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O. Introduction 

This work is the product of my attempts to understand the list of possible 
singular fibres which can occur on a rational elliptic surface with section, which 
has recently been produced by U. Persson [P]. In his work, he constructs all 
the possible configurations, and proves the impossibility of the ones which can- 
not exist, by using very geometric arguments; these all boil down to various 
constructions involving plane curves of low degree, and distinguished points 
on these curves, having prescribed singularities. It is an impressive illustration 
of the beauty of the geometry of plane curves, and any interested reader will 
have a lot of fun studying the necessary constructions. 

In this article I will concentrate on more combinatorial  criteria for the exi- 
stence of a rational elliptic surface with prescribed singular fibres. In this way 
one is able to reproduce Persson's list, and it is hoped that the two approaches 
complement and reinforce one another. In addition, one obtains a completely 
different construction for the surfaces which exist, and gives an independent 
verification for the final list. 

One can take a rational elliptic surface with section S, and blow down all 
components of fibers which do not meet S; one obtains an elliptic surface with 
a finite number of rational double points. The classification of the rational 
double point configurations which can be obtained this way has been done: 
the reader should consult [D], ILl ,  IT],  and [U]. This classification ignores 
the difference between several fiber types: Io, I1, and II  contribute no rational 
double point, I2 and I I I  both give an A 1 singularity, and 13 and I V  both 
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give an A2 singularity. Moreover, from the point of view of the J-function, 
these fiber types are quite different. Therefore this work is a detailed refinement 
of these coarser classifications. 

1. Some numerical criteria 

Every rational elliptic surface with section is the blowup of the plane ~2 at 
nine points, and therefore has Picard number 10; the section uses up one dimen- 
sion, and so the number of components of any one singular fiber is at most 
nine, since these components are always independent in the Neron-Severi group, 
even modulo the section. 

The possible singular fibers with at most nine components are listed in 
Table (1.1), together with certain numerical characters which will be explained 
more fully below. 

The first column of Table (1.1) is the Kodaira name of the singular fiber. 
The second column, e, is the Euler number of that fiber. 

Each Kodaira fiber consists of a certain number of components, and the 
third column, r, is one less than the number of components in the fiber. The 
given section of the elliptic fibration can only meet one component, and so 
r is the number of components of the fiber which do not meet the section. 
These components are linearly independent in the Picard group of the surface, 
and in fact generate a negative definite sublattice of the Picard group of rank 
r. The fourth column, 6, is the discriminant of this sublattice. The last column 
is the name for this root lattice. 

The fifth column, J, is the modulus of the fiber. All singular fibers except 
for I~ have J = 0 ,  1 or oo; fibers of type I~ (and smooth fibers, i.e., type I0) 
can have any finite J value. The sixth column, m, is the multiplicity of the 
J function, thought of as a map from the base curve to IP 1. 

Every rational elliptic surface with section can be written in Weierstrass 
form 

(1.2) y2 = x  3 +Ax+B 

where A and B are polynomials in an affine variable t on the base curve IP 1 
of degrees at most 4 and 6, respectively. This representation exhibits the surface 
as a double cover of the rational ruled surface IF z, branched over the ( -  2)-curve 
and over a trisection N. The curve ~ meets the fiber of ~:2" in general at three 
distinct smooth points (where the elliptic surface has a smooth fiber), and, where 
the elliptic fiber is singular, at 1 or 2 points, which may in fact be singular 
points of ~.  (If there are 2 points, at most one is singular on ~.) This singularity 
is a "simple" curve singularity of type A,, D,, or E,, using the notation in 
[BPV]; note that this is the same notation as for the associated root lattice. 
The seventh column, 7, is the genus drop contributed by the singularity of 

to the computation of the geometric genus of ~ ,  if ~ would be irreducible. 
This completes the description of the elements of Table (1.1). There are several 

"easy" numerical criteria which one can apply to a possible configuration of 
singular fibers on a rational elliptic surface with section, involving simply a 
computation with the numbers in the above table. These criteria will now be 
discussed. 
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Fiber e r 6 d m 7 Lattice 

lI* 10 8 1 4 E 8 
1" 10 8 4 5 D s 
19 9 8 9 4 A s 
lIl* 9 7 2 4 E 7 
13 9 7 4 4 D7 
Is 8 7 8 4 A v 
IV* 8 6 3 3 E 6 
I* 8 6 4 4 D 6 
I7 7 6 7 3 A 6 
1" 7 5 4 3 D 5 
16 6 5 6 3 A 5 

f 

I* I 6 4 4 3 D 4 
k 

I5 5 4 5 2 A,~ 
I4 4 3 4 2 A 3 
IV 4 2 3 1 A 2 

13 3 2 3 1 A 2 
III 3 l 2 l Ax 
lz 2 1 2 1 A 1 
II 2 0 1 0 0 
11 1 0 1 0 0 

I o 0 0 1 0 0 

0 2 mod 3 
4 

oo 9 
1 1 mod 2 
oo 3 

8 
0 1 mod 3 
sc 2 
oo 7 
oc 1 
oo 6 
0 0 mod 3 
1 0 mod 2 

+03 
oo 5 
oo 4 
0 2 mod 3 
oo 3 
1 1 mod 2 
oo 2 
0 1 mod 3 
oo 1 
0 0 mod 3 
1 0 mod 2 
+0,1 

The most  basic equat ion which restricts the singular fibers is that  the sum 
of the Euler numbers  of the singular fibers must  be 12: 

(1.3) Z e =  12. 

Since every singular fiber contributes at least one to this sum, this equat ion 
effectively bounds  the number  of possible configurations. In fact, the number  
of configurations satisfying (1.3) is 379. it is this set of 379 configurations which 
form our  "da tabase" ,  from which we will further discard configurations as they 
are proved to be impossible. 

The sublattices of the Picard group of the surface generated by components  
of fibers not  meeting the section are all negative definite, and mutual ly  or thogo-  
nal, so that  their direct sum forms a sublattice of rank S r .  This sublattice 
is perpendicular to the class of the section, and to the class of the fiber; since 
the Picard group has rank 10, the direct sum can have rank at most  8: 

(1.4) Xr<=8.  

There is a refinement of (1.4) which is useful in the extremal case of  S r = 8 .  

The Picard group of the surface is unimodular ,  and the rank 2 sublattice genera- 
ted by the section and the fiber is un imodular ;  therefore the o r thogona l  comple- 
ment to this rank two sublattice is a un imodular  sublattice of  rank 8. It must  
be even, since the canonical  class K is minus a fiber, and any class perpendicular  
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to K must have even square. Finally it is negative definite, since the Picard 
group has signature (1, 9), and the rank 2 sublattice generated by the section 
and the fiber has signature (1, 1). Therefore this perpendicular lattice must be 
isomorphic to the Es lattice. Therefore, if the direct sum of the root lattices 
has rank 8, it has a unimodular overlattice, and so must have a perfect square 
discriminant: 

(1.5) I f Z r  = 8, t h e n / / 3  is a perfect square. 

(See also [MP, Corollary (2.6) 
The trisection ~ on IF 2 which forms part of the branch locus of the double 

cover representation of the elliptic surface has arithmetic genus 4. If the surface 
has a fiber of type II,  IV, IV*,  or II*, the curve ~ meets the fiber of IF2 at 
only one point, which is unibranch on 9 .  Therefore, if the surface has one 
of these singular fibers, ~ must be irreducible. In that case, the total genus 
drop of the singularities of ~ is at most 4. 

Let i, denote the number of fibers of type I ,  on the surface; similarly define 
i*, ii, iii, iv, iv*, iii*, and ii*. The above condition can be expressed as follows: 

(1.6) I f ( i i + i v + i v *  +i i* )>  1, then $ 7 < 4 .  

