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1. Introduction. In this paper we will prove a theorem (stated at the end of
this introduction) describing the rank of the Wahl map of a general curve of large
genus. We begin here by describing this map and some aspects of its significance.

To begin with, consider a smooth curve C, a line bundle L on G, and a linear
system ¥V C HY(C, L). Given a section 6 € V of L, we can try to define a
“differential” do of ¢, which will be a section of the tensor product K ® L of the
canonical bundle X = K. with L, by choosing a trivializing section o, of C,
writing o locally as

o(z) = f(z) - o

and setting
do = df ® a,.

This clearly doesn’t work: if 7, is another trivializing section on L, with
0y(z) = g(z) - 7, we would have

a(z) = f(2) - g(2) - %,
so that the “differential” would be
do=(f-dg+g-df)®1,=df® oy + f-dg ® 1y,

i.e., it would differ from the earlier differential do by the addition of f- dg ® 7,.
The expression do is thus only well defined at the points where o is zero!
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830 CILIBERTO, HARRIS, AND MIRANDA

This, however, also suggests a way to obtain a well-defined map, albeit not
between the same spaces. The key observation here is that the difference between
the two differentials we obtain above in terms of the two trivializations of L is
linear in o¢. This means that, given a pair of section o, 7 € V, the difference

W, (6,7) =do®T1—dr®g

will be a well-defined section of the tensor product K ® L2, independent of the
choice of local coordinate. Since W, is obviously skew-symmetric in o and 7, we
thus have a natural map

W,: A% - H(C, K ® L?).

By way of notation, we will denote by W, the map associated to the complete
linear series V' = H(C, L).
There are a number of alternative ways of viewing this map. One is to write

W, (o A7)=d(o/7) ® 72,

where o/7 is interpreted as a meromorphic function. From this we obtain the

description of W, as the map that associates to a decomposable tensor ¢ A 7 in

A%V the ramification points of the pencil spanned by o and T (whenever ¢ and 7

have no common zeroes); since the decomposable tensors form a copy of the

Grassmannian G(2, V) € P(A?V), which spans P(A%V), this characterizes W,,.
Another way of expressing this last is in terms of the map

$y: C = P(V¥)
associated to the linear series V, and its first associated map. This is the map
oP: C - G(2,V*) c P(A?V*)

that sends a point p € C to the tangent line to the image curve ¢(C) at the
point ¢( p), viewed as a point in the Grassmannian G(2, V'*), which is in turn
mapped by its Pliicker embedding to P = P(A2V*). Now, the pull-back to C of
the line bundle Op(1) on P is the line bundle K ® L?, and the corresponding
pull-back map on sections

H°(P, 0p(1)) = A% -» H°(C,K ® L?)

is just the map W,, above.

The image of W, is called in this context the first associated linear series of V
and is denoted by ¥ ®. Observe in particular that if L is sufficiently special, then
just by comparing dimensions we see that this map cannot be surjective; indeed,
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it’s not immediately clear when a sublinear series of a complete linear series
H®(C, M) is of the form V'® for some other series V. On the other hand, we will
also see below that when the degree of L is large enough compared to the genus,
the first associated series of the complete series H°(C, L) will be complete.

Another way to view the map W, is via a generalization of it. Specifically,
suppose that L and M are any line bundles on the curve C, V ¢ H%(C, L) and
V' € H%C, M) two linear series, and denote by #(V, V") the kernel of the
multiplication map

Ve Vv - H(C,Le M).

We then have a map
W, ,.: 2(V,V') > H(C,L® M ® K)
obtained by setting

WV,V'(Z".' ® "'i) = Z("i ® dr,— do; ® "'i)a

where the sections do; and dr; are defined locally as above; as before, we can
check that this is well defined. (In case V = H(C, L) and V' = H%(C, M), we
will write Z(L, M) for Z(V,V") and W, ,, for W, ,..) Now, in the special case
where L = M and V = V', we can describe 2(V, V’) in terms of the decomposi-
tion of V' ® V into alternating and symmetric parts: we have

2(V,V) = AV @1,

where [, is the degree 2 part of the ideal of the image ¢, (C) € PV* of the curve
C under the map associated to the linear series ¥, viewed as a subspace of
Symm?(V) € V ® V. It’s clear now that the map W,, ,, is identically zero on [,
and is the map W,, above on A?V.

The more general map W), ,, can be interpreted as given by a restriction of line
bundles on the product C X C. Specifically, let =, m,; C X C = C be the
projection maps, set

N=ma*L ® m,*M,
and consider the restriction

N-N®O,=Le M.

The corresponding map on global sections is just the multiplication map
H(C, L) ® H(C, M) > H%C, L ® M) above; so we can make the identifi-
cation

Z(L,M) = H°(Cx C,N(-4)).
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Now, the restriction map
N(-A) > N(-A)® 0, =L®M®K,
likewise induces a map on global sections
A(L,M) > H*(C,L® M ® K.);

and this is the map W, ,, above.

As one consequence of the last description of the map W, ,,, we see that the
map W, associated to a complete linear series V = H°(C, L) will be surjective
whenever

HYC x C, N(-24)) = 0.

This immediately implies the statement above, that the map W, will be surjective
whenever the degree of the series is sufficiently large compared to the genus.
Indeed, we can see that this will be the case whenever d = deg(L) > 4g + 6 (see
the appendix); we do not know what the best possible estimate is.

One further general observation about the map W, is that its definition may
be readily extended to singular curves C, as long as we replace the canonical
bundle K. by the sheaf QL of Kihler differentials on C (although L has to
remain invertible).

Clearly, the behavior of the map W,, depends very much on the linear series V'
as well as on the geometry of the curve C. However, if we take V' to be the
complete canonical series, we arrive at a map

W: A’H(C,K) - H°(C, K?)

that depends only on the curve C, and on no further choices; it is this map that
we shall call the Wahl map of C. Obviously, any invariant of this map is an
invariant of C; in particular, the rank of the Wahl map is a basic numerical
invariant of C itself.

What geometric interpretation may be given to this rank? A more detailed
discussion is to be found in [W], but we will mention just one fact here: If the
curve C may be embedded on a K — 3 surface, the Wahl map of C cannot be
surjective (see also [BM]). Note that this ties in nicely with naive dimension
counts: on the one hand, the moduli of pairs (C, S), with C a smooth curve of
genus g and S a K — 3 surface, have dimension 19 + g, so that the general curve
C might a priori appear on a K — 3 surface only when 19 + g > 3g — 3, i.e.,
when g < 11; on the other hand, the Wahl map can be surjective only when
g(g—1)/2 > 5g — 5, ie., when g > 10. In fact, it is the case ((MM], [Mu]) that
a general curve of genus g may be realized as the hyperplane section of a K — 3
surface if and only if g < 9 or g = 11.
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The main result of this paper is to describe the behavior of the Wahl map on a
general curve. Specifically, we shall prove the

THEOREM. If C is a general curve of genus g > 10 with g # 11, then the Wahl
map for C is surjective.

This, in conjunction with the result of Mori and Mukai [MM] in the case genus
11, settles the surjectivity of the Wahl map for a general curve of any genus.
Clearly it raises further questions: What can we say about the stratification of the
moduli space #, given by the rank of the Wahl map? In particular, is it the case
that the closure of any of these strata—for example, the locus of curves whose
Wahl map fails to be surjective—actually coincides with the closure of the locus
of curves embeddable in K — 3 surfaces?

A word about technique. As is often the case when a theorem is to be proved
about the geometry of the general curve of a given genus, the basic technique
used in this paper is degeneration to a singular (but still stable) curve. On a
family of curves specializing to a stable curve, the canonical bundle of the general
fiber specializes to the dualizing sheaf w of the special fiber, and the Wahl map of
the general fiber C likewise specializes to what we may call the Wahl map of the
special fiber X:

W: APHO(X, wy) = HO(X, Q% ® ).

The surjectivity of W is a Zariski open condition on the moduli space of stable
curves; thus, to prove the theorem above it is sufficient to exhibit a single stable
curve of genus g for which the map W is surjective. One novelty about the
present circumstance, however, is this: while it is often useful in other contexts to
look at specializations to curves of compact type—that is, curves in the comple-
ment of A, in A > OF, equivalently, curves all of whose nodes are disconnecting
—we see here that if the curve X possesses any disconnecting nodes at all, then the
Wahl map of X cannot be surjective. Instead, for our present purposes, we want to
look at stable curves with a maximum number 3g — 3 of nodes, none of which
are disconnecting. Such curves will consist of a configuration of 2g — 2 copies of
P1, each of which will meet the others at exactly three nodes, and so will be
completely determined by its dual graph (which will be trivalent and at least
2-connected); they are correspondingly called graph curves and are the subject of
a monograph by Bayer and Eisenbud [BE]. There are finitely many graph curves
of each genus (the exact number is not known), which behave differently in many
respects. In particular, it is not the case for any g that the Wahl map is surjective
for all graph curves of genus g; the ones we use here were suggested by Eisenbud.

The authors would like to express their gratitude to the National Science
Foundation and to the Consiglio Nazionale dell Ricerche, whose support made it
possible for them to meet, talk (both among themselves and with Jonathan
Wahl), and carry out the work described here.
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2. The graph curve X, ,. Fix a genus g and let n =g — 1. Choose p €
{2,..., n — 1} relatively prime to n, and let g € {2,..., n — 1} be the inverse of
p mod n, ie., pg =1 (mod n).

Define a graph G, , with 2n vertices (ay,...,a,, by,..., b,} whose edges
connect the vertices as follows:

2.1) a, is connected t0 @, 1(mod ») fOT €very i,
b; is connected t0 b; , 1(moq »y fOr every j, and
a, is connected to b, o4 »y fOT every k.
Hence b; is connected tO a ,jmoq ) fOT €Very j, also.

The graph G, , is trivalent and 3-connected as long as g > 3.

Let X, , = X(G,,,) be the associated “graph curve” [BE]; X, , consists of 2n
smooth rational components (A4,,..., 4,, By,..., B,} having dual graph G, "
i.e., each vertex a; (respectively b;) corresponds to the component A; (respec-
tively B)) = P!, and the nodes of X, »» Where two distinct components meet
transversely, are determined by the edges of G, ,. For g > 4, X, , is a stable
curve of genus g whose canonical map embeds X, , into P&~1, with the
components of X, , going to straight lines [BE].

Let us label the nodes of X, , as follows: Define
P,=4,N Ai+1(modn)’
Q;=B;N B;,1moany, and
Ry = A; 0 Byymod ny»

for every i, j, and k. We will from now on drop the modn from the subscripts of
the components 4; and B, and the nodes P, 0, and R,.

3. Sections of the dualizing sheaf on X, ,. Let X = X, , and denote by wy
the dualizing sheaf of X. A section w of wy, over X is determined by its
restrictions «|,, and «|, which are meromorphic 1-forms subject to the follow-
ing conditions:

(3.1.1) w4, ar‘Id w|p, have only simple poles at the nodes of A; and B,
respectively, and no other poles;

(3.1.2) l‘CSp,_l(wlA,.) + TCSR,.(“’|A,-) + resP,-("-’|A,) =0;
(3.1.3) rest_l(wIBj) + requj(wlgj) + rest(wlBj) =0;
(3.1.4) resp(wly,) + resp (wl,y,,) = 0
(3.1.5) rest(wlgj) + fCSQ,(‘*’|B,-+.) =0;

(3.1.6) resg,(@]y,) + resg,(@l5,) = 0.
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(3.1.1) is from the definition of wy, (3.1.2) and (3.1.3) are the “sum of the
residues = 0” condition on each restricted 1-form, and (3.1.4)—(3.1.6) are the
compatibility conditions at the nodes of X.

Conversely, given the restricted 1-forms w|, and ‘*’|B, for every i and j,
satisfying (3.1.1)—(3.1.6), there is a unique section w of w, over X with those
restrictions to each component of X [BE].

Fix three distinct points x;, x,, and x; on P!. Given any three complex
numbers r,, r,, and r;, with r;, + r, + r; = 0, there is a unique meromorphic
1-form « on P! whose only poles are at x;, x,, and x;, such that these poles are
simple, and such that res, (w) = r; for each i. Since each component of X has
exactly three nodes on it, a global section of w, is determined by the 6n residues

resp (@], ) resg (@], ), resp(w|,), forevery i, and

resy (@) 1esg (@|p),1e80 (w|p), forevery j,

subject to the conditions (3.1.2)—(3.1.6). The reader can check that these equa-
tions impose 5n — 1 linearly independent conditions on the 6n complex num-
bers; hence the dimension of the space of global sections of w. is 6n — (5n — 1)
=6g—6— (58 —5—1) =g, as expected.

It will be convenient to introduce the following notation.

(3.2) Definition. Let w be a global section of wy. The residue triple of w on A,
is

restriple(w|Ai) = (respi_l(wlAi),resRi(w|Ai),resP'_(w|Ai));

similarly, the residue triple of w on B; is

restriple(wlBj) = (rest_l(wlBj), requj(wlBj), rest(wlBj)).

Let us define certain global sections of w, which will be used in the sequel, by
their residues; we will use residue triples to define them efficiently.

(3.3) Definition. Fix an integer a. Define o, by declaring

(0,0,0) ifi# a,a+1
restriple(o,|, ) = { (0,-1,1) ifi=a and
(-1,1,0) ifi=a+1

(0,0,0) if j£pa,pa+1,...,pa+p
(0,1,-1) if j =pa

(1,0,-1) ifj=pa+1,...,pa+p—1
(1,-1,0) if j=pa+p

restriple( oalyj) =
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Define 1y by declaring
restriple(np| ) = (0,0,0), forevery i, and

restriple(n|5) = (—1,0,1), for every j.

Note that the residue triple is (0, 0, 0) if and only if the restriction of the 1-form
to that component is identically 0.

The reader may verify that the above residues satisfy (3.1.2)-(3.1.6) and so
define global sections o, and 7y of wy.

It may be useful to envision these 1-forms with the following diagrams,
indicating their residues at the points P,, Q,, and R, on the various components.

1 Aa—l | Au | Aa+l | Aa+2 1
=0lo 0o 00 -1 1'-1 1 oo o0 ol=0
Pa—l Ru—l Pa—l Ra Pa Ra+l Pa+l Ra+2 Pa+2
| Bpa | Bpa+l | | Bpa+p—1 | Bpa+p |
=00 1 -1l1 o —1! Y 0 -11 -1 ol=0---
Qpa—l Ra Qpa Ra+q Qpa+p-—2 Qpa+p—2 Qpa+p—l Qp¢+p
a+l-gq a+l
M-
npl 4, = 0 for every i
l B;_, | B; | B, | Biis |

1'=1 0 1'l=10 1'-1 o 1'-1 o0 11-1
Qj—2 qu—q Qj—l qu QJ‘ qu+q QJ'+1 qu+2q Q/'+2

These are in fact all the sections of w, that are needed:
(3.4) PROPOSITION. The sections {o;} and my form a basis for H( X, wy).

Proof. It is enough to show that they are linearly independent, since there are
n+1=g=dim H(X, wy) of them. Let w = an, + Lc,o0, for some constants
a and c;. Assume w = 0; then restriple(w| 4,) = (0,0,0) for every m. Since
restriple is linear, we have

(0,0,0) = restriple(w|, )
= a(restriple(1,| A, ) + X (restriple(s,| A,..))
=c,_, restriple( Op-1la, ) + ¢, restriple( Ola, )

= (_cm—l’ cm—-l’O) + (0’ “Cps cm) = (_cm—b Cm—1" Cm> cm)'

This forces ¢,, = 0 for every m, so w = anjy; hence a = 0 and w = 0. Q.ED.
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Let z; be the coordinate on A; such that z;,=0 at P, z;,=1 at R,, and
z;= o0 at P,_;; z; is a local coordinate on A, at P, Similarly, let w; be the
coordinate on B; such that wi=0atQ;, w=1atR ,andw;=ccatQ; ;;w
is a local coordinate on B; at Q. Let x;,=1 —z; and y,=1/z; 0n 4,, x; is a
local coordinate at P;_,. Similarly, let u ;=1-w,and v;=1/w;0n B}, u;isa
local coordinate at R; and v; is a local coordinate at Q;_;.

The 1-forms w = g, and 7, we have defined above in (3.3) all have the form

(35) az; + b J ax,.+(—a—b)d by, + a
R T P R ) B T CