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0. Introduction

This work is the product of my attempts to understand the list of possible
singular fibres which can occur on a rational elliptic surface with section, which
has recently been produced by U. Persson [P]. In his work, he constructs all
the possible configurations, and proves the impossibility of the ones which can-
not exist, by using very geometric arguments; these all boil down to various
constructions involving plane curves of low degree, and distinguished points
on these curves, having prescribed singularities. It is an impressive illustration
of the beauty of the geometry of plane curves, and any interested reader will
have a lot of fun studying the necessary constructions.

In this article I will concentrate on more combinatorial criteria for the exi-
stence of a rational elliptic surface with prescribed singular fibres. In this way
one is able to reproduce Persson’s list, and it is hoped that the two approaches
complement and reinforce one another. In addition, one obtains a completely
different construction for the surfaces which exist, and gives an independent
verification for the final list.

One can take a rational elliptic surface with section S, and blow down all
components of fibers which do not meet S; one obtains an elliptic surface with
a finite number of rational double points. The classification of the rational
double point configurations which can be obtained this way has been done:
the reader should consult [D], [L], [T], and [U]. This classification ignores
the difference between several fiber types: I, I,, and I contribute no rational
double point, I, and III both give an A4, singularity, and I and IV both
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give an A, singularity. Moreover, from the point of view of the J-function,
these fiber types are quite different. Therefore this work is a detailed refinement
of these coarser classifications.

1. Some numerical criteria

Every rational elliptic surface with section is the blowup of the plane IP? at
nine points, and therefore has Picard number 10; the section uses up one dimen-
sion, and so the number of components of any one singular fiber is at most
nine, since these components are always independent in the Neron-Severi group,
even modulo the section.

The possible singular fibers with at most nine components are listed in
Table (1.1), together with certain numerical characters which will be explained
more fully below.

The first column of Table (1.1) is the Kodaira name of the singular fiber.
The second column, e, is the Euler number of that fiber.

Each Kodaira fiber consists of a certain number of components, and the
third column, r, is one less than the number of components in the fiber. The
given section of the elliptic fibration can only meet one component, and so
r is the number of components of the fiber which do not meet the section.
These components are linearly independent in the Picard group of the surface,
and in fact generate a negative definite sublattice of the Picard group of rank
r. The fourth column, 9, is the discriminant of this sublattice. The last column
is the name for this root lattice.

The fifth column, J, is the modulus of the fiber. All singular fibers except
for I§ have J=0, 1 or oo; fibers of type I§ (and smooth fibers, i.e., type I,)
can have any finite J value. The sixth column, m, is the multiplicity of the
J function, thought of as a map from the base curve to IP*.

Every rational elliptic surface with section can be written in Weierstrass
form

(1.2) yi=x>+Ax+B

where A and B are polynomials in an affine variable ¢ on the base curve P!
of degrees at most 4 and 6, respectively. This representation exhibits the surface
as a double cover of the rational ruled surface IF,, branched over the (—2)-curve
and over a trisection 2. The curve 2 meets the fiber of I, in general at three
distinct smooth points (where the elliptic surface has a smooth fiber), and, where
the elliptic fiber is singular, at 1 or 2 points, which may in fact be singular
points of 2. (If there are 2 points, at most one is singular on £.) This singularity
is a “simple” curve singularity of type A,, D,, or E,, using the notation in
[BPV]; note that this is the same notation as for the associated root lattice.
The seventh column, y, is the genus drop contributed by the singularity of
2 to the computation of the geometric genus of 2, if 2 would be irreducible.

This completes the description of the elements of Table (1.1). There are several
“easy” numerical criteria which one can apply to a possible configuration of
singular fibers on a rational elliptic surface with section, involving simply a
computation with the numbers in the above table. These criteria will now be
discussed.
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Table (1.1)
Fiber e r o J m Y Lattice
1* 10 8 1 0 2mod 3 4 Eg
I* 10 8 4 o 4 S Dy
Iy 9 8 9 o 9 4 Ag
Ir* 9 7 2 1 1 mod 2 4 E,
I} 9 7 4 o0 3 4 D,
Iy 8 7 8 o 8 4 A,
v 8 6 3 0 1 mod 3 3 Eq
1% 8 6 4 oo 2 4 D¢
I 7 6 7 0 7 3 A
Iy 7 5 4 oo 1 3 D,
Ie 6 5 6 o 6 3 Ag
0 0 mod 3
I3 6 4 4 1 0 mod2 3 D,
+0,1 -
Is 5 4 5 o0 5 2 A,
I, 4 3 4 oc 4 2 As
v 4 2 3 0 2mod3 1 A,
Iy 3 2 3 o0 3 1 A,
11 3 1 2 1 1 mod 2 1 A,
I, 2 1 2 o 2 1 A,
11 2 0 1 0 1 mod 3 0 0
I, 1 0 1 0 1 0 0
0 0 mod 3
Iy 0 0 1 1 0mod?2 0 0
+0,1 -

The most basic equation which restricts the singular fibers is that the sum
of the Euler numbers of the singular fibers must be 12:

(1.3) Se=12,

Since every singular fiber contributes at least one to this sum, this equation
effectively bounds the number of possible configurations. In fact, the number
of configurations satisfying (1.3) is 379. It is this set of 379 configurations which
form our “database”, from which we will further discard configurations as they
are proved to be impossible.

The sublattices of the Picard group of the surface generated by components
of fibers not meeting the section are all negative definite, and mutually orthogo-
nal, so that their direct sum forms a sublattice of rank Xr. This sublattice
is perpendicular to the class of the section, and to the class of the fiber; since
the Picard group has rank 10, the direct sum can have rank at most §:

(1.4) Zr<8.

There is a refinement of (1.4) which is useful in the extremal case of Zr=8.
The Picard group of the surface is unimodular, and the rank 2 sublattice genera-
ted by the section and the fiber is unimodular; therefore the orthogonal comple-
ment to this rank two sublattice is a unimodular sublattice of rank 8. It must
be even, since the canonical class K is minus a fiber, and any class perpendicular
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to K must have even square. Finally it is negative definite, since the Picard
group has signature (1, 9), and the rank 2 sublattice generated by the section
and the fiber has signature (1, 1). Therefore this perpendicular lattice must be
isomorphic to the Eg lattice. Therefore, if the direct sum of the root lattices
has rank §, it has a unimodular overlattice, and so must have a perfect square
discriminant:

(1.5) If Xr =28, then I1J is a perfect square.

(See also [MP, Corollary (2.6)

The trisection 2 on IF, which forms part of the branch locus of the double
cover representation of the elliptic surface has arithmetic genus 4. If the surface
has a fiber of type II, IV, IV*, or II*, the curve ¥ meets the fiber of IF, at
only one point, which is unibranch on Z. Therefore, if the surface has one
of these singular fibers, 2 must be irreducible. In that case, the total genus
drop of the singularities of & is at most 4.

