —r, — r,, the ex-
ponent can be written in terms of r, and r, as

ry(2i +2k+j+0—6) +r, (2 +20+i+k—06)

The criterion for instability can now be stated as follows:

Assume P is an unstable pencil. Then there exists integersr,, ry (with
re 2r, = —r, — r,and r, > 0) and coordinates in P2 such that if P is
represented by the point (m;,) of P4 in these coordinates, then mz, = 0
whenever 7,(2{ + 2k +j +£—6) + r,(2j + 26+ i+ k —6) < 0.

There is a slightly less cumbersome form of the numerical criterion
which is useful in this case. Let » = r,/r,. The conditions r, = r, =
—r, — r,translate to —Y2 < r < 1. By dividing the inequality above by
the positive integer r, we obtain the following restatement of the numeri-
cal criterion:

ProposiTiON 4.1. P is an unstable pencil in G if and only if there
exist a rational number r € [—Y2, 1] and coordinates in P2 such that if P
is represented by the point (my,) in these coordinates, then

mie = 0 whenever ey (r) <0,

where ey (r) = Qi + 2k +j+0—6) +r(2j + 20+ i+ k — 6).
The criterion for stable pencils in G can be expressed similarly, using
(3.5(d)):

PropoOsITION 4.2. P is not properly stable if and only if there exist a
rational number r € [—'2, 1] and coordinates in P2 such that if P is repre-
sented by the point (my,) in these coordinates, then

mixe = 0 whenever ej,(r) < 0,

where ey (r) is as above.

We wish to remove from the above propositions the dependency on
the existence of the rational number . A priori, given a coordinate system
on P2, one would need to check all the rationals in [—Y2, 1] to determine
the conditions on the (m ;) for instability (or non-proper-stability). Note
however that the conditions ey, (r) < 0 (respectively e;r,(r) < 0) for all
appropriate i, j, k, and ¢ subdivide the interval [—Y2, 1] into a finite
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PENCILS OF CUBIC CURVES 1183

number of subintervals within which the truth or falsity of the inequalities
are constant. Hence we need check only one rational r in each sub-
interval. Moreover, a careful inspection of the conditions on the (m,) in
each of the sub-intervals shows that these conditions are not independent
and in fact the number of sub-intervals giving ‘minimal’ conditions on the
(mjx,) for instability (or non-proper-stability) is two (respectively, three).
Let us merely summarize the results of performing this calculation below.

ProrosiTiON 4.3. A pencil P is unstable if and only if there exist
coordinates in P? such that, if (my,) are the induced coordinates of P,
then either

Case 1.

mo001s 700025 M0003> 1200105 700115 1200125 1200205 1200215
mo102s 01035 7201105 01115 M01125 701205 M0121>
mMo203, 102105 M02115 102125 1202205
mo3105 M0311
mi0115 11012

all vanish, or

Case 2.

mo001s 1200025 120003s 7200105 00115 1200125 1200205 7200215 20030
mo102; M0103s 01105 Mo111s M01125 01205 01215
mo2105 M02115 mo2205
mo310,
mio115 M10125 11020

all vanish. In Case 1, an r € (—VYs, 0) will exhibit P as unstable and in
Case 2 an r in (Y4, 1) will work, using Proposition 4.1.

ProrosiTiON 4.4. A pencil P is not properly stable if and only if
there exist coordinates of P2 such that, if (mjjx,) are the induced coordi-
nates of P, then either

Case 3:

mooo1s 100025 1200035 1200105 7200115 200125
mo1025 M0103> M01105 701115 101125
n0203s M02105 M02115 102125

mo3105 Mo3115 M0312
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1184 RICK MIRANDA

all vanish, or

Case 4:

mooo1s 00025 100035 1200105 7200115 7200125 100205 00215
mo1025 M0103s M01105 01115 M01125 101205
m203, 102105 02115
mo310,
mo11

all vanish, or

Case S:
mopo1s 100025 100035 7200105 1200115 M 0012, 1200205 1200215 1200305
mo102» mo110, Mo111> mo1205
mgp2105
mio11s mi020

all vanish. In Cases 3, 4, and S the rational number r exhibiting P as not
properly stable is —'2, 0, and 1 respectively, using Proposition 4.2.

Remark. Propositions 4.3 and 4.4 actually give the criteria for sta-
bility and semi-stability for any point of P(A2S3V) in terms of the Pliicker
coordinates, not just for cubic pencils (which correspond to decomposable
2-forms).

5. The Stability condition in terms of generators of a pencil. Hav-
ing computed the criteria for instability and non-proper stability in terms
of the Pliicker coordinates, one is still left with the question of a geometric
characterization: what property or properties do the unstable (respec-
tively, non-properly stable) pencils have? We claim that the vanishing
conditions of Propositions 4.3 and 4.4 translate directly to various base
conditions on the pencil. To see this, we assume that two cubics A and B
generate an unstable (or non-properly stable) pencil P. Choose coordi-
nates [x, y, z] of P2 so that one of the vanishing conditions of Proposition
4.3 (or Proposition 4.4) are satisfied. In these coordinates we write

AL ayxiyiz37i7 = 0
and

B:T byxiyiz37i7/ = 0.
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PENCILS OF CUBIC CURVES 1185

Since the Pliicker coordinates m ., equal a;bg, — ay.bj;, each set of van-
ishing conditions gives equations involving the coefficients a; and by,.
After some algebraic manipulation, these equations are easily seen to be
equivalent to the vanishing of certain of the coefficients of some pair of
cubics A', B’ in the pencil P (not necessarily the original pair A, B). I
will omit this part of the analysis and present the result of these calcula-
tions below. We use the notation (M, M,, ..., Mg) to denote the sub-
space of the vector space of cubic forms in x, y, and z generated by the
monomials M;.

ProposiTiON 5.1. A pencil P is unstable if and only if there exist
coordinates [x, y, z] of P? and two generators A, B of P with equations
Fy(x,y,2z) =0, Fg(x, y, z) = 0, respectively, satisfying one of the fol-
lowing five conditions:

(1) Fqe(x3)
Fp € (23, yz2, y2z, y3, xz2, xyz, xy?, xz, x%y, x3)
(2) Fq€ (x?y, x3)
Fp € (y2z,y3, xz2, xyz, xy?, x2z, x2y, x3)
(3) F,€ (x2z, x%y, x3)
Fp € (y3, xz2, xyz, xy?, x2z, x2y, x3)
(4) Fq€ (y% xp?, x2y, x3)
Fp € {y?z,y3, xyz, xy?, x2z, x2y, x3)
(5) F, € <xyz, xy?, x2z, x%y, x3)
Fg € {3, xyz, xy?, x2z, x%y, x3)

A pencil with generators A, B, having the form of cases (1) or (3) has
Pliicker coordinates (m ) which satisfy the vanishing conditions of Case
1 of Proposition 4.3. A pencil with generators in cases (4) or (5) has
Pliicker coordinates which satisfy Case 2 of Proposition 4.3. A pencil with
generators in case (2) has Pliicker coordinates which satisfy both cases
of Proposition 4.3.

ProposITION 5.2. A pencil P is not properly stable if and only if
there exist coordinates [x, y, z] of P? and two generators A, B of P with
equations F4 = 0, Fg = 0 respectively, satisfying one of the following five
conditions:

(6) F4 € (x2z, x2p, x3)

Fp € (23, yz2, y?z, y3, xz2, xyz, xy?, x2z, x%y, x3)
(7) F4 € (xz2, xyz, xy?, x2z, x2p, x3)

Fp € (xz2, xyz, xy?, x2z, x2y, x3)
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1186 RICK MIRANDA

(8) Fy4 € (xy? x2z, x%y, x3)
Fp € (y2z, y3, xz2, xyz, xy?, x2z, x2y, x3)
(9) F4€(y% xp?, x2y, x3)
Fp € (yz?, y%z, y3, xz2, xyz, xy?, x°z, x%y, x3)
(10) F4 € (y3, xyz, xy?, x2z, x2y, x3)
Fp € (y%z,y3, xyz, xy?, x2z, x2y, x3)

A pencil with generators in cases (6) and (7) has Pliicker coordinates
which satisfy Case 3 of Proposition 4.4. A pencil with generators in case
(8) has Pliicker coordinates which satisfy Case 4 of Proposition 4.4. A
pencil with generators in cases (9) and (10) has Pliicker coordinates which
satisfy Case S of Proposition 4.4.