The remaining criteria involve a study of the J-map from the base curve 
C (isomorphic to IP 1) to ~1. The degree of the J-map is equal to the number 
of its poles, counted with multiplicity; since every pole of J is associated to 
a singular fiber of type I* or I , ,  this gives 

(1.7) degree(J)= ~ n(i,+i*).  
n>__l 

Hence the degree of the J-map can be determined from the singular fibers. 
If the degree of J is 0, so that J is a constant map, then all singular fibers 
must have the same J-value; by analyzing the singular fibers with finite J, this 
can be expressed as follows. 

(1.8) If degree(J) = 0  then either ( i i + iv+ iv* + i i) = 0  

or ( i i i+i i i*)=O.  

If the degree of J is not 0, then there are several requirements. Firstly, 
the sum of the multiplicities over every point of lP ~ must equal the degree 
of J. In particular, using the J value of 0, we find that 

(1.9) If degree (J) 4= 0 then 

degree (J) - i i - i v* - 2 i v - 2 i i* > 0 

and is divisible by 3. 

Using the J-value of 1, we have 

(1.10) If degree (J) + 0 then 

degree (J) - i i i - i i i* > 0 

and is divisible by 2. 
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Statement (1.9) is obtained by considering the multiplicities of the J-map at 
the fibers with J =0,  modulo 3; (1.10) is gotten by considering the multiplicities 
of J at the fibers with J = 1, modulo 2. 

A more subtle condition is obtained by analyzing the ramification of the 
J-map. It is easy to see that the ramification of J over 0 is minimized when 
one assumes that every fiber of type II and IV* has m= 1, every fiber of type IV 
and II* has m=2,  and every fiber of type Io and I* (with J = 0 )  has m=3.  
If d=degree(J),  then there must be ( d - i i - i v * - 2 i v - 2 i i * ) / 3  fibers of type Io 
and I~ with J = 0 ,  giving a minimum contribution of ( i v+i i* )+2(d- i i - i v*  
- 2 i v - 2 i i*)/3 to the total ramification of J. 

Similarly, the ramification of J over J =  1 is minimized when one assumes 
that every fiber of type 111 or 111" has m= 1, and every fiber of type Io and 
I* (with J =  1) has m = 2 ;  then there must be (d - i i i - i i i* ) /2  fibers of type Io 
or I* with J - -  1, giving a minimum contribution of ( d -  ii i -  ii i*)/2 to the total 
ramification of J. 

Finally, over J = 0% we have the fibers of type I, and I* with n > 1, contribu- 
ting exactly ~ ( n -  1) (i, + i*) to the total ramification. 

n ~ l  

From Hurwitz's formula, since the base curve has genus 0, the total ramifica- 
tion of the J-map is 2 d -  2. Therefore: 

(iv + ii*) + 2 (d -  i i - i v*  - 2 i v -  2ii*)/3 

+(d - i i i - i i i * ) /2+  ~ (n-1) ( i ,+i*)<2d-2 .  
n>_l  

By using (1.7) and collecting terms, one finds that 

(1.11) ~ [ ~  (6--n)(in+i*)+2(iv+ii*)+3(iii+iii*)+4(ii+iv*)--12]>O. 
n > l  

The quantity in the brackets is divisible by 6, and the entire expression after 
dividing by 6 represents the "extra"  ramification of the J-map, not accounted 
for by the above considerations. In particular, if the above quantity is 0, then 
every assumption made above about the multiplicities of J is valid, and every 
ramification point and multiplicity for the J-map is known. In what follows 
let x be the left hand side of (1.l 1). 

The formula (1.11) is equivalent to Proposition 3.4 of IMP]. 

2. The imposs ib le  conf igurat ions  

Of the 379 sets of singular fibers which satisfy (1.3), exactly 100 do not occur. 
A list follows in Table (2.1), ordered lexicographically as in [P]. 

Of the above 100 configurations, 86 are ruled out by one or more of the 
numerical criteria from Sect. 1. The fourteen which are not are numbers 46, 
56, 67, 68, 69, 73, 76, 79, 80, 82, 86, 92, 93, and 94. 

Probably the easiest of these to dismiss is ~ 56; .assume that such a surface 
exists. Assume that the I* fiber is over t =  0% and the 13 fiber is over t=0 .  
Then, in the Weierstrass form (1.2) for this surface, the degree of A is at most 
2, and the degree of B is at most 3. By replacing A by taA and B by t3B, 
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Table (2.1). The impossible configurations of singular fibers 

R. Miranda 

# : Fibers [Zr, 176, d, X7, x] Reasons for non-existence 

1 : II* Iz [9, 2, 2, 5, - 1] (1.4), (1.6), (1.11) 
2: I*Iz [9, 8, 6, 6, - 1 ]  (1.4), (1.11) 
3: I* lI  [8, 4, 4, 5, - 1 ]  (1.6), (1.11) 
4:19 13" [10, 27, 12, 5, - -2]  (1.4), (1.11) 
5:19 111 [9, 18, 9, 5, - 2 ]  (1.4), (1.11) 
6:19 12 It  [9, 18, 12, 5, - 1] (1.4), (1.11) 
7:19 II I t [8, 9, 10, 4, - 1] (1.11) 
8: III* 13 [9, 6, 3, 5, - 1] (1.4), (1.11) 
9:1"13 [9, 12, 6, 5, - 1 ]  (1.4), (1.11) 

10: I* III  [8, 8, 3, 5, -- 1] (1.5), (1.11) 
11:I* 12 I 1 [8, 8, 6, 5, O] (1.5) 
12:Is  14 [10, 32, 12, 6, --2]  (1.4), (1.11) 
13:18 IV  [9, 24, 8, 5, --2] (1.4), (1.6), (1.11) 
14:18 13 I t [9, 24, 12, 5, - 1] (1.4), (1.11) 
15:I8 III  11 [8, 16, 9, 5, - 1 ]  (1.11) 
16:18 I2 12 [9, 32, 12, 6, - 1] (1.4), (i.11) 
17:18 I2 11 [8, 16, 10, 5, - 1 ]  (1.6), (1.11) 
18: I 8 II 11 [7, 8, 8, 4, - 1] (1.I 1) 
19: IV* 14 [9, 12, 4, 5, o 1] (1.4), (1.6), (1.11) 
20: 1V* 12 12 [8, 12, 4, 5, O] (1.5), (1.6) 
21: I*I 4 [9, 16, 6, 6, - 1] (1.4), (1.11) 
22: I* IV  [8, 12, 2, 5, - 1] (1.5), (1.6), (1.11) 
23: I~' Is It  [8, 12, 6, 5,0] (1.5) 
24: I* 12 II [7, 8, 4, 5, O] (1.6) 
25:17 15 [10, 35, 12, 5, --2]  (1.4), (l.11) 
26:17 14 11 [9, 28, 12, 5, - 1] (1.4), (l.11) 
27: I 7 IV  I1 [8, 21, 8, 4, - 1] (1.5), (1.11) 
28:I7 13 I2 [9, 42, 12, 5, -- l]  (1.4), (1.11) 
29:17 13 II [8, 21, 10, 4, --1] (1.5), (1.11) 
30:17 13 It  11 [8, 21, 12, 4, 0] (1.5) 
31:17 I I I  I2 [8, 28, 9, 5, - 1] (1.5), (1.11) 
32:17 1I I I I  [7, 14, 7, 4, - i ]  (I.11) 
33:I7 12 I2 11 [8, 28, 12, 5, 0] (1.5) 
34: I* I s [9, 20, 6, 5, - 1 ]  (1.4), (l.11) 
35: I* 13 12 [8, 24, 6, 5, O] (1.5) 
36:16 16 [10, 36, 12, 6, --2]  (1.4), (1.11) 
37:I6 I ,  [9, 24, 6, 6, --2] (1.4), (1.11) 
38:16 15 I t [9, 30, 12, 5, --1] (1.4), (1.11) 
39:I6 14 I2 [9,48, 12, 6, --1] (1.4), (1.11) 
40:16 14 II [8, 24, 10, 5, - 1] (1:5), (1.6), (1.11) 
41 : 16 14 1 t I l [8, 24, 12, 5, O] (1.5) 
42:16 IVI2  [8, 36, 8, 5, --1] (1.6), (1.11) 
43:16 I V I I  [7, 18, 6, 4, - I] (1.11) 
44:16 13 I3 [9, 54, 12, 5, - 1 ]  (1.4), (1.11) 
45:16 13 III [8, 36, 9, 5, --1] (1.11) 
46:16 13 II 11 [7, 18, 10, 4, 0] (2.6.6) 
47:16 I l l  III [7, 24, 6, 5, - 1 ]  (1.11) 
48:I6 12 12 12 [8,48, 12, 6,0] (1.5) 
49:16 I2 12 II [7, 24, 10, 5, O] (1.6) 
50:1" Is I~ [8, 20, 6, 5, - 1 ]  (1.5), (1.11) 
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Table (2.1) continued 