Let i, denote the number of fibers of type I, on the surface; similarly define
¥, ii, iii, iv, iv¥, iii*, and ii*. The above condition can be expressed as follows:

(1.6) If@i+iv+iv*+ii*)=1,then Zy<4.

The remaining criteria involve a study of the J-map from the base curve
C (isomorphic to IP') to IP*. The degree of the J-map is equal to the number
of its poles, counted with multiplicity; since every pole of J is associated to
a singular fiber of type I} or I, this gives

(1.7 degree(J)= Y n(i,+i¥).

nxz1

Hence the degree of the J-map can be determined from the singular fibers.
If the degree of J is 0, so that J is a constant map, then all singular fibers
must have the same J-value; by analyzing the singular fibers with finite J, this
can be expressed as follows.

(1.8) If degree(J)=0 then either (ii +iv+iv*+ii)=0
or  (iii+iii*)=0.
If the degree of J is not O, then there are several requirements. Firstly,

the sum of the multiplicities over every point of IP' must equal the degree
of J. In particular, using the J value of 0, we find that

(1.9) If degree(J)= 0 then
degree(J)—ii—iv* —2iv—2ii*=0
and is divisible by 3.

Using the J-value of 1, we have

(1.10) If degree(J)#0 then
degree(J)—iii—iii*=0
and is divisible by 2.
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Statement (1.9) is obtained by considering the multiplicities of the J-map at
the fibers with J =0, modulo 3; (1.10) is gotten by considering the multiplicities
of J at the fibers with J =1, modulo 2.

A more subtle condition is obtained by analyzing the ramification of the
J-map. It is easy to see that the ramification of J over 0 is minimized when
one assumes that every fiber of type I and IV* has m=1, every fiber of type IV
and II* has m=2, and every fiber of type I, and I§ (with J=0) has m=3.
If d=degree(J), then there must be (d—ii—iv*—2iv—2ii*)/3 fibers of type I,
and I with J=0, giving a minimum contribution of (iv+ii*)+2(d—ii—iv*
—2iv—2ii*)/3 to the total ramification of J.

Similarly, the ramification of J over J=1 is minimized when one assumes
that every fiber of type Il or IIT* has m=1, and every fiber of type I, and
I§ (with J=1) has m=2; then there must be (d—iii—iii*)/2 fibers of type I,
or I§ with J=1, giving a minimum contribution of (d—iii—iii¥*)/2 to the total
ramification of J.

Finally, over J = oo, we have the fibers of type I, and I¥ with n>1, contribu-
ting exactly Y (n—1) (i, +i¥) to the total ramification.

nx1

From Hurwitz’s formula, since the base curve has genus 0, the total ramifica-

tion of the J-map is 2d —2. Therefore:

(iv+ii%) +2(d—ii—iv* —2iv—2ii*)3
F(d—iii—ii*)2+ Y (n—1) (i, +iH) £2d—2.

nz1
By using (1.7) and collecting terms, one finds that

(L11) &0 (6—-n)(,+iF)+2(iv+ii*)+3(ii+iii*) +4(i+iv¥)—12]20.

nz1

The quantity in the brackets is divisible by 6, and the entire expression after
dividing by 6 represents the “extra” ramification of the J-map, not accounted
for by the above considerations. In particular, if the above quantity is 0, then
every assumption made above about the multiplicities of J is valid, and every
ramification point and multiplicity for the J-map is known. In what follows
let x be the left hand side of (1.11).

The formula (1.11) is equivalent to Proposition 3.4 of [MP].

2. The impossible configurations

Of the 379 sets of singular fibers which satisfy (1.3), exactly 100 do not occur.
A list follows in Table (2.1), ordered lexicographically as in [P].

Of the above 100 configurations, 86 are ruled out by one or more of the
numerical criteria from Sect. 1. The fourteen which are not are numbers 46,
56, 67, 68, 69, 73, 76, 79, 80, 82, 86, 92, 93, and 94.

Probably the easiest of these to dismiss is # 56; assume that such a surface
cxists. Assume that the I% fiber is over t=c0, and the I, fiber is over t=0.
Then, in the Weierstrass form (1.2) for this surface, the degree of A4 is at most
2, and the degree of B is at most 3. By replacing A by t*4 and B by ’B,
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Table (2.1). The impossible configurations of singular fibers

R. Miranda

4 : Fibers

D 00 -3 AN L BN =

DILEN
1%,

IX 11
I, I

g 11
g 1, I
g IT1
HI* I,
I
(I3 11
131,14
g1y
g IV
Ig I3 14
I I 1
g I, 1,
g I, 11
g I I
V> 1,
VI,
I3,
131V
I3 1,1
I3 1,11
B
I, 1,14
1, IV

[Zr, I10,d, Xy, x]

Reasons for non-existence

9.2,2,5 —1]
[9.8,6,6, —1]
[8,4,4,5 ~1]
[10,27, 12,5, —2]
[9,18,9,5, 2]
[9,18,12,5 —1]
[8,9,10,4, —1]
[9,6,3,5 —1]
[9,12,6,5, —1]
[8,8,3,5 —1]
[8,8,6,5,0]

[10, 32,12, 6, —2]
[9,24,8,5, -2]
[9,24,12,5, —1]
[8,16,9,5, —1]
[9,32,12,6, —1]
[8,16, 10, 5, —1]
[7,8,8,4, —1]
[9,12,4,5, —1]
[8,12,4,5,0]
[5,16,6,6, —1]
[8,12, 2,5, ~1]
[8,12,6,5,0]
[7,8,4,5,0]

[10, 35, 12,5, —2]
[9,28,12,5 —1]
[8,21,8,4, —~1]
[9,42,12,5, —1]
[8,21,10,4, —1]
[8,21,12,4,0]
[8,28,9,5 —1]
[7,14,7,4, —1]
[8,28,12,5,0]
[9,20,6,5 —1]
[8,24,6,5,0]
{10, 36, 12,6, —2]
[9,24,6,6, —-2]
[9,30,12,5 —1]
[9,48,12,6, —1]
[8,24,10,5 —1]
[8,24,12,5,0]
[8,36,8,5 —1}
[7,18,6,4, —1]
[9,54,12, 5, —1]
[8,36,9,5 —1]
[7,18, 10, 4,0]
[7,24,6,5, —1]
[8,48, 12, 6,0]
[7,24,10,5,0]
[8,20,6,5 —1]

(1.4), (1.6), (1.11)
(1.4), (1.11)
(1.6}, (1.11)
(1.4), (1.11)
(1.4), (1.11)
(1.4), (1.11)
(1.11)