Notice that in all the cases (1)-(10), the subspace in which Fyp is con-
strained to lie contains the subspace in which F4 is constrained to lie.
Thus any linear combination of F4 and Fp will lie in the subspace con-
taining F. One can therefore think of B as a ‘general’ member of the
pencil P and of A as the ‘special’ member. A quick inspection of the
geometric configuration of the two cubics A and B in each of the 10
cases bears this out; if one assumes that the generators A and B are
general enough, one can easily draw a representative graph in each case,
illustrating this property. See Figures 5.3 and 5.4.

6. The associated elliptic surface and instability. Let us call a pen-
cil P of cubics smooth if some member of the pencil P is a smooth cubic.
If P is a smooth pencil, then the general member of P is a smooth cubic
and by blowing up the nine base points of the pencil (some possibly
infinitely near) we obtain in a natural way an elliptic surface X fibred
over P1. This elliptic surface has a section; if we perform the nine blow-
ups of P2 in some order, the final exceptional curve will be a section of the
elliptic structure. (There will in general be many others, also.) Finally,
note that X is a smooth rational surface. Conversely, every smooth ra-
tional elliptic surface with a section may be obtained in this way; the
proof of this is elementary and since we do not require it, we will leave it to
the reader. Let us call the rational elliptic surface X obtained from P as
above the induced elliptic surface; X is determined up to isomorphism, in-
cluding the elliptic fibration, but no section is canonically given.

We wish to use the induced elliptic surface to characterize the stabil-
ity of cubic pencils in a more geometric way; although the classification of
generators for unstable pencils given in section S is complete, the list is not
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PENCILS OF CUBIC CURVES 1187

1)
A = triple line
B B = arbitrary cubic
A
@ |
/ A = double line U other line
B B = tangent to double line at the
point of intersection
A
A
3
3) a
B A = double line U other line
B meets double line at only one
point
/ |

) A = three concurrent lines
B is double at the point of

A 76 \ concurrency
B

A
)
A = conic U line
B is double at a point of inter-
section of the conic and the line,
with one tangent equal to the
B line.

Figure 5.3 Graphs of ‘general’ unstable pencils
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1188 RICK MIRANDA

6 AN

pd ’ﬁ A = double line U other lines
B . .
B is arbitrary

A
7 L\\
D A and B share a line

®)

A = conic U tangent line

B is also tangent to the line at the
same point.

) A = three concurrent lines
B passes through the point of
A concurrency
B
(10)
A and B share a singular point.
A
B

Figure 5.4 Graphs of ‘general’ non-properly stable pencils

B
A
B
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PENCILS OF CUBIC CURVES 1189

very informative as it stands. We claim that instability for smooth pencils
is characterized however by the existence of certain singular fibres on the
induced elliptic surface X.

THEOREM 6.1. Let P be a smooth pencil of cubic curves in P2, in-
ducing the elliptic surface X. Then P is unstable

& X contains a singular fibre X, = L n;C; with n; = 3 for some i
& X contains a fibre of type IT*, IIT* or IV*in Kodaira's notation of
singular fibres of elliptic surfaces [Ko].

Proof. Note that the second equivalence is an immediate conse-
quence of Kodaira’s classification of possible singular fibres on X; these
three singular fibres are the only ones with a component of multiplicity
larger than 2.

To prove the first equivalence, assume first that the pencil P is
unstable. By the classification given by Proposition 5.1, there must exist
generators A, B of P such that A and B are of the form demanded by
either case (1), (2), or (3). We shall address each of these cases in turn.

Case 1. Note that in this case the member A4 of the pencil is a triple
line; the proper transform of this triple line on the elliptic surface X will be
a component of multiplicity 3 in its fibre.

Case 2. In this case we have A given by an equation a;x%y +
azpx® = 0. If ay; = 0 in fact we see that A is a triple line and proceed to
argue as in case 1. If ay; # 0 then the member A is the double line x2 = 0
plus another line through (0, 0, 1). Since the general member of P is
smooth, B must be smooth at (0, 0, 1). Thus the coefficient b of xz2 in
the equation of B must be non-zero. Also one of the coefficients by, bgz of
y2z, y3 respectively must be non-zero; otherwise B would contain the line
x = 0 as well as A. In either case, B passes thru the point (0, 0, 1) and is
tangent to the line x = 0 there. Thus to separate A and B we must blow up
the point (0, 0, 1) and also the infinitely near point to (0, 0, 1) in the direc-
tion of the line x = 0. It is easily seen that the exceptional curve for this
second blow-up has multiplicity 3 in the fibre over A after further blowing
up to obtain X.

Case 3. In this case, A is given by the equation apx?z + ax?%y +
azpx3 = 0 and is thus composed of the double line x = 0 and some other
line aypz + azy + azpx = 0. The member B must again be smooth at
(0, 0, 1), and so byy # 0. In this case also the coefficient bz of y* must be
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1190 RICK MIRANDA

non-zero; otherwise B would contain the line x = 0. We thus see that B
has a flex at (0, 0, 1) with tangent line x = 0. To separate the members A
and B we must blow up the point (0, 0, 1), the infinitely near point in the
direction of the line x = 0, and the doubly infinitely near point in the
direction of the line x = 0. It is again easily seen that the exceptional curve
for this third blow-up has multiplicity 3 in its fibre in X.

The converse is slightly more complicated. Assume P is a pencil of
plane cubics such that the rational elliptic surface F has a fibre of type II*,
IIT*, or IV*. The problem is to find generators A and B of P satisfying the
conditions of one of the unstable cases 1, 2, or 3. We shall proceed using a
series of reductions.

LEMMA 6.2. P must contain a member A which is singular at one of
the base points.

Proof. We need only note that given a pencil {C,}, the induced
pencil {C\} on the surface R obtained by blowing up the base point p of
{C\} is {x*C\ — E} where 7 is the blow up map and E is the exceptional
curve for w. Thus given any member A of the pencil, the induced member
onRisA + (m »(A) — 1)E where A is the proper transform of A on R and
m,(A) is the multiplicity of the point p on A. Thus if, at every base point,
every member of the pencil P is smooth, m,(4) = 1 for every p and A.
Thus the induced pencil on R consists of only the proper transforms of the
curves in the original pencil. This argument can be applied to each blow-
up, and in particular the fibres of X must be only proper transforms of the
members of the pencil. But each of the fibres II*, III*, and IV* have at
least seven components and hence cannot be the proper transform of a
cubic in the plane. This contradiction proves the lemma. Q.E.D.

LEMMA 6.3. P must contain a member A which is either

(a) a cuspidal cubic, with cusp at a base point,

(b) 3 concurrent lines, whose common point is a base point,

(c) aline and a conic tangent to the line, the point of tangency a base
point,

(d) adouble line and another line, or

(e) atriple line.

Proof. Using Lemma 6.2, some member of P must be singular at
some base point. The list above contains all singular cubics except
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PENCILS OF CUBIC CURVES 1191

(1) a nodal cubic,
(2) three non-concurrent lines,
(3) a conic and a non-tangent line.

It is elementary to see that none of the above members of a pencil P
can induce a fibre of type II*, III*, or IV¥* on X. Let us only examine case
(1) of a nodal cubic A. Upon 1 blow-up at the node, the pencil on the blow
up has corresponding member A + E where A is the proper transform of
the nodal cubic A and FE is the exceptional curve. Notice that the singu-
larities of this member are still only double points with distinct tangents,
and there is no component of multiplicity larger than 1. This situation
remains true after each blow-up; thus on the surface X no component will
have multiplicity greater than 1. Cases (2) and (3) above are handled iden-
tically; again the crucial fact to be noticed is that at each blow-up, the cor-
responding member has only ‘“normal crossings” and reduced com-
ponents. Q.E.D.

LEMMA 6.4. P must contain a member A which is either

(d) a double line and another line, or
(e) atriple line.

Proof. We must eliminate cases (a), (b), and (c) of Lemma 6.3. The
argument is slightly different from these reductions than as before; we can
conceivably obtain a component of multiplicity three in the fibre if we
blow up enough times at the singular point, as is illustrated below for case

(b)

2 2 1 1

(The numbers are the multiplicity of the component in the pencil; the
circled points are the points blown up at each stage.)

To see that this cannot occur, we will show that in order to separate
the member A from a smooth cubic B through the singular point p, we
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1192 RICK MIRANDA

need never apply the above sequence of blow-ups (or any other sequence
leading to a multiplicity 3 component). Let us argue first in case (b).
There are several cases to consider for the smooth cubic B:

(Case 1): B passes through the singular point p with tangent dif-
ferent from the three lines

(Case 2): B is simply tangent to one of the lines at p.

(Case 2): B is tangent, to order 3, to one of the lines at p.

In each of these cases we separate A from B explicitly and see what
results:

(Case 1):
S IR I I
—] 1 - 1 - 1
—~——— —— —~—
B — 1 41 —
B . 1
A -—?:1 B
B H
1 1 1 2 2 .
(Case 2):
2
— 1 1
1
B
— 1
———— e el
} 1
1
B
1 1 1 2 2
2 2
1
1
—— e B B ——
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(Case 3):
—1 1
B ————
- 1
AT
B
1 1 1 )
2 2
- — 1
1
) — 1
2
—— —~————
1
—
2 2
2 2
— 1 — 1
— 1 — 1
2
—~—— D —
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1194 RICK MIRANDA

We see by inspecting these three cases that the result follows for the
case (b).

To complete the proof we note that the situation of case (b) is ob-
tained as soon as one blow up is performed on the cubic of case (c):

1

-

1 1
1

So any smooth cubic B passing through the base point in case (c) will,
after one blow-up, look like a cubic satisfying one of the 3 cases of base
(b). The argument for case (b) above then applies. In case (a), one blow-
up yields the situation of case (c):

®< -~ !
1

1

So, arguing by reduction to case (b), the lemma is proved. Q.E.D.

Lemma 6.4 allows us to complete the proof of Theorem 6.1. Suppose
we are in case (e) and there exists a member A of the pencil P which is a
triple line. Then if B is any other member of P, the pair A, B of generators
satisfy the conditions of case 1 for instability. Thus the pencil P is
unstable.

Suppose we are in case (d) and there exists a member A of the pencil
consisting of a double line L and another line M. The possibilities for a
second smooth member B are the following.
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PENCILS OF CUBIC CURVES 1195

(1) B passes thru p = L N M, and has a flex there with tangent L.

(2) B passes thru p, and is tangent to L at p, and meets L in one other
point gq.

(3) B passes thru p, with tangent distinct from L, and meets L in two
other points g, r.

(3) B passes thru p, with tangent distinct from L, and meets L in one
other point g, with tangent L.

(4) B meets L in three distinct points, and p ¢ B.

(5) B is tangent to L at a point ¢ # p, and passes thru another point
r # p,onlL.

(6) B is tangent to L to order 3 at a point g # p.

Now in cases (1) and (2) the pair A, B satisfies the conditions of case 2
for instability. In case (6), the pair A, B satisfies the conditions of case 3.
By explicitly separating the two members A, B by a sequence of blow-ups
one can compute, as in the proof of Lemma 3.4, that in cases (3), (4), and
(5) no component of multiplicity greater than two ever appears in the
fibres of X. I shall omit the tedious verification of this fact. The theorem is
proved. Q.E.D.

There are a few remarks to be made. Note first that for smooth pen-
cils, instability is completely determined by the rational elliptic surface X.
Thus if two distinct pencils give rise to the same rational elliptic surface,
they are either both unstable or both semi-stable. This offers evidence that
the moduli of cubic pencils is closely related to that of rational elliptic sur-
faces with section.

Secondly, note that certain pencils are semi-stable even though they
have no smooth members! For example, the pencil generated by the cubic
yz2 = x? and the cubic x2z = y2z is semi-stable. However, all properly
stable pencils have smooth members. It is the computation of the properly
stable pencils which we shall now present.

7. The characterization of properly stable pencils. Since we have a
complete classification of properly stable pencils given by Proposition 5.2,
we would like some characterization of them similar to the characteriza-
tion of unstable pencils given by Theorem 6.1. In particular, if P is a prop-
erly stable pencil having a smooth member, then P will induce a rational
elliptic surface X and we can ask what properties of X are implied by the
stability of P. Conversely, given the surface X induced by a pencil P, we
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1196 RICK MIRANDA

can ask what properties of X imply the stability of P. Again the answer to
these questions can be expressed in terms of the singular fibres of X:

THEOREM 7.1. Let P be a smooth pencil of cubics in P2, inducing
the rational elliptic surface X. Then

(i) P is not properly stable & X contains a fibre X, = I n,C; with n;
= 2 for some i.
& X contains a fibre of type I* IV*
IIT* or II* in Kodaira's notation for
singular fibres of elliptic surfaces.
(ii) P is properly stable & all fibres of X are reduced.

Proof. (ii) is simply a restatement of the first equivalence of (i), and
the second equivalence of (i) is an immediate consequence of Kodaira’s
classification of singular fibres of X and the first equivalence. Hence it
suffices to demonstrate the first equivalence.

Assume first that the pencil P is not properly stable. Since P has a
smooth member, there must be coordinates in P2 and generators A, B of P
satisfying either case 6, case 8, or case 9 of Proposition 5.2. In case 6, the
generator A consists of a double line and one other line, or is a triple line.
In either case the fibre it induces on X will have a multiple component.

In case 9, A is either three concurrent lines, a double line plus
another line, or a triple line. As above if A is one of the latter two, A
clearly induces on X a fibre with a multiple component. If A is three con-
current lines, meeting at the point Q, we see that in case 9, Q is a base
point of the pencil P. To resolve the pencil we must then blow up the point
Q at least once; the exceptional curve for this blow-up will have multiplic-
ity two in the pencil, and so its proper transform on X will have multiplic-
ity two in its fibre.

In case 8, A is either a conic plus a tangent line, a double line plus
another line or a triple line. If A is one of the latter two, we are done as
above. If A is a conic plus a tangent line L, tangent at the point Q, and B
is a cubic smooth at Q, and also tangent to the line L, (as is the situation
in case 8), then to resolve the pencil we must blow up the point Q and the
point infinitely near to Q in the direction of L. The exceptional curve for
the second blow-up will have multiplicity two in the pencil, and its proper
transform on X will then have multiplicity two in its fibre.

This establishes one direction of the equivalence.

The converse is more complicated, as in the proof of Theorem 6.1.
However, some of the intermediate results obtained in the course of that
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PENCILS OF CUBIC CURVES 1197

proof are still valid in our situation. Assume now that P induces the ellip-
tic surface X which has a fibre with a multiple component.

LEMMA 7.2. P must contain a member A which is either

(a) a cuspidal cubic, with cusp at a base point,

(b) three concurrent lines, whose common point is a base point,

(c) aline and a conic tangent to the line, the point of tangency a base
point,

(d) a double line and another line, or

(e) atriple line.

The proof is identical to that of Lemma 6.3 and will not be repeated.

To prove that P is not properly stable, we will use the classification in
Table S.2 of non-properly stable pencils. Note that if P has a member A
which is one of cases (b), (d), or (e), then P is not properly stable in cases
9, 6, and 6 respectively. We will take up cases (a) and (c) in turn. We will
show that in these cases there are further restrictions on the pencil P, forc-
ing P to be non-properly stable.

Assume P contains a member A which is a cuspidal cubic, with cusp
at a base point Q of P. P has a smooth member by hypothesis so every
other member of P is smooth at Q. To resolve the pencil we must blow up
Q at least once; the exceptional curve E for this blow-up will have
multiplicity 1 in its fibre on X since the multiplicity of Q on A is 2. The
proper transform of any other member B of P will intersect E transversally
since B must be smooth at Q. The proper transform of A is a smooth ra-
tional curve tangent to E. There are two cases to consider:

Case 1. BNENQ#40.
Case 2. BNENQ=40.

In either case, it is easy to see that no multiple component is in-
troduced in resolving the pencil.

E
E E _ ____?__
/C ————— ————— B

This content downloaded from
129.82.95.71 on Fri, 22 Apr 2022 21:57:13UTC
All use subject to https://about.jstor.org/terms



1198 RICK MIRANDA

() —
1 1
N

5

1 1

Assume finally that P contains a member A which consists of line L
and a conic C tangent to the line, the point Q of tangency a base point. If
any other member B of P is either singular at Q or tangent to L at Q, then
P is not properly stable in case 8. Thus assume all other members B of P
pass thru Q meeting L transversally. It is then easy to see as above that no
multiple component is introduced in resolving the pencil:

L
C
L
Q ¢
/€ —~————— -
B e
B v
1 >
4

This completes the argument and finishes the proof of the theo-
rem. Q.E.D.

As a final remark, let us observe that if P is a properly stable pencil
then P always induces a rational elliptic surface.

TueoreM 7.3. Let P be a properly stable pencil of cubics in P2.
Then P has a smooth member and induces a rational elliptic surface X
containing no fibres with non-reduced components.

Proof. We will assume P has no smooth members and show it is not
properly stable using the classification of Proposition 5.2 of non-properly
stable pencils.
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Assume then that P has no smooth members. It follows from Bertini’s
theorem [Sh] that one of the following conditions must hold:

(i) There is a base point of P at which all members of P are singu-
lar.
(ii) The base locus of P contains a line.
(iii) The base locus of P contains a conic Q and P is the pencil Q + P
where P is a pencil of lines through a point R of Q.
(iv) The base locus of P contains a conic Q and P is the pencil Q + P
where P is a pencil of lines through a point R not in Q.

We shall show that in all of these cases, P is not properly stable.

In case (i), P is not properly stable in case 10 of Proposition S.2. In
case (ii), P is not properly stable in case 7 of Proposition 5.2. In case (iii),
P is not properly stable in case 10 again; the point R is a singular point of
every member of P. In case (iv), we note that there is a member of P which
consists of the conic Q and one of the two lines through the point R
tangent to Q. Take this member as the generator A of P. Let B be any
other member of P. We see then that A and B generate P, A consists of a
conic Q and a line L tangent to the conic and B is also tangent to the line L
at the point Q@ N L. Thus P is unstable in case 8 of Proposition 5.2.

Q.E.D.

This completes the analysis of proper stability for pencils of cubics in
P2, We note that the stability or instability of a pencil P depends only on
the induced elliptic surface X; if two pencils induce isomorphic elliptic
surfaces, then the pencils are either both unstable, both strictly semi-
stable, or both stable.

8. The characterization of strictly semi-stable smooth pencils. Let
P be a strictly semi-stable smooth pencil; recall that then P is not properly
stable, but not unstable (Definition 3.1). Combining Theorems 6.1 and
7.1, we have

THEOREM 8.1. Let P be a smooth pencil of cubics in P2, inducing
the rational elliptic surface X. Then

P is strictly semi-stable & X contains a fibre of type In*
(using Kodaira’s notation).