# : Fibers [~2r, 116, d, I27, x] Reasons for non-existence 

51:I~ 14 12 [8, 32, 6, 6, --1] (1.5), (1.11) 
52: I~ I4 II  [7, 16, 4, 5, -- 1] (1.6), (1.11) 
53:I~ I V I 2  [7, 24, 2, 5, --1] (1.6), (1.11) 
54: 1" 13 13 [8, 36, 6, 5, - 1 ]  (1.11) 
55: l F 13 I I I  [7, 24, 3, 5, - 1] (1.11) 
56: l~ 13 12 l I [7, 24, 6, 5, 0] Twist of # 11 
57: I~ I z I z II  [6, 16, 4, 5, 0] (1.6) 
58:15 I s 12 [9, 50, 12, 5, -- 1] (1.4), (1.11) 
59:I  5 15 l I  [8, 25, 10, 4, - 1] (1.11) 
60:15 14 13 [9, 60, 12, 5, - 1] (1.4), (1.11) 
61: t s 14 I I I  [8, 40, 9, 5, -- 1] (1.5), (1.11) 
62: I s 14 12 I x [8, 40, 12, 5, 0] (l.5) 
63: Is I V I 3  [8, 45, 8, 4, - 1] (l.5), (1.11) 
64:15 I V  I I I  [7, 30, 5, 4, - 1] (1.11) 
65: Is I3 13 I i  [8, 45, 12, 4, 0] (1.5) 
66:15 13 12 12 [8, 60, 12, 5, O] (1.5) 
67:15 t~ II  I I  [6, 15, 8, 3, O] (2.6.3) 
68: I 5 I I I  I2 I2 [7, 40, 9, 5, O] (2.5.2) 
69:15 12 12 12 11 [7, 40, 12, 5, 1] (2.5.2) 
70:14 14 14 [9, 64, 12, 6, - 1] (1.4), (1.11) 
71:14 14 IV  [8, 48, 8, 5, - 1 ]  (1.5), (1.6),(1.11) 
72:I4 I4 19 11 [8, 48, 12, 5, O] (1.5) 
73:I4 14 I I I  Ix [7, 32, 9, 5, 0] (2.6.4) 
74:14 14 12 II [7, 32, 10, 5, 0] (1.6) 
75:I  4 IV  I V  [7, 36, 4, 4, - 1 ]  (1.11) 
76:I  4 IV I3  11 [7, 36, 8, 4, 0] (2.5.1) 
77:14 IV12 12 [7, 48, 8, 5, O] (1.6) 
78:14 13 19 I 2 [8, 72, 12, 5, O] (1.5) 
79: I ,  13 13 II [7, 36, 10, 4, O] (2.5.1) 
80:14 13 13 11 11 [7, 36, 12, 4, 1] (2.5.1) 
81:14 l 2 12 12 II [6, 32, 10, 5, 1] (1.6) 
8 2 : I V I V I 3  11 [6, 27, 4, 3, 0] (2.6.1) 
83: IV  I V  I I I  I 1 [5, 18, 1,3, ] (1.9) 
8 4 : I V I V I  e l l  [5, 18,2,3, ] (1.9) 
85: IV  I V  II  I111 [4 ,9 ,2 ,2 ,  ] (1.9) 
8 6 : I V I  3 13 II [6, 27, 6, 3, 0] (2.6.2) 
8 7 : I V I I I  I I I  l I  [4, 12, 0, 3, -] (1.8) 
88: I V I I I  I I  II  I x [3, 6, 1, 2, ] (1.9) 
8 9 : I V i z  I2 la 12 [6, 48, 8, 5, 1] (1.6) 
9 0 : t V l 2 I l l I l l  [3 ,6 ,2 ,2 ,  ] (1.9) 
9 1 : I V I I I I I I I  I I t  [2 ,3 ,2 ,1 ,  ] (1.9) 
92:13 Is 13 I I I  [7, 54, 9, 4, 0] (2.6.5) 
93:13 13 I3 I I  I1 [6, 27, 10, 3, 1] (2.11) 
94:13 13 I z I 2 12 [7, 72, 12, 5, 1] (2.5.3) 
95:11I l I l  1II II  I 1 [3, 8, l, 3 , - ]  (1.10) 
96: I I I  I I I  I I  1t 11 [2, 4, 0, 2, ] (1.8) 
97: l l I  II  I I  l I  I I  11 [1, 2, 1, 1,--] (1.9) 
98:12 I2 I2 I2 I2 II  [5, 32, 10, 5, 2] (1.6) 
99:12 I I  l I  l I  II  II  [1, 2, 2, 1, --] (1.9) 

100: II  I I  I I  I I  II  I x 11 [0, 1, 2, 0, ] (1.9) 



198 R. Miranda 

we obtain a surface with an 13 fiber over t--0,  a smooth fiber over t =  0% 
and otherwise all fibers are left unchanged, i.e., the result is a fibration with 
singular fibers I*,  12, and 11. This is forbidden by (1.5) (#e 11 of Table (2.1)). 
Hence # 56 is impossible. This process of transfering " * " ' s  from one fiber to 
another will be referred to as "twisting" the fibration. 

Although it is not strictly necessary to rule out any of the forbidden configu- 
rations, no discussion of this subject would be complete without mentioning 
the appropriate  lattice conditions more thoroughly. As mentioned above, the 
direct sum of the root lattices associated to the singular fibers forms a sublattice 
of the perpendicular space to the rank 2 subspace generated by the section 
and the fiber inside the Picard group. This perpendicular space is isomorphic 
to the even negative definite rank 8 unimodular lattice Es. Therefore, a necessary 
condition for the existence of the surface is that 

(2.3) the direct sum of the associated root lattices must have an embedding 
into the E8 lattice. 

Although there are several ways to try to decide whether a given direct 
sum of root lattices embeds into Es, I will discuss here the method of discrimi- 
nant-forms. For a complete treatment, one may consult [N]. 

Given an even nondegenerate lattice L, the adjoint map embeds L into 
its dual L ~. L ~ inherits the bilinear form from L, with values in II). The cokernel 
GL is a finite abelian group whose order is the discriminant of L, and it also 
inherits a quadratic form qL with values in ID/7/; by definition, qL(X mod L) 
= (x, x)/2 mod Z. 

There are two facts we need to use. Firstly, if L and K are both embedded 
in a unimodular lattice U, with L = K  • and K = L  • then GL -~GK. Secondly, 
the overlattices of a lattice M are classified by the totally isotropic subgroups 
of GM. Indeed, if H c GM is a totally isotropic subgroup corresponding to M c N, 
then GN ~- H• 

Now assume that a lattice R embeds into Es. Let L = R  • and K = R  • By 
the first remark, GL~-Gr. Since R~_L, there is a totally isotropic subgroup 
H c G ~  such that GL~-HI/H. Hence GK~-H• Now L and R have the same 
rank Xr, and K has complementary rank 8 - N r ,  as does the dual K ~. Therefore 
Gr can be generated by 8 - X r  elements. If one defines the length of a finite 
abelian group as the minimum number of generators, we have the following 
criterion. 

(2.4) Proposition. Let R be the direct sum of the root laitices of the singular 
fibers of a rational elliptic surface with section. Then there is a totally isotropic 
subgroup H c GR such that the length of H• is at most 8 -- Z r. 

This can be thought of as a refinement of the numerical criterion (1.5): 
if Zr=8,  then we require a totally isotropic subgroup H of GR with H = H  • 
Since I G~I = I H[" [H l[, we see that H 6  = disc(R) = I GRI = [HI  2. 

For  our purposes we will only need to know the discriminant forms for 
the lattices A,. We have that GA~--Z/(n+ 1) 7Z, and q(x)= -nx2/ (2n+2)  m o d Z  
This suffices for the following examples. 

(2.5) Corollary. 
(2.5.1) The root lattice A1 �9 A2 �9 A3 does not embed into Es. 
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(2.5.2) The root lattice A 1 �9 A1 | A 1 @ A4 does not embed into Es. 
(2.5.3) The root lattice A1 �9 A~ | A ~ �9 A2 @ A2 does not embed into Es. 

Proof In each of these cases, the discriminant form group has no nontrivial 
isotropic elements at all! Let us check this for A 2 (~)A2 | A3. The finite group 

G is Z/3Zx2g/3ZxTZ/42g, and q ( amod3 ,  b rood3 ,  c m o d 4 ) = - ~ l ( a Z + b  2) 

3 
. 0  

- -  c 2 rood 2L Since there can be no cancellation between the two terms above 
8 

(the denominators are coprime), for this element (a, b, c) to be isotropic we 
must have a 2 + b 2 - 0 mod 3 and c 2 - 0 mod 8. This forces a = b = c = 0. 

In general, a finite abelian group with quadratic form splits (orthogonally) 
into its p-Sylow subgroups, and no cancellation can occur among the p-Sylow 
subgroups of the groups above, so it suffices to show that there are no isotropic 
elements in the p-Sylow subgroup of the remaining cases. For  A4, the group 
is 7Z,/52g, and the result is almost obvious. For A 2 �9 A2, this is the calculation 
we have done above. Finally, for A I |  we have G-~(;g/22g) 3, with 
q(a,b, c ) = - � 8 8  which is never integral unless a = b = c = O  
rood 2. [] 

The above corollary rules out numbers 68, 69, 76, 79, 80, and 94. The remain- 
ing 7 to be discussed are numbers 46, 67, 73, 82, 86, 92, and 93; not only 
do these pass the discriminant-form test (2.4), but in fact the associated root 
lattice in each of these cases can be embedded into E s. Note that in all but 
the last case ~ 93, we have x = 0 ,  i.e., the ramification of the J-map occurs 
entirely above J = 0 ,  1, and ~ ,  and is completely known. From the general 
theory of branched coverings of IP ~, there must exist three permutations Cro, 
%, and a~,  whose cycle structures are given by the multiplicities of the pre- 
images over 0, 1, and o% and such that their product ~o ~ cr~ = 1 in Sd. More- 
over they must generate a transitive subgroup of Sd. In the first 6 of the remaining 
7 cases, it turns out that no such set of three permutations exist. 

(2.6) Lemma. There are not three permutations in Se satisfying the above conditions 
with cycle structures 

(2.6.1) (22) (22) (13) (here d=4)  
(2.6.2) (123)(23) (32) (here d = 6) 
(2.6.3) (1232) (24) (35) (here d=8)  
(2.6.4) (33) (124) (142) (here d=9)  
(2.6.5) (33) (124) (3 3) (here d=9)  
(2.6.6) (133) (25) (136) (here d= 10). 

Proof It is perhaps easier to prove that three permutations ~, fl, and 7 do 
not exist as above with cG?= 7; letting Cro = c~, al =/3, and a2o I =?  gives the result. 
The easiest by far is (2.6.1); in fact, the elements of $4 with cycle structure 
(22) form a subgroup, so this is impossible. In the above list ~ tends to have 
many 3-cycles, and/3 many 2-cycles. Note the following useful fact: 

(2.7) If a 2-cycle of fl is contained in a 3-cycle of e, the product must have 
a fixed point: (abc) (ab) fixes b. 
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Consider (2.6.2); we may assume c~ = (1) (23) (456). Since 7 has cycle structure 
(32), it has no fixed points, so by (2.7) none of the 2-cycles of fl are contained 
within {4, 5, 6}. Hence neither (12) nor  (13) is a 2-cycle of fl, so we may assume 
that (14) is; by switching 2 and 3 if necessary we may assume that  fl=(14) 
(25) (36). But then ~fl=(1534) (26), with the wrong cycle structure. This proves 
(2.6.2). 

Consider (2.6.3); we may assume :~ = (1) (2) (345) (678). Since :~ and fl generate 
a transitive subgroup of Ss, (12) is not a 2-cycle of fl; hence we may assume 
(13) is. If either (24) or (25) were part  of fl, 7 would have a fixed point by 
(2.7); hence we may assume (26) is. This leaves only 2 possibilities: fl=(13) 
(26) (47) (58) or (13) (26) (48) (57). In the first case c~fl=(1483) (2756) and in 
the second c~fl=(146273) (58), neither of which is correct for 7. 

For  both (2.6.4) and (2.6.5), we may assume c~=(123) (456) (789), and fl fixes 
1. If (23) were part offl ,  then {1, 2, 3} would be left stable by :~ and fi, contradict- 
ing transitivity; we may therefore assume (24) is part  of ft. If (35) is a part 
of fl, then c~fl contains the 3-cycle (25), violating (2.6.4); moreover, this would 
force one of the 2-cycles of fl to come from {7, 8, 9}, giving a fixed point 
to c~fl, violating (2.6.5). Hence (35) cannot be a part of ft. If (36) is a part of 
fl, then ~fl contains the 2-cycle (34), violating both (2.6.4) and (2.6.5). Hence 
we may assume that (37) is a part of ft. This leaves 3 possibilities for fi: fl=(1) 
(24) (37) (56) (89), fl=(1) (24) (37) (58) (69), and fl=(1) (24) (37) (59) (68). In 
the first case the product has two fixed points, so is ruled out. In the second 
case c~fl=(125943867), and in the third case c~fl=(1257) (384) (69), neither of 
which are correct for either of (2.6.4) or (2.6.5). This proves that these two 
cases are impossible. 