(1.4), (1.11)
(1.4), (1.11)
(1.5), (1.11)

(1.3)

(1.4), (1.11)
(1.4), (1.6), (1.11)
(1.4), (1.11)
(1.11)

(1.4), (1.11)
(1.6), (1.11)
(1.11)

(1.4), (1.6), (1.11)
(1.5), (1.6)

(14), (1.11)
(1.5), (1.6), (1.11)
(L5)

(1.6)

(1.4), (1.11)
(1.4), (1.11)
(1.5), (1.11)
(1.4), (1.11)
(1.5), (1.11)

(1.5)

(1.5), (1.11)
(1.11)

(1.5)

(1.4), (1.11)

(1.5)

(1.4), (1.11)
(1.4), (1.11)
(1.4), (1.11)
(1.4), (1.11)
(1:5), (1.6), (1.11)
(1.5)

(1.6), (1.11)
(1.11)

(1.4), (1.11)
(1.11)

(2.6.6)

(1.11)

(1.5)

(1.6)

(1.5), (1.11)




persson’s list of singular fibers

Table (2.1) continued
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4 : Fibers [Zr, 110,d, 2y, x] Reasons for non-existence
51181, 1, (8,32,6,6, —1] (1.5), (1.11)
52151, 11 [7,16,4,5, —1] (1.6), (1.11)
53: 151V I, [7,24,2,5, —1] (1.6), (1.11)
S4: 15151, [8,36,6,5, —1] (1.11)
55:1% 15 11 [7,24,3,5, —1] (1.11)
56: 15151, 1, [7,24,6,5,0] Twist of 4 11
57:1%1, 1,11 [6, 16,4, 5, 0] (1.6)

58: 1515 1, [9, 50, 12, 5, —1] (1.4), (1.11)
59: 1,15 11 (8,25, 10,4, —1] (1.11)

60: 151, 1, 9, 60, 12, 5, — 1] (1.4), (1.11)
61:1, 1,111 [8,40,9,5, —1] (1.5), (1.11)
62: 1,1, 1,1, [8, 40, 12, 5, 0] (1.5)

63: 151V I, [8,45,8,4, —13 (1.5), (1.11)
64:1, IV I [7,30,5,4, —1] (1.1
65: 1515151, [8,45,12,4,0] (1.5)

66:1; 11,1, [8, 60, 12, 5, 0] (1.5)

67: 151,011 1T [6, 15,8, 3, 0] {2.6.3)

68: 11111, 1, [7,40,9,5, 0] (2.5.2)
69:1,1,1,1,1, [7,40,12,5,1] (2.5.2)
70:1,1,1, [9,64,12,6, —1] (1.4, (1.1
I, 1,1V [8,48,8,5, —1] (1.5), (1.6), (1.11)
2.0, 1,151, [8, 48,12, 5,0] (1.5)
IR IINR (7,32,9,5,0]} (2.6.4)
41,1, 1,11 [7, 32,10, 5, 0] (1.6)

151, IVIV [7,36,4,4, —1] (1.11)
16: 1,1V I 1, [7, 36,8, 4,0] (2.5.1)
TV, [7,48,8,5,0] (1.6)
8l 15151, [8,72,12,5,0] (1.5)

M0, 151511 {7, 36, 10, 4, 0] (2.5.1)
80:1, 1, 1,1, 1, (7,36, 12,4, 1] 2.5.1)
LI, 1,1, 1,11 [6, 32, 10, 5, 1] (1.6)
82:IVIVI I, [6, 27, 4, 3, 0] (2.6.1)

83 IVIVII I, [5,18,1,3,-] (1.9)
34:1vIviI, I [5,18,2,3,-] (1.9)
8:IVIVIII, I, [4,9,2,2,-] (1.9)
86: 1V I, I, 11 (6,27, 6,3, 0] (2.6.2)
87:1V 111 I 11 [4,12,0,3, -] (1.8)
8:IVIIIIIIII, [3,6,1,2,-] (1.9)
89:1VI, 1,1,1, [6, 48,8, 5, 1] (1.6)
0:1vi, 11111 [3,6,2,2,-] (1.9)
SAVITIIII I, [2,3,2,1,-] (1.9)
92:1,1,1, I [7,54,9,4,0] (2.6.5)
93: 1,1, 1,111, [e, 27, 10, 3, 1] (2.11)
M:1,1,1,1,1, [7,72,12,5,1] (2.5.3)

RN IININIININR [3,8,1,3,-] (1.10)
LS IININING {2,4,0,2,-] {1.8)

I UIRININININg [1,2,1,1,-] (1.9)
98:1,1,1,1,1, 11 [5,32, 10, 5, 2] (1.6)

99: 1, ITIT 1T 1T 1T [1,2,2,1,-] (1.9)
IOO:IIIIIIIIIII,I1 [0,1,2,0,-1 (L.9)
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we obtain a surface with an I% fiber over t=0, a smooth fiber over t= oo,
and otherwise all fibers are left unchanged, i.e, the result is a fibration with
singular fibers I%, I,, and I,. This is forbidden by (1.5) (# 11 of Table (2.1)).
Hence # 56 is impossible. This process of transfering “*”’s from one fiber to
another will be referred to as “twisting” the fibration.

Although it is not strictly necessary to rule out any of the forbidden configu-
rations, no discussion of this subject would be complete without mentioning
the appropriate lattice conditions more thoroughly. As mentioned above, the
direct sum of the root lattices associated to the singular fibers forms a sublattice
of the perpendicular space to the rank 2 subspace generated by the section
and the fiber inside the Picard group. This perpendicular space is isomorphic
to the even negative definite rank 8 unimodular lattice Eg4. Therefore, a necessary
condition for the existence of the surface is that

(2.3) the direct sum of the associated root lattices must have an embedding
into the Eg lattice.

Although there are several ways to try to decide whether a given direct
sum of root lattices embeds into Eg, I will discuss here the method of discrimi-
nant-forms. For a complete treatment, one may consult [N].

Given an even nondegenerate lattice L, the adjoint map embeds L into
its dual L*. L¥ inherits the bilinear form from L, with values in Q. The cokernel
G, is a finite abelian group whose order is the discriminant of L, and it also
inherits a quadratic form g, with values in Q/Z; by definition, g, (x mod L)
={x, x>/2 mod Z.

There are two facts we need to use. Firstly, if L and K are both embedded
in a unimodular lattice U, with L=K* and K=L", then G,=G. Secondly,
the overlattices of a lattice M are classified by the totally isotropic subgroups
of Gy . Indeed, if H = G, is a totally isotropic subgroup corresponding to M < N,
then Gy~ H*/H.

Now assume that a lattice R embeds into Eg. Let I=R** and K=R". By
the first remark, G, =~Gg. Since R<L, there is a totally isotropic subgroup
H < Gy such that G, = H*/H. Hence Gxy=H"/H. Now L and R have the same
rank 2r, and K has complementary rank 8 — X', as does the dual K ¥ Therefore
Gk can be generated by 8 —Z'r clements. If one defines the length of a finite
abelian group as the minimum number of generators, we have the following
criterion.

(2.4) Proposition. Let R be the direct sum of the root lattices of the singular
fibers of a rational elliptic surface with section. Then there is a totally isotropic
subgroup H < Gy such that the length of H*/H is at most 8 —Xr.

This can be thought of as a refinement of the numerical criterion {1.5):
if Zr=8, then we require a totally isotropic subgroup H of G with H=H".
Since |Gg|=|H|-|H*'|, we see that I15=disc(R)=|Gg|=|H|>.

For our purposes we will only need to know the discriminant forms for
the lattices 4,. We have that G, ~Z/(n+ 1) Z, and g(x)= —nx?*/(2n+2) mod Z.
This suffices for the following examples.

(2.5) Corollary.
(2.5.1) The root lattice A, ® A, ® A5 does not embed into Eg.
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(25.2) The root lattice A, ® A; @ A, ® A, does not embed into Eg.
(25.3) The root lattice A, A, DA, ® A, D A, does not embed into Eg.

Proof. In each of these cases, the discriminant form group has no nontrivial
isotropic elements at all! Let us check this for A, @® 4, ® A5. The finite group

G is ZPBZXZPBLXZ/AZ, and g(a mod 3, bmod3, ¢ mod4)= 31 (a*+b?)

3 . .
3 ¢? mod Z. Since there can be no cancellation between the two terms above

(the denominators are coprime), for this element (a, b, ¢) to be isotropic we
must have a®>+b*=0mod 3 and ¢>=0 mod 8. This forces a=b=c=0.

In general, a finite abelian group with quadratic form splits (orthogonally)
into its p-Sylow subgroups, and no cancellation can occur among the p-Sylow
subgroups of the groups above, so it suffices to show that there are no isotropic
elements in the p-Sylow subgroup of the remaining cases. For A,, the group
is Z/5Z, and the result is almost obvious. For 4, @® A,, this is the calculation
we have done above. Finally, for 4, @A, @ A,, we have G=(Z/2Z)*, with
qla, b, ¢)=—%(a*+b*+c?), which is never integral unless a=b=c=0
mod 2. []

The above corollary rules out numbers 68, 69, 76, 79, 80, and 94. The remain-
ing 7 to be discussed are numbers 46, 67, 73, 82, 86, 92, and 93; not only
do these pass the discriminant-form test (2.4), but in fact the associated root
lattice in each of these cases can be embedded into Eg. Note that in all but
the last case # 93, we have x=0, ie., the ramification of the J-map occurs
entirely above J=0, 1, and oo, and is completely known. From the general
theory of branched coverings of IP', there must exist three permutations o,
oy, and 6,, whose cycle structures are given by the multiplicities of the pre-
images over 0, 1, and oo, and such that their product 6,0, o,=11in S,. More-
over they must generate a transitive subgroup of S;. In the first 6 of the remaining
7 cases, it turns out that no such set of three permutations exist.

(2.6) Lemma. There are not three permutations in S, satisfying the above conditions
with cycle structures

261 (23 (@) (13) (here d=4)
(262) (123) (2% (32) (here d=6)
(26.3) (123%) (2% (35) (here d=8)
264) (3312 (14 (here d=9)
(2.6.5) (3 )(124)( o) (here d=9)
(26.6) (13%) (2% (136) (here d=10)

Proof. 1t is perhaps easier to prove that three permutations o, 8, and y do
not exist as above with af=7; letting 65=0a, 6, =f, and 6, ' =y gives the result.
The easiest by far is (2.6.1); in fact, the elements of S, with cycle structure
(2%) form a subgroup, so this is impossible. In the above list « tends to have
many 3-cycles, and 8 many 2-cycles. Note the following useful fact:

(2.7) If a 2-cycle of f is contained in a 3-cycle of o, the product must have
a fixed point: (abc) (ab) fixes b.
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Consider (2.6.2); we may assume a=(1) (23) (456). Since y has cycle structure
(3%), it has no fixed points, so by (2.7) none of the 2-cycles of § are contained
within {4, 5, 6}. Hence neither (12) nor (13) is a 2-cycle of B, so we may assume
that (14) is; by switching 2 and 3 if necessary we may assume that f=(14)
(25) (36). But then a ff=(1534) (26), with the wrong cycle structure. This proves
(2.6.2).

Consider (2.6.3); we may assume o= (1) (2) (345) (678). Since o and f§ generate
a transitive subgroup of Sg, (12) is not a 2-cycle of §; hence we may assume
(13) is. If either (24) or (25) were part of f, y would have a fixed point by
(2.7); hence we may assume (26) is. This leaves only 2 possibilities: §=(13)
(26) (47) (58) or (13) (26) (48) (57). In the first case af=(1483) (2756) and in
the second o f=(146273) (58), neither of which is correct for 7.

For both (2.6.4) and (2.6.5), we may assume o=(123) (456) (789), and f fixes
1. If (23) were part of g, then {1, 2, 3} would be left stable by « and f, contradict-
ing transitivity; we may therefore assume (24) is part of . If (35) is a part
of B, then af contains the 3-cycle (25), violating (2.6.4); moreover, this would
force one of the 2-cycles of § to come from {7, 8, 9}, giving a fixed point
to afl, violating (2.6.5). Hence (35) cannot be a part of f. If (36) is a part of
f, then aff contains the 2-cycle (34), violating both (2.6.4) and (2.6.5). Hence
we may assume that (37) is a part of . This leaves 3 possibilities for f: f=(1)
(24) (37) (56) (89), B=(1) (24) (37) (58) (69), and S=(1) (24) (37) {(59) (68). In
the first case the product has two fixed points, so is ruled out. In the second
case o ff =(125943867), and in the third case af=(1257) (384) (69), neither of
which are correct for either of (2.6.4) or (2.6.5). This proves that these two
cases are impossible.

Finally consider (2.6.6}; we may assume that o=(0) (123) (456) (789), and
that (01) is part of f. By transitivity (23) cannot be a part of f, so we may
assume that (24) is. If § contains (35), then a f§ contains (1025), violating (2.6.6).
If B contains (36), then 2 contains (34), also violating (2.6.6). Hence we may
assume (37) is a part of f. Then «ff sends 7 to 1 to 0 to 2 to 5 and 4 to
3 to 8; therefore (438) must be the 3-cycle of y, i.e., y must send 8 to 4, forcing
p to send 8 to 6. Therefore (86) is a part of f§, and this determines §=(01)
(24) (37) (59) (68); however now o ff=(10257) (384) (69), which is not the correct
cycle structure for y. [

Lemma (2.6) serves to rule out # 82, # 86, # 67, # 73, %92, and # 46
with (2.6.1)—(2.6.6) respectively. This leaves stubborn # 93.

The configuration # 93 has x =1, which means that there is one extra ramifi-
cation point for the J-map which is not accounted for by the singular fibers.
This gives the following possibilities for the ramification of the J-map:

(2.8.1) (324) (2> (133 over 0, 1, and oo

(2.8.2) (136)(2%) (133 over 0, 1 and o

(2.8.3) (13%)(234) (133 over 0, 1 and oo

(2.8.4) (13%) (25 (13%)(182) over 0, 1, oo, and a fourth branch point /.
The first can be ruled out most easily:

(2.9) Lemma. There are no three permutations in S;, with cycle structure as
in (2.8.1) whose product is the identity.

Proof. We again use the notation used in the proof of (2.6). We may assume
a=(0) (123) (456) (789) and that f has cycle structure (2°). I'll show that the
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product 7 cannot have cycle structure (324). We may assume (01) is a part
of B. If (23) is a part of f, then y sends 3 to 3. Therefore we may assume
(24) is a part of f. Then y sends 1 to 0, 0 to 2, and 2 to 5, so that (1025)
must be the 4-cycle of y; in particular, y sends 5 to 1, so f must send 5 to
3. Hence (35) is a part of §. In this case y sends 4 to 3 and 3 to 6, so (436)
is a part of y; hence y sends 6 to 6, forcing S to fix 6; this is a contradiction. []

We have already seen (2.8.2): this is case (2.6.6) in a different context. Let
us turn to (2.8.3).

(2.10) Lemma. There are not three permutations in S, with cycle structure as
in (2.8.3) whose product is the identity.

Proof. Write a={0) (123) (456} (789) as above, and let f have cycle structure
(2%4). Let us first assume that 0 is a part of the 4-cycle of B, which in full
is (Oabc) for some g, b, and ¢. Write d==(0b); since (0abc)=46(0a) (bc), we may
rewrite aff as «d(0a) (bc) (rest of f). Reassociating, we see that «d must have
cycle structure (324). If o had cycle structure (13%) as required, then this would
imply the existence of three permutations with cycle structure as in (2.8.1) whose
product is the identity, namely «d, (Oa) (bc) (rest of f), and () *, contradicting
Lemma (2.9). We may therefore assume that 0 is not a part of the 4-cycle of
B, and that (01) is part of §.

Note that (102) must be a part of y, so y sends 2 to 1, hence 8 sends 2
to 3. Let us assume first that (23) is a part of . Then 3 is fixed by y, so
7 has no other fixed points; by (2.7) we may assume (47) is a part of f. In
the 4-cycle of B, 5 must occur; assume that 5 is sent to 6. Then y sends 7
to 5 to 4 to 8, a contradiction. Assume that 5 is sent to 8 by f; then y must
contain (759), so y sends 9 to 7, so f must send 9 to 9, also a contradiction.
Hence ff must send 5 to 9, implying that {57} is a part of y; this contradiction
shows that (23) cannot be a part of ff, and that 2 and 3 occur in the 4-cycle
of f.

Now neither 0, 1, 2, nor 3 can be fixed by y, so we may assume that 4
is; hence B must send 4 to 6. If 46 completes the 4-cycle of B, which would
then be (2346), then (635) would be part of y, so y send 5 to 6, and § would
send 5 to 5, a contradiction. Therefore (46) is a 2-cycle of f. The remaining
2-cycle of B cannot have both elements from {7, 8, 9} by (2.7); hence 5 must
occur in the 2-cycle, and we can assume it is (57). Then y sends 6 to 5 to
8, and so must send 8 to 6; hence f must send 8 to 4, a contradiction. [J

This leaves us with the case (2.8.4). Assume that there exists 4 permutations
asin (2.8.4) whose product is 1. Let & be the 2-cycle, and let ¢ be the permutation
with cycle structure (2°). The product do either has cycle structure (122%) (if
d is part of o) or (234) (if not). The second case cannot happen, by the previous
lemma. Therefore we need only deal with the following case:

(2.11) Lemma. The only 3 permutations in S, with cycle structures (133), (1224,
and (13%) whose product is the identity is

[(0)(123)(456)(789)]- [(1) (4)(25) (36) (07)(89)]- [(162) (354) (078) (9) ] = 1,

up to conjugacy.
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Proof. Again we will let o and y have cycle structure (133), 8 have cycle structure
(1?24, and prove that af=7 implies the above for o, §, and y~'. We may
assume as usual that «=(0) (123) (456) (789).

Assume that 0 is fixed by f, so that O is the fixed point of y. Another
must also be fixed by f, and we can assume that it is 1; by (2.7), (23) cannot
be part of f§, so we may assume that (24) is. Then y sends 1 to 2 to 5, and
so sends 5 to 1; hence f must send 5 to 3, so that (35) is part of 5. Then
y sends 4 to 3 to 6, and so 6 to 4, forcing f§ to fix 6, a contradiction. Hence
0 is not fixed by f, and we may assume 1 is.

If the other fixed point of § is 2, then (123) is a part of y, so 3 must be
fixed by pB; if the other fixed point of f is 3, then (312) is part of 7, and 2
must be fixed by . Either way we have a contradiction, so we may assume
that the other fixed point of § is 4.

Where is 0 sent to by f? If (02) is in f, then (120) is in v, so (03) is in
y; if (03) is in f, then (3012 ...) is part of y. Similar contradictions occur if
(05) or (06) are in . Hence we may assume (07) is in f5.

Where is 2 sent by $? If (23) is in f, then (12) is in y. If (26) is in f, then
y contains (1245 ...). If (28) is in f, then (129) is in y, so (39) is in B, forcing
(0837) in y. If (29) is in B, then (12708 ...) is in y. This leaves only (25) as
a possibility.

So far f=(1) (4) (07) (25) (...) (...), and so y is now determined: y=(126)
(453) (708) (9). This forces the rest of § to be (36} (89), giving the result above. [

This finally serves to rule out case {(2.8.4), and # 93. The four permutations
in this case must be [(0) (123) (456) (789)], [(14) (25) (36) (07) (89)], [(14)],
and [(162) (354) (078) (9)], up to conjugacy, by Lemma (2.11). In this case {0,
7, 8, 9} is left stable by each of these, so the subgroup generated by them
is not transitive.

3. The sufficiency of the existence of the J-map

The last several cases considered in the previous section were ruled out essentially
because the J-map from the base curve P! to the moduli space P! could not
exist. In this section I will indicate that a converse to the arguments used above
exists: if one can construct an appropriate J-map, then a rational elliptic surface
with the prescribed singular fibers exists.

What does an “appropriate” J-map mean? One can take a hint from the
‘m’ column of Table (1.1). Suppose a list of singular fibers is given, and the
task is to construct a rational elliptic surface with exactly those singular fibers.
Assume that the list of fibers satisfies the various numerical criteria of Sect. 1.
Let d=degree(J), which is computed using (1.7). Let us say that a map J: P’
—IP! belongs to the list of singular fibers if the multiplicities over 0, 1, and
oo are as follows:

over 0: (ii+iv*) points of multiplicity 1,
(iv+ii*) points of multiplicity 2, and
(d—ii—iv*—2iv—2ii*)/3 points of multiplicity 3;
over 1: (iii+iii*) points of multiplicity 1, and
(d—iii—iii*)/2 points of multiplicity 2;
over «0: (i,+i¥) points of multiplicity n(n = 1).
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The construction of the surface proceeds in two steps. First, we pull back
via an appropriate J-map one of the surfaces with J=the identity. Second,
we “twist” extraneous fibers away. Let us describe these steps in turn.

The rational elliptic surface with Weierstrass equation

3.1) yr=x?—3t(t—1)3x+2t(t—1)°

has J=t, and has exactly three singular fibers: a fiber of type II over t=0,
a fiber of type III* over t=1, and a fiber of type I, over t=c0. Upon a base
change from this surface, one will have singular fibers over the points going
to 0, 1, and oc, and the types of the singular fibers are determined merely
by the multiplicity of the base change map at these points. In particular, we
have the following (see [MP, Table (7.1)):

(3.2) over a point above 0:
fm=1: II;if m=2: IV;ifm=3: I}
over a point above 1:
ifm=1: I[II*;ifm=2: I}
over a point above oo
I, if multiplicity m.

After the pull-back, one makes a “twist” of the resulting surface to adjust
the fibers of type I'V*, I1I*, II*, and I}. There are really two processes going
on here. One was described earlier in the discussion of # 56; it will be referred
to as “transfer of *”. Assume that the surface is given in Weierstrass form
as y2=x>+ Ax+ B, where 4 and B are forms in s and t. Suppose that s? divides
A and s* divides B, but cither t* does not divide A or t3 does not divide
B. Then over s=0 there is a singular fiber of the surface, of type I'f, I1*, I1I*,
or IV*, and over t=0 there is a fiber of type I,,, II, II1, or IV. The “transfer
of *” is effected by replacing 4 by t* 4/s* and B by t*B/s*. After making this
replacement, over s=0 there is a singular fiber of type I,, II, 111, or IV, and
over t=0 there is a fiber of type I}, IT*, III*, or IV*; all other singular fibers
remain the same, and the J-map of the surface is unaffected. One can be more
precise: the fibers are switched according to the following schedule:

(3.3) Ll (n20)
HeIv*
HIT11*
Ve I1*

ok

Note that “transfer of *” preserves the number of fibers, and keeps
the p, of the surface invariant. The second process, which will be called “deflation
of ¥’s” simultancously “deflates” two “*” fibers as in (3.3), and so the number
of these drops by two; the p, drops by 1. Suppose that over t=0 and over
s=0 we have “*” fibers; then in the Weierstrass equation, s*t* divides 4 and
s°t> divides B. Replace A by A4/s*t? and B by B/s*t®; this deflates the fibers
over s=0 and t=0 as in (3.3) (the fiber on the right is replaced by that on

the left). All other singular fibers are unaffected, and the J-map remains the
same.
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The main result for constructing surfaces with prescribed singular fibers can
now be stated.

(3.4) Proposition. Suppose that a list of singular fibers for the rational elliptic
surface is given, satisfying the numerical criteria of Sect. 1, with d=degree(J)=0.
Suppose further that a map J: P' — P! exists, which belong to the list of singular
fibers. Then a rational elliptic surface with section can be constructed with exactly
the singular fibers of the list, by first pulling back the surface given by (3.1)
via J, then by applying a suitable number of ‘“‘deflation of *’s”, and finally by
applying at most one “transfer of * .

Proof. Write d = n(i,+i¥)
=ii+2iv+iv¥+2ii*+3a
=iii+iii*+2b.
Let Y be the pullback of the surface (3.1) via the J-map which belongs to

the given list of singular fibers. By (3.2), we have the following singular fibers
onY:

over the points over J =0:
(ii+iv*) fibers of type I1
{iv+ii*) fibers of type IV
a fibers of type I

over points over J=1:
(iii+iii*)fibers of type I11T*
b fibers of type I'¥;

over points over J = oo
(i, +i¥) fibers of type I,(n=1).

The total number of “*” fibers here is (a+b+iii+iii*). Let e be the number
of “*” fibers in the given list; e=0 or 1. Then by (1.3) we have 2(ii+i-
v¥)+ 3@+ iii*)+4(iv+ii*)+ 6e+d=12. Therefore

(a+b+iii+iii%)
=((12=2(i+iv*)—3(iii+iii*)—d(iv+ii*)—6e)—ii—iv* —2iv—2ii*)/3
F((12=2(i+iv*) =3 i +iii*)—d(iv+ii*)—6e)—iii—iii*)/2+iii+iii*
=10—5e—2(ii+iv*)—2(iii+iii*)—4(iv+ii%)

which is even if e=0 and odd if e=1. Therefore, after a suitable number of
“deflation of *’s”, we can arrange exactly e “*” fibers. If e=0 we are done.
If e=1, then after one “transfer of *” operation, we arrive at a surface with
the prescribed singular fibers.

This surface has the correct fiber types to be our desired rational elliptic
surface, and the only point left to check is that it is indeed rational, and not
Enriques (which is the only other serious possibility. However our surface has
a section, which an Enriques surface does not; this section is pulled back from
the section of the surface given by (3.1), and both the “transfer of *” and “defla-
tion of *” operations preserve the existence of this section. [
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The above Proposition reduces the construction of an elliptic surface with
prescribed singular fibers to the construction of an appropriate J-map. Suppose
first that we have a list of singular fibers with x=0, so that if the J-map exists,
it is ramified only over 0, 1, and oo, and the ramification is determined. Then
the existence of the J-map is equivalent to the existence of the three permutations
6y, 01, and g, in S, with the appropriate cycle structure, generating a transitive
subgroup of S,, whose product is the identity. Therefore:

(3.5) Corollary. Suppose a list of singular fibers is given with d>1 and x=0,
satisfying the numerical criteria of Sect. 1. Then a rational elliptic surface with
those singular fibers exist if and only if there are three permutations o, o,
and o, in Sy satisfying the following conditions:
(3.5.1) the cycle structure of ¢ is:

(ii+iv*) 1-cycles

(iv+ii*) 2-cycles

(d—ii—iv*—2iv-—2ii*)/3 3-cycles;
(3.5.2) the cycle structure of 6 is:

(iii+iii*) 1-cycles

(d—iii—iii*)/2 2-cycles;
(3.5.3) the cycle structure of o, is:

(i, +i¥) n-cycles, for eachn=1;
(3.54) 0,0, 0, =the identity in S;;
(3.5.5) the subgroup of S, generated by {0, 0., 6.} is transitive.

It is by exhibiting the three permutations that the existence of the rational
elliptic surfaces with x =0 will be demonstrated.

I claim that examples of rational elliptic surfaces with configurations of
singular fibers with x=1 can be constructed by suitably deforming the J-map
of a surface with x=0, and in fact all configurations which occur can be found
this way. The basic observation is the identity

(1,2, ,n)=(L,2, ..., k) (k+1,k+2, ..., n) (k, n).

Suppose a J-map exists which belongs to a configuration of singular fibers.
This J-map may be ramified over 0, 1, and oo, and possibly elsewhere. Therefore
we have permutations o, 0, 6., etc., satisfying the conditions of (3.5) (general-
ized to more than three permutations). Suppose that an n-cycle occurs in one
of the permutations. Then, by using the above identity, this n-cycle can be
replaced by a product of a k-cycle and an (n—k)-cycle in the given permutation,
at the cost of introducing an extra permutation which is a transposition. This
new set of permutations can then be used to construct a J-map, which belongs
to an altered list of singular fibers. Using this method, one sees immediately
that certain singular fibers can be “deformed” into two singular fibers, leaving
all others alone. The resulting fibers are given in the following table.

Table (3.6)

Fiber Deforms into

I, L+, 1<k<n—1
I3 II+1Vif over J=0
1 I+ if over J=1

v H+11
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Note that I, cannot deform to I+ I¥_,, since the total Euler number must
be preserved.

These techniques suffice to demonstrate the existence of rational elliptic sur-
faces with every possible configuration of singular fibers; there are exactly 279
configurations which exist. These are listed in the next section, together with
the permutations if x=0 which “construct” the J-map belonging to the list
of singular fibers.

4. The configurations of singular fibers which exist

Using the techniques described in the previous section, it is natural for us to
stratify the 279 possible configurations by the degree of the J-map.

In the special case of d=0, there are almost no restrictions, except for of
course (1.3) and (1.8). Furthermore, all of these can be easily constructed simply
by writing down the Weierstrass equations; see for example [MP] for more
details.

Degree (J)=0

IV I I IV* IV
1% 10T % 1T
BFUIILIVEILT
IE 1%

wiiv

VIVILII
VI

[ 1T I T
I

The ones on the same line are “twists” of each other; they can be obtained
one from the other by the “transfer of *” process.

Degree (J)=1
PTG IV I LTI

In every case above the J-map is the identity.

In the cases where the degree is 2 or more, I will employ a slight abbreviation
for the configurations of singular fibers. A “*” will denote I}; “n” will denote
I,: 11, 111, and IV will still be used for these. Exponents will be used to indicate
repetition. The other “*” fibers will not be listed as such; all can be twisted,
via the “transfer of *” process, to a configuration with only I¥. For example,
the notation “*II1?2” stands for all three configurations I% II II I,, IV* II
I, and I II 1I. As another example, the four configurations given above with
degree(J)=1 can be denoted by “*II II1 1”.
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In what follows, the configurations with x =0 will have printed next to them
the cycle structure of a4, g,, and o ,; following that, the three permutations
in S, whose product is the identity will be given. The configurations with x>1
will simply be listed; we will leave it to the reader to check that each one
can be obtained from an existing configuration with one less x using a “deforma-
tion” indicated in Table (3.6). With the new notation, these deformations are
realized as follows. A “*” can be replaced by II IV if the I# can exist over
J=0; a “*” can be replaced by I1I? if the I¥ can exist over J=1:; a IV can
be replaced by 11%; an “n” can be replaced by “k{n—k)” for any k between
land n—1.

Degree(J)=2

x=0:

V12 () (1% [(12)1-[A2)]-L()(1)]
122 (17(2) 2. [(MI-[(12)]-[(12)]
vir2: 2ne. [(2)3-[mml-ra2g
x=1: *I1* 12, IV III*1%; 1II* 11 2.

x=2: I111*1]*12.

Degree(J)=3

x=0:

11121 (3)(12)(12).  [(123)]-[(1)(23)]-[(3) (12)]
VI3 (12)(12) (3. [(1){(23)] - [{2) (13)] - [(132)]
nrs: 3)(111) ). [(123)]-[(1) (2) (3)]- [(132)]
x=1: *IIT 13, IVIIIII21; 11T 113 3; 111321,

x=2: IVIIIIT13; 111313 [ 113 21.

x=3: [II1I°13

Degree(J)=4

x=0:

*1131: (13)(22)(13).  [(1)(234)]-[(12)(34)]-[(4) (123)]

IVII?4: (112)(22)(4). [(D2)(34)]-[(13)(24)]-[(1324)]

HI?II4: (13)(112)4). [(1)(234)]-[(2) (3)(14)]-[(1432)]
1v222:(22)(22)(22).  [(12)(34)]-[(13)(24)]-[(14)(23)]

x=1: *[121%;11*4; IV?21%; IV II*31; IVII*22, 11I*11 31; 111711 22
20 KT 1% TV214 IV ITR212; T1#31; 111711 212 11422,

3: IVIIP 1% 1P 11 14 114212,

4: JI*14

X

X
X
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Degree(J)=5

x=0:

HITIZS: (113)(122)(5).  [(1)(2)(345)]-[(3)(14) (25)]-[(14325)]
IVIIIA41: (23)(122)(14). [(12)(345)]-[(1) (34)(25)]-[(4)(2153)]
IVIIT32: (23)(122)(23). [(12)(345)]-[(3)(14)(25)]-[(15)(243)]
x=1: HIIT?41;IVIII 312, 1VIII 221111 11232

2: IVIII213; 11T 11?312 111 112221,

3. IVIII 13 1T 17213,

4: [IT111%1°.

® o= %
[ (]

Degree(J)=6

x=0:
*412. (33)(222)(114).  [(123)(456)]-[(13)(25)(46)]-[(1) (4) (2356)]
*2%: (33)(222)(222). [(123)(456)]-[(14)(26) (35)]-[(15) (24) (36)]
1% 6: (1113)(222)(6).  [(1)(3)(5)(246)]-[(16) (23)(45)]- [(165432)]
IVIISE: (123)(222) (15). [(1)(23) (456)]- [(12) (34) (56)]- [(6) (12453)]
117 51: (33)(1122)(15).  [(123)(456)]-[(5)(6) (13) (24)1-[(1) (23465)]
IV I142: (123)(222)(24). [(1) (23) (456)]- [(14) (25) (36)]-[(26) (1435)
[11242: (33)(1122)(24). [(123)(456)]-[(1)(4) (26) (35)]- [(36) (1542)
11123%: (33)(1122) (33).  [(123)(456)1-[(1)(4)(25) (36)] - [(162) (354)
x=1: *313;*2212; [1351;IVII41%;111*41%;

I1342; 1V II32%;IVII23; 11332, 1117321, 111223,
x=2: *21% [13412; IVII 313, [V 11 217,

12313113328 11122212 11323,
x=23: *¥19; IVII21%; 113313, [11?21%; 1132212,
x=4: IVII1°; 111?15, 113214
x=5: 11318,

]
]
]

Degree(J)=17

x=0:

HITI61: (133)(1222)(16).  [(1)(234)(567)]-[(2) (13)(45)(67)]-[(7) (132564)]
IITII52: (133)(1222)(25). [(1)(234)(567)]-[(2)(15)(46) (37)] - [(47) (26153)]
IIT1143: (133)(1222)(34).  [(1)(234)(567)]-[{2) (15) (36)(47)]- [(273) (1546)]
c IITIT513; 1T 11421; 11T 11321111 11 322

HITIT413; 1T 173212, 11111 231,

HIII31% 11112213

HI 215

i1,

=
I
—

AT T
[



Persson’s list of singular fibers
Degree(J)=28

x=0:
11%71: (1133)(2222) (17).

[(1)(2)(345)(678)]-[(17) (28) (35) (46)] - [(3) (1745628)]
IV 612 (233)(2222)(116).

[(12)(345)(678)]-[(13)(26) (45)(78)]-[(5) (8) (167234)]
11762: (1133)(2222)(26).

L(1)(2)(345) (678)1- [(13) (26) (48) (57)]- [(58) (137264)]
IV 521: (233)(2222) (125).

[(12) (345)(678)]-[(13) (24) (56) (78)] - [(8) (14) (23675)]
11747 (1133)(2222) (44).

[(1)(2)(345)(678)]-[(13) (26) (47) (58)] - [(8413)(5726)]
1V 3%22: (233)(2222)(233).

[(12) (345) (678)]-[(13)(26)(48) (57)]-[(58) (164) (237)]
x=1: 11?612, 1V 513;11?521; 1V 421%; [1?431;

11°422: 1V 32121V 32%1; 11?322,

Il

R xR o®
Il
v AW

I1241%;IV31°; IV2%2 14 1133213, 1122312
D IV 218, 11731%; 1172214,

: IV 181172168,

: 11718,

Il

Degree(J)=9

x=0:
II1712; (333)(12222)(117).

[(123)(456) (789)]-[(1) (24) (37)(56) (89)]- [(6) (9) (1783452)]
H1621: (333)(12222)(126).
[(123)(456) (789)]-[(1) (24) (36)(57) (89)] - [(9) (34) (167852)]
IIT531: (333)(12222)(135).

[(123) (456) (789)]-[(1) (24) (35) (67) (89)1-[(9) (152) (34786)]
I1171432: (333)(12222)(234).

[(123)(456) (789)]-[(1)(24) (37) (59) (68)]-[(69) (348) (1752)]
2 TI1613; 1115212, 1114312, 11T14221; 111 3221111 323,
c IITS1% 1114213 1113213, 111 32%1%; 111 2*1.
TI1415;1113214; 1112313
II131%; 1112215,
111217,
I111°,

[
N VR SR

R A R o

12513, IVA1%; 117421, 1V 3213, 1V 2312, 1123212, 117322 1; 113 2%,

209
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Degree(J)=10

x=0:
11817 (1333)(22222) (118).

[(0)(123) (456) (789)]- [(13) (46) (27) (80) (59)] - [(1) (4) (23756908) ]
11721: (1333)(22222) (127).

[(0)(123)(456) (789) ] - [(13) (24) (57) (69) (80)] - [(1) (67) (2349085)]
11541 (1333)(22222) (145).

[(0)(123)(456)(789)]-[(01) (24) (35) (67) (89)]-[(9) (0152) (34786)]
11532: (1333)(22222) (235).

L(0)(123)(456) (789)]-[(01) (24) (37) (59) (68)] - [(69) (348) (01752) ]
2 11 71%;11621%; 115312; 115221, 11 4%12;114321; 11 3222,
IT61%4; 115213114313 1142%1%;113%21%; 113231.
I151°: 11421411 3%1%4; I132213; 112%12.
I141%; 113215112314,
I1317;112°1°,
11218,
1111,

XX R oM oRoH %
nwonn o
AR Al > e

Degree(J)=12

x=0:
913: (3333)(222222)(1119).
[(123)(456) (789)(abc))]-[(13)(2a)(46)(5b) (79) (8¢)]-[(1) (4) (7) (23a89c56h)]
8212:(3333)(222222)(1128).

[(123)(456) (789) (abc)]-[(13) (46) (27)(5a) (8c)(9b)]-[(1) (4) (9¢) (237h56a8)]
6321: (3333)(222222)(1236).

[(123)(456)(789)(abc)]-[(13)(24) (57)(6a) (8c)(9b)]-[(1)(9¢) (67h)(234a85)]
5212; (3333)(222222)(1155).

[(123)(456) (789)(abc)]-[(13)(46)(27)(8a)(9b)(5¢)]-[(1)(4)(37b82)(6¢9a5)]
4222: (3333)(222222) (2244).

[(123)(456)(789) (abc)]-[(14)(26) (37) (5a) (9b)(8¢c)]-[(24) (9¢) (17b5) (36a8)]
34: (3333)(222222)(3333).

[(123)(456) (789) (abc)]-[(14) (27)(68) (3a) (9b) (5¢)]-[(1a5) (248) (37b) (6¢9)]
T 81%;7213;6313:6221%;5413;53212;4221%;43221;424;3321.
71%;6214;5314;52213;4214;4321%;42312;3%13; 322212 3241;2°.
616;5215;4315;42214;32214;32313;2512.
517;421°:321%;32215; 2414,
418;3217; 2316,
31%;2218,
210,
12,

HoW o MR R RoR
| | | O I

OO\IO\UI-J;LAN)—*
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