Proof. We must show that if X contains a fibre of type Iy*, then X
does not contain a fibre of type II*, III*, or IV*. For this we use the
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1200 RICK MIRANDA

‘canonical bundle formula’ of Kodaira: let M(T) be the number of
singular fibres of type T or an elliptic surface X with section. Then

12x(0%) = Nil NM(Iy) + Nél N + 6)M Iy

+ 2M(II) + 3MIII) + 4M(V)
+ 10MII*) + IMIII*) + 8M(IV*). [Ko]

In our situation, X is rational so x(Oz) = 1. However, if X contains a fibre
of type Ix* and one of type II*, III*, or IV*, the right side of the equation
is bigger than 12. Q.E.D.

We will now describe the strictly semi-stable smooth pencils whose
orbits are closed. By using the numerical criterion (Theorem 3.7(e)) and
by applying arguments similar to those used in section 4, one can easily
derive the following vanishing criterion for such pencils.

ProrosiTION 8.2. A strictly semi-stable pencil P has a closed orbit
if and only if there exist coordinates in P2 such that, if (myy,) are the in-
duced coordinates of P, then either

Case 1. All m, vanish except possibly

moo205 Mo0215 M01205 101215 M02205 702215 703205
moz1, Myo11s Mior2, and myyyy,

or
Case 2. All my, vanish except possibly

moo305 Mo1215 102125 102205 M03115 M 10125 and my020-

As is the case for instability, one can express these vanishing criteria
in terms of ‘standard’ generators for the pencil P. The result of this calcu-
lation is given below.

ProrositioN 8.3. A strictly semi-stable smooth pencil P has a
closed orbit if and only if there exist coordinates [x, y, z] of P? and two

This content downloaded from
129.82.95.71 on Fri, 22 Apr 2022 21:57:13UTC
All use subject to https://about.jstor.org/terms



PENCILS OF CUBIC CURVES 1201

generators A, B of P with equations F4, = 0, Fg = 0, respectively, satisfy-
ing either

Case 1. FA = xzz, FB = b0023 + bOIyZZ + bozyzz + b03y3, boo # 0,
Fyp factors into distinct linear factors,

or

Case 2. FA = x(alzyz + azoxz), FB = Z(b02y2 + bloxz), alzazobozblo
# 0, appbyg — aybg # 0.

In Case 1, A is a double line plus a single line, and B is three concur-
rent lines meeting at a point on the single line of A. In Case 2, both A and
B are smooth conics plus tangent lines; moreover, the two conics are
tangent to each other at the points of tangency with the lines. See Figure
8.4.

(Case 1)
A
s 4 ]
/V

(Case 2)

A
e\

Figure 8.4  Graphs of smooth strictly semi-stable pencils with closed orbits
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The characterization of smooth strictly semi-stable pencils with
closed orbits in terms of the induced rational elliptic surface X is as
follows:

THEOREM 8.5. Let P be a smooth strictly semi-stable pencil of cubic
curves in P2 inducing the rational elliptic surface X. Then the orbit of P is
closed & X contains two singular fibres of type Iy*.

The implication (=) can be proved using Proposition 8.3; the two
singular fibres are precisely the transforms on X of the given generators A
and B. The converse can be verified using arguments identical to those of
sections 6 and 7 and this will be omitted.

Note that by the canonical bundle formula, a rational elliptic surface
X with section, which has two fibres of type Io*, has no other singular
fibres. Moreover, since the j-function (associating to every point p of the
base curve P! of X, the j-invariant of the fibre over p) is a rational function
on P!, and since this j-function is finite at smooth fibres and at fibres of
type Iy* (see [Ko]), this j-function in our case must be a constant. In the
situation of Case 1 for example, this j-value corresponds to the cross-ratio
of the four points (on the double line of the generator A) obtained by inter-
section with the three lines of B and the other single line of A.

Remark. To produce rational elliptic surfaces X with section as
above, we may start with a pencil P of cubics with generators satisfying
Case 1 or Case 2. The two cases are clearly not projectively equivalent.
However, they are birationally equivalent, i.e., any rational elliptic sur-
face as above can be blown down to P2 in (at least) two ways, one of which
leads to a pencil with generators in case (1), the other to one with
generators in case (2).

UNIVERSITY OF CHICAGO
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