Finally consider (2.6.6); we may assume that c~=(0) (123) (456) (789), and 
that (01) is part of ft. By transitivity (23) cannot be a part  of fl, so we may 
assume that  (24) is. If fl contains (35), then ~fl contains (1025), violating (2.6.6). 
If fl contains (36), then :~fl contains (34), also violating (2.6.6). Hence we may 
assume (37) is a part  of ft. Then cr sends 7 to 1 to 0 to 2 to 5 and 4 to 
3 to 8; therefore (438) must be the 3-cycle of 7, i.e., 7 must send 8 to 4, forcing 
fl to send 8 to 6. Therefore (86) is a part of fl, and this determines fl=(01) 
(24) (37)(59) (68); however now ~fi=(10257) (384)(69), which is not the correct 
cycle structure for 7. [] 

Lemma (2.6) serves to rule out +82 ,  +86 ,  4e67, 4e73, ~92 ,  and ~ 4 6  
with (2.6.1)-(2.6.6) respectively. This leaves s tubborn ~ 93. 

The configuration ~ 93 has x = 1, which means that  there is one extra ramifi- 
cation point for the J -map which is not accounted for by the singular fibers. 
This gives the following possibilities for the ramification of the J-map:  

(2.8.1) (324) (25) (133) over 0, 1, and oo 
(2.8.2) (136) (25) (133) over 0, 1 and oo 
(2.8.3) (133) (234) (133) over 0, 1 and oo 
(2.8.4) (133) (25) (133) (182) over 0, 1, 0% and a fourth branch point 2. 

The first can be ruled out most easily: 

(2.9) Lemma.  There are no three permutations in $1o with cycle structure as 
in (2.8.1) whose product is the identity. 

Proof We again use the notat ion used in the proof  of (2.6). We may assume 
~=(0)  (123) (456) (789) and that fl has cycle structure (28). I'll show that  the 
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product 7 cannot  have cycle structure (324). We may assume (01) is a part  
of/~. If (23) is a part  of /3, then 7 sends 3 to 3. Therefore we may assume 
(24) is a par t  of/3.  Then y sends 1 to 0, 0 to 2, and 2 to 5, so that  (1025) 
must be the 4-cycle of 7; in particular, 7 sends 5 to 1, so /3 must send 5 to 
3. Hence (35) is a part  of/3. In this case 7 sends 4 to 3 and 3 to 6, so (436) 
is a part  of 7; hence 7 sends 6 to 6, forcing/3 to fix 6; this is a contradict ion.  [ ]  

We have already seen (2.8.2): this is case (2.6.6) in a different context. Let 
us turn to (2.8.3). 

(2.10) Lemma.  There are not three permutations in $1o with cycle structure as 
in (2.8.3) whose product is the identity. 

Proof Write c~=(0) (I23) (456) (789) as above, and let /3 have cycle structure 
(234). Let us first assume that  0 is a part  of the 4-cycle of /3, which in full 
is (Oabc) for some a, b, and c. Write 6=(0b) ;  since (Oabc)=f(Oa) (bc), we may 
rewrite e/3 as c~6(Oa) (bc) (rest of/3). Reassociating, we see that c~6 must have 
cycle structure (324). If ~/3 had cycle structure (133) as required, then this would 
imply the existence of three permutat ions  with cycle structure as in (2.8.1) whose 
product is the identity, namely ~6, (0a) (bc) (rest of/3), and (c~/3)-1, contradict ing 
Lemma (2.9). We may therefore assume that 0 is not a part  of the 4-cycle of 
/3, and that (01) is part  of/3. 

Note  that (102) must  be a part  of 7, so 7 sends 2 to I, hence /3 sends 2 
to 3. Let us assume first that (23) is a part  of /3. Then 3 is fixed by 7, so 
?, has no other  fixed points;  by (2.7) we may assume (47) is a part  of/3. In 
the 4-cycle of /3, 5 must occur;  assume that  5 is sent to 6. Then 7 sends 7 
to 5 to 4 to 8, a contradict ion.  Assume that  5 is sent to 8 by /3; then 7 must  
contain (759), so 7 sends 9 to 7, so /3 must send 9 to 9, also a contradict ion.  
Hence fl must send 5 to 9, implying that (57) is a par t  of 7; this contradict ion 
shows that (23) cannot  be a part  of fi, and that 2 and 3 occur in the 4-cycle 
of/3. 

Now neither 0, 1, 2, nor  3 can be fixed by 7, so we may assume that 4 
is; hence /3 must  send 4 to 6. If 46 completes the 4-cycle of/3, which would 
then be (2346), then (635) would be part  of 7, so 7 send 5 to 6, and /3 would 
send 5 to 5, a contradict ion.  Therefore  (46) is a 2-cycle of/3.  The remaining 
2-cycle of /3  cannot  have both  elements from {7, 8, 9} by (2.7); hence 5 must  
occur in the 2-cycle, and we can assume it is (57). Then 7 sends 6 to 5 to 
8, and so must send 8 to 6; hence/3 must  send 8 to 4, a contradict ion.  [ ]  

This leaves us with the case (2.8.4). Assume that there exists 4 permutat ions  
as in (2.8.4) whose product  is 1. Let F be the 2-cycle, and let ~r be the permuta t ion  
with cycle structure (25). The product  6a  either has cycle structure (1224) (if 

is part  of ~) or (234) (if not). The second case cannot  happen, by the previous 
lemma. Therefore  we need only deal with the following case: 

(2.11) Lemma.  The only 3 permutations in Slo with cycle structures (133), (1224), 
and (133 ) whose product is the identity is 

[(0) (123) (456) (789)]-[(1)(4) (25) (36) (07)(89)]-[(162) (354) (078)(9)] = 1, 

up to conjugacy. 
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Proof Again we will let c~ and 7 have cycle structure (13a),/3 have cycle structure 
(1224), and prove that  e / ?=7  implies the above for c~, /~, and 7 - I .  We may 
assume as usual that  c~=(0) (123) (456) (789). 

Assume that 0 is fixed by /3, so that 0 is the fixed point  of 7. Another  
must also be fixed by/~, and we can assume that it is 1; by (2.7), (23) cannot 
be part  of fl, so we may assume that  (24) is. Then 7 sends 1 to 2 to 5, and 
so sends 5 to 1; hence /3 must  send 5 to 3, so that (35) is part  of tq. Then 
7 sends 4 to 3 to 6, and so 6 to 4, forcing /~ to fix 6, a contradict ion.  Hence 
0 is not fixed by/ / ,  and we may  assume 1 is. 

If the other  fixed point of /3  is 2, then (123) is a part  of 7, so 3 must  be 
fixed by /~; if the other  fixed point  o f /3  is 3, then (312) is part  of 7, and 2 
must be fixed by /~. Either way we have a contradict ion,  so we may assume 
that the other  fixed point  of/3 is 4. 

Where is 0 sent to by /~? If (02) is in /3, then (120) is in 7, so (03) is in 
7; if (03) is in /3, then (3012 ...) is part  of 7- Similar contradict ions occur if 
(05) or (06) are in/L Hence we may assume (07) is in/?. 

Where is 2 sent by /3? If (23) is in /~, then (12) is in 7. If (26) is in /~, then 
7 contains (1245 ...). If (28) is in /?, then (129) is in 7, so (39) is in /~, forcing 
(0837) in 7. If (29) is in /~, then (12708 ...) is in 7. This leaves only (25) as 
a possibility. 

So far /~=(1) (4) (07) (25) (...) (...), and so 7 is now determined:  7=(126) 
(453) (708) (9). This forces the rest of/3 to be (36) (89), giving the result above. [] 

This finally serves to rule out case (2.8.4), and 4t- 93. The four permutat ions 
in this case must be [(0) (123) (456) (789)], [(14) (25) (36) (07) (89)], [(14)], 
and [(162) (354) (078) (9)], up to conjugacy, by Lemma (2.11). In this case {0, 
7, 8, 9} is left stable by each of these, so the subgroup generated by them 
is not  transitive. 

3. The sufficiency of the existence of the J-map 

The last several cases considered in the previous section were ruled out  essentially 
because the J -map  from the base curve IP 1 to the moduli  space IP 1 could not 
exist. In this section I will indicate that  a converse to the arguments  used above 
exists: if one can construct  an appropria te  J -map,  then a rat ional elliptic surface 
with the prescribed singular fibers exists. 

What  does an " app rop r i a t e "  J -map  mean?  One can take a hint from the 
'm '  co lumn of Table (1.1). Suppose a list of singular fibers is given, and the 
task is to construct  a rat ional  elliptic surface with exactly those singular fibers. 
Assume that  the list of fibers satisfies the various numerical  criteria of Sect. 1. 
Let d=degree ( J ) ,  which is computed  using (1.7). Let us say that a map J :  p1 
-~ IF' 1 belongs to the list of singular fibers if the multiplicities over  0, 1, and 

are as follows: 

over 0: (ii + iv*) points of multiplicity 1, 
(iv + ii*) points of multiplicity 2, and 
(d - i i - i v* - 2 i v - 2 i i*)/3 points of multiplicity 3; 

over 1 : ( i i i+  iii*) points of multiplicity 1, and 
( d -  i i i -  iii*)/2 points of multiplicity 2; 

over oo : (i, + i*) points of multiplicity n(n >= 1). 
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The construct ion of the surface proceeds in two steps. First, we pull back 
via an appropr ia te  J -map  one of the surfaces with J - - t h e  identity. Second, 
we "twist"  extraneous fibers away. Let us describe these steps in turn. 

The rational elliptic surface with Weierstrass equat ion 

(3.1) y2 = x 3 _ 3 t ( t -  1) s x + 2 t ( t -  1) s 

has J =  t, and has exactly three singular fibers: a fiber of  type II over t = 0 ,  
a fiber of type III* over t = 1, and a fiber of type 11 over t = ~ .  U p o n  a base 
change from this surface, one will have singular fibers over the points going 
to 0, 1, and ~ ,  and the types of the singular fibers are determined merely 
by the multiplicity of the base change map at these points. In particular, we 
have the following (see [MP,  Table (7.1)): 

(3.2) over a point  above 0: 

i f m = l :  I I ; i fm=2: IV;ifm=3: I* 
over a point  above 1 : 

i f m = l "  III*; i fm=2: I* 
over a point  above ~ : 

I,, if multiplicity m. 

After the pull-back, one makes a " twis t"  of the resulting surface to adjust 
the fibers of type IV*, III*, II*, and l*. There are really two processes going 
on here. One was described earlier in the discussion of # 56; it will be referred 
to as "transfer  of *". Assume that the surface is given in Weierstrass form 
as yZ=x3+Ax+B,  where A and B are forms in s and t. Suppose that s 2 divides 
A and s 3 divides B, but either t 2 does not divide A or t 3 does not divide 
B. Then over s = 0 there is a singular fiber of the surface, of type I*, II*, III*, 
or IV*, and over t = 0  there is a fiber of type Ira, II, III, or IV. The "transfer  
of *" is effected by replacing A by t 2 A / s  2 and B by t 3 B/s 3. After making this 
replacement, over s = 0  there is a singular fiber of type I,, II, III, or IV, and 
over t = 0  there is a fiber of type I*, II*, III*, or IV*; all other singular fibers 
remain the same, and the J - m a p  of  the surface is unaffected. One can be more  
precise: the fibers are switched according to the following schedule: 

(3.3) I ,  ~-~ I,* (n > O) 

II . - . IV* 

III't--HlI* 

IV~--,II* 

Note that  "transfer  of *" preserves the number  of " * "  fibers, and keeps 
the pg of the surface invariant. The second process, which will be called "deflation 
of *'s", s imultaneously "deflates" two " * "  fibers as in (3.3), and so the number  
of these drops by two; the p~ drops by 1. Suppose that over t = 0  and over 
s - 0  we have " *"  fibers; then in the Weierstrass equation, sa t  2 divides A and 
~3ta divides B. Replace A by A / s  2 t 2 and B by B/s 3 t3; this deflates the fibers 
over s = 0  and t = 0  as in (3.3) (the fiber on the right is replaced by that  on 
the left). All other singular fibers are unaffected, and the J - m a p  remains the 
same. 
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The  main  result for construct ing surfaces with prescribed singular fibers can 
now be stated. 

(3.4) Proposition. Suppose that a list of singular fibers for the rational elliptic 
surface is given, satisfying the numerical criteria of Sect. 1, with d = degree(J)+O. 
Suppose further that a map J: lP 1 ---, IP 1 exists, which belong to the list of singular 
fibers. Then a rational elliptic surface with section can be constructed with exactly 
the singular fibers of the list, by first pulling back the surface given by (3.1) 
via J, then by applying a suitable number of "'deflation of * 's ", and finally by 
applying at most one "transfer of * ". 

Proof. Write d = ~ n (i, + i*) 
=ii+ 2iv+iv* + 2ii* + 3a 
=i i i+i i i*  + 2b. 

Let Y be the pul lback of the surface (3.1) via the J - m a p  which belongs to 
the given list of singular fibers. By (3.2), we have the following singular fibers 
on Y: 

over  the points  over  J = 0 :  

(i i + i v*) fibers of  type II 

(i v + i i*) fibers of  type ! V 

a fibers of type I* ;  

over  points  over  J = 1 : 

(ii i + i i i*) fibers of  type III* 

b fibers of type I*;  

over  points  over  J = 0o : 

(i, + i*) fibers of type 1, (n > 1). 

The  total  n u m b e r  o f " * "  fibers here is (a+b+ii i+i i i*) .  Let e be the number  
of " * "  fibers in the given list; e = 0  or 1. Then by (1.3) we have 2(ii+i- 
v* )+3( i i i+ i i i* )+4( iv+i i* )+6e+d= 12. Therefore  

(a+b+i i i+i i i* )  

= ( ( 1 2 - 2  (ii + i v* ) -  3(iii+ i i i* ) -  4(iv + i i * ) -  6e) - i i -  iv* - 2 i v  - 2 ii*)/3 

+((12-  2(ii + iv*) -  3(iii + i i i * ) -4 ( i v+  i i * ) - 6 e ) - i i i - i i i * ) / 2  + iii + iii* 

= l O - 5 e - 2 ( i i + i v * ) - 2 ( i i i + i i i * ) - 4 ( i v + i i * )  

which is even if e = 0  and odd if e = 1. Therefore,  after a suitable number  of 
"deflat ion of *'s", we can ar range exactly e " * "  fibers. If e = 0  we are done. 
If e =  1, then after one " t ransfer  of  *"  operat ion,  we arrive at a surface with 
the prescribed singular fibers. 

This surface has the correct  fiber types to be our  desired rat ional  elliptic 
surface, and the only point  left to check is that  it is indeed rational,  and not 
Enriques (which is the only other  serious possibility. However  our  surface has 
a section, which an Enriques surface does not ;  this section is pulled back from 
the section of  the surface given by (3.1), and bo th  the " t ransfer  of *"  and "defla- 
t ion of *" opera t ions  preserve the existence of  this section. [ ]  
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The above Proposition reduces the construction of an elliptic surface with 
prescribed singular fibers to the construction of an appropriate J-map. Suppose 
first that we have a list of singular fibers with x = 0, so that if the J-map exists, 
it is ramified only over 0, 1, and oo, and the ramification is determined. Then 
the existence of the J-map is equivalent to the existence of the three permutations 
~0, el,  and ao~ in Sd, with the appropriate cycle structure, generating a transitive 
subgroup of Sd, whose product is the identity. Therefore: 

(3.5) Corollary. Suppose a list of singular fibers is given with d > 1 and x =0, 
satisfying the numerical criteria of Sect. 1. Then a rational elliptic surface with 
those singular fibers exist if and only if there are three permutations ~o, ~rl, 
and a~ in Sd satisfying the following conditions" 
(3.5.1) the cycle structure of ao is: 

(i i + i v*) 1-cycles 
(i v + i i*) 2-cycles 
( d - i i - i v * -  2 i v - 2 i i * ) / 3  3-cycles; 

(3.5.2) the cycle structure of al is: 
(iii + iii*) 1-cycles 
( d -  i i i -  iii*)/2 2-cycles; 

(3.5.3) the cycle structure of cr~ is: 
(i, + i*) n-cycles, for each n > 1 ; 

(3.5.4) ~o trl ~ = t h e  identity in Sd; 
(3.5.5) the subgroup of Se generated by {or o ~rl, cry} is transitive. 

It is by exhibiting the three permutations that the existence of the rational 
elliptic surfaces with x - -0  will be demonstrated. 

I claim that examples of rational elliptic surfaces with configurations of 
singular fibers with x >  1 can be constructed by suitably deforming the J-map 
of a surface with x = 0, and in fact all configurations which occur can be found 
this way. The basic observation is the identity 

(1, 2 . . . . .  n) = (1, 2 . . . . .  k) (k+ 1, k + 2  . . . . .  n) (k, n). 

Suppose a J-map exists which belongs to a configuration of singular fibers. 
This J-map may be ramified over 0, 1, and oo, and possibly elsewhere. Therefore 
we have permutations ao, cry, a~,  etc., satisfying the conditions of (3.5) (general- 
ized to more than three permutations). Suppose that an n-cycle occurs in one 
of the permutations. Then, by using the above identity, this n-cycle can be 
replaced by a product of a k-cycle and an (n-k)-cycle in the given permutation, 
at the cost of introducing an extra permutation which is a transposition. This 
new set of permutations can then be used to construct a J-map, which belongs 
to an altered list of singular fibers. Using this method, one sees immediately 
that certain singular fibers can be "deformed" into two singular fibers, leaving 
all others alone. The resulting fibers are given in the following table. 

Table (3.6) 

Fiber Deforms into 

In Ik + In_k, l <_k<_n--1 
I* l l  + IV if over J=0 
I* III + III if over J = 1 
IV II+II 
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Note that I ,  cannot deform to Ik+I*_ k, since the total Euler number must 
be preserved. 

These techniques suffice to demonstrate the existence of rational elliptic sur- 
faces with every possible configuration of singular fibers; there are exactly 279 
configurations which exist. These are listed in the next section, together with 
the permutations if x - -0  which "construct"  the J-map belonging to the list 
of singular fibers. 

4. The configurations of singular fibers which exist 

Using the techniques described in the previous section, it is natural for us to 
stratify the 279 possible configurations by the degree of the J-map. 

In the special case of d=0 ,  there are almost no restrictions, except for of 
course (I.3) and (1.8). Furthermore, all of these can be easily constructed simply 
by writing down the Weierstrass equations; see for example [MP] for more 
details. 

Degree (J) = 0 

I* I V I I ; I I *  I I ; I V *  IV  

I* I I I  I I I ;  III* I I I  

I* II  I I  II;  IV* II  I I  

Io Io 
I V I V I V  

I V I V I I  II  

I V I I  I I  II  II  

I I I  I I I  I I I  I I I  
I I  I I  I I  II  II II  

The ones on the same line are "twists" of each other; they can be obtained 
one from the other by the "transfer of *" process. 

Degree (J)= 1 

I* I I I  II  11 ; III* II  11 ; IV* I I I  11 ; I~ t t t  I t  

In every case above the J-map is the identity. 
In the cases where the degree is 2 or more, I will employ a slight abbreviation 

for the configurations of singular fibers. A "* "  will denote I*; "n"  will denote 
I,: II,  III, and IV  will still be used for these. Exponents will be used to indicate 
repetition. The other "*"  fibers will not be listed as such; all can be twisted, 
via the "transfer of *" process, to a configuration with only I*. For  example, 
the notation "* I I22"  stands for all three configurations I* I I  I I  12, IV* II 
Iz, and I* I I  II. As another example, the four configurations given above with 
degree(J)= 1 can be denoted by " * H  I I I  1". 
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In what follows, the configurations with x = 0 will have printed next to them 
the cycle structure of ~'o, or1, and a~ ;  following that, the three permutat ions  
in Sa whose product  is the identity will be given. The configurations with x > 1 
will simply be listed; we will leave it to the reader to check that  each one 
can be obtained from an existing configuration with one less x using a "deforma-  
tion" indicated in Table (3.6). With the new notation, these deformations are 
realized as follows. A " * "  can be replaced by II IV if the I* can exist over 
J = 0 ;  a " * "  can be replaced by III 2 if the I* can exist over J = l ;  a IV can 
be replaced by 1t2; an " n "  can be replaced by " 'k(n-k)"  for any k between 
1 and n -  1. 

Degree(J)=2 

x = O :  
*IV12: (2) (2) (12). [ (12)] . [ (12)] . [ (1)(1)]  

"1122: (12)(2)(2). [ (1)(1)]- [ (12)] . [ (12)]  

IVIII22: (2)(t 1)(2). [(12)].  [(1)(1)].  [(12)] 
x =  1: "1I 212;IVIII  212;III2II22. 
x = 2 : I I I 2 I I 2 1 2 .  

Degree(J)=3 

x=O:  

*11121: (3)(12)(12). [ (123)] . [ (1)(23)] . [ (3)(12)]  

t VI I I  II  3 : (12) (12) (3). [(1) (23)]. [(2) (13)]- [(132)] 

11133: (3)(111)(3). [ (123)] . [ (1)(2)(3)] . [ (132)]  

x = l :  *I I I13 ; IVI I I I I21 ; I I I I I33 ; I I I321 .  
x =2 :  I V I I I  II 13; 111313; III 11321. 

x = 3 : 1 1 1 1 1 3 1 3  . 

Degree(J)=4 

x--O: 
* I I31 :  (13)(22)(13). [(1) (234)] �9 [(12) (34)] �9 [(4) (123)] 
I V II 24:(112) (22) (4). [(1) (2) (34)]- [(13) (24)]- [(1324)] 
1112 II 4: (13)(112) (4). [(1)(234)].  [(2)(3) (14)]-[(1432)] 
I V 222 :(22) (22) (22). [(12) (34)]. [(13) (24)]-[(14) (23)] 
x =  1: *II 212; 1144; IV1212; IVII231; IVII222; 111211 31;111211 2 2. 

x =2 :  *II 14; I V  2 14; IVII2212; 11431; III2II 212; 11422. 
x = 3 :  I V I I  214; 111211 14; 114212 . 
x = 4 : 1 1 4 1 4 .  
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Degree(J)= 5 

x=0 :  
I I I I I 2 5 :  (113)(122)(5). [(1)(2)(345)].[(3)(14)(25)].[(14325)] 
I V I I 1 4 1 :  (23)(122)(14). [(12)(345)]-[(1) (34)(25)]-[(4)(2153)] 
I V I I I  32: (23)(122) (23). [(12)(345)]. [(3) (14)(25)]-[(15) (243)] 
x = 1 : I I I  II241 ; I V  I I I  312 ; I V I I I  221 ; 111 11232. 

x =  2: I V I I I  213; I I I  II  2312; I I I  112221. 

x=3 :  I V I I I  15;111112213 . 

x=4:11111215 . 

Degree(J)=6 

x =0:  
"412: (33)(222)(114). [(123)(456)]-[(13)(25)(46)]'[(1)(4)(2356)] 
*23: (33)(222)(222). [(123)(456)]-[(14)(26)(35)]'[(15)(24)(36)] 
I13 6:(1113){222) (6). [(1) (3) (5) (246)] �9 [(16) (23)(45)]- [(165432)] 
I V I I  51: (123)(222)(15). [(1)(23)(456)]. [(12)(34) (56)]" [(6)(12453)] 
l I I  2 51: (33)(1122) (15). [(123) (456)]. [(5) (6) (13) (24)]- [(1) (23465)] 
I V I 1 4 2 :  (123)(222)(24). [(1)(23) (456)]. [(14)(25) (36)]-[(26)(1435)] 
I I I242:  (33)(1122)(24). [(123)(456)]. [(1) (4)(26) (35)]' [(36)(1542)] 
111232: (33) (1122) (33). [(123)(456)]- [(1) (4) (25) (36)] �9 [(162) (354)] 
x = l :  " 3 1 3 ; ' 2 2 1 2 ; 1 1 3 5 1 ; I V I I 4 1 2 ; I I I 2 4 1 2 ;  

1I 342; I V I1 321 ; I V  I I  2 a ; 1I 332 ; I I I  2 321 ; I I I  2 23. 
x = 2 :  *214; I13412;1VI I  3 1 3 ; I V I I 2 2 1 2 ;  

1112313; 113321; 111222 12; 11323 . 
x = 3: "16; I V I 1  214; I13 313; 1112 214; I I  3 2 2 12. 

x = 4 :  I V I I  16; 111216; 113214 . 
x = 5 : 1 1 3 1 6 .  

Degree(J )=7 

x--O: 
I I I  II  61 : (133) (1222) (16). [(1) (234) (567)]. [(2) (13) (45) (67)]. [(7) (132564)] 
I I I  I I  52: (133) (1222) (25). [(1) (234) (567)]. [(2) (15) (46) (37)]. [(47) (26153)] 
I I I  I I  43: (133) (1222) (34). [(1) (234) (567)]. [(2) (15)(36) (47)]. [(273) (1546)] 
x = 1 : I I I  I I  512; I I I  I I  421 ; I I I  II  321 ; I I I  I I  322. 
x = 2: I I I  I I  413; I I I  I I  3212; I I I  II  231. 
x--- 3: I I I  I I  31'*; I I I  I I  2213. 
x = 4 : I I I I I 2 1  s 

x = 5 : I I I I I 1  v. 
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Degree(J)=8 

x=O: 
II 271:(1133) (2222) (17). 

[(1) (2) (345) (678)]. [(17) (28) (35) (46)]- [(3)(1745628)] 
IV612: (233) (2222) (116). 

[(12) (345)(678)]. [(13)(26)(45)(78)]. [(5) (8)(167234)] 
II262:(1133) (2222) (26). 

[(1) (2) (345) (678)]- [(13) (26) (48) (57)]. [(58) (137264)] 
IV521: (233)(2222)(125). 

[(12) (345)(678)]. [(13)(24)(56)(78)3. I-(8) (14)(23675)] 
II242:(1133) (2222)(44). 

[(1) (2)(345)(678)]. [(13)(26)(47)(58)]. [(8413)(5726)] 
IV322: (233)(2222)(233). 

[(12) (345) (678)]- [(13)(26) (48)(57)]. [-(58) (164) (237)] 
x = l :  I I2612;IV513;I IZ521;IV4212;I I2431;  

112422; IV32 12; IV3221;II2322.  

x=2:112 513; IV414; 112421; IV3213; IV2312; II 2 3212; II z 3221 ; 11224. 

x=3:  112414; IV315; IV22 14; II23213; 11223 12 
x=4:  IV216;II2315;II22214.  

x=5:IV18;II2216.  
x=6:11218. 

Degree(J)=9 

x=O: 
I I I  712: (333)(12222)(117). 

[(123) (456) (789)]. [(1)(24)(37) (56)(89)] 
111 621: (333) (12222) (126). 

[(123) (456) (789)]. [(1) (24)(36)(57) (89)] 
111 531 : (333) (12222) (135). 

[(123) (456) (789)]-[(1)(24) (35)(67) (89)] 
I I I  432: (333) (12222) (234). 

[(123) (456)(789)]. [(1)(24)(37) (59)(68)]. [(69)(348)(1752)] 
x = 1 : l l I  613; I I I  5212; I I I  4312; l l1422 1; I I I  32 21; I I I  323. 
x =2: I I I  514; I I I  4213; I I I  32 13; I I I  322 12; I I I  241. 

x=3:1I I418; I I I3214; I I I2313 
x=4:111316;1112215 
x=5:111213 . 

x=6:  I I I  19. 

[(6) (9)(1783452)] 

[(9) (34)(167852)3 

[(9) (152)(34786)] 
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Degree(J)=lO 

x=0:  
II 81 z 

[(0) 
11721 

[(0) 
II 541 

: (1333) (22222) (118). 
(123) (456)(789)]. [(13)(46)(27)(80)(59)]. [(l)(4)(23756908)] 
: (1333)(22222) (127). 
(123) (456)(789)]. [(13)(24)(57) (69)(80)]. [(1)(67)(2349085)] 
: (1333)(22222) (145). 

[(0) (123)(456)(789)]-[(01) (24)(35) (67)(89)]-[(9)(0152)(34786)] 
II  532: (1333)(22222) (235). 

[(0) (123)(456)(789)]. [(01) (24) (37)(59)(68)]. [(69)(348)(01752)] 
x = l :  I I712; I I6212; I15312; I I5211; I I4212; I I4321; I I3222 .  

x= 2: II 614; 
x=3:  II515; 

x=4: II  416; 
x=5:  II317; 
x=6:  II 218. 
x= 7: II  11~ 

II 5213;II4313;II42212;II 32212;II323 1. 
II  4214; II 3214; II  322 13; II  2412. 

II 3215;II2314 . 
II 2 z 16. 

Degree (J) = 12 

X=0: 
913: (3333) (222222) (1119). 
[(123) (456) (789) (a b c))]. [(13) (2 a) (46) (5 b) (79) (8 c)]- [(1) (4) (7) (23 a 89 e 56 b)] 
8212 : (3333) (222222) (1128). 

[(123) (456) (789) (a b c)]. [(13) (46) (27) (5 a) (8 c) (9 b)]. [(1) (4) (9 c) (237 b 56 a 8)] 
6321: (3333)(222222)(1236). 

[(123) (456)(789)(abc)]. [(13)(24)(57) (6a)(8c)(9 b)]. [(1)(9e)(67b) (234a 85)] 
52 lZ: (3333) (222222) (1155). 

[(123) (456)(789) (abe)]. [(13)(46)(27)(Sa) (9b)(5 c)]. [(1)(4) (37b 82)(6c9a5)] 
42 22: (3333) (222222) (2244). 

[(123) (456)(789) (abe)]. [(14)(26)(37)(5 a) (9b)(8 c)]. [(24)'(9 c)(17b 5) (36a 8)] 
34: (3333)(222222)(3333). 

[(123) (456)(789)(a b c)]. [(14)(27) (68)(3 a) (9 b)(5 c)]-[(1 a 5) (248)(37 b)(6 c 9)] 
x = l :  814; 7213; 6313; 62212; 5413; 53212; 42212; 43221 ; 424; 3321. 
x=2:715;6214;5314;52213;4214;43213;42312;3313;322212;3241;26. 
x=3:  6t6; 5215;4315;42214; 32214; 32313; 2512. 
x=4:517;4216;3216;32215;2414. 
x=5:418;3217;2316 . 
x=6:319;2218 . 
x=7:211~ 
x = 8 : 1  t2. 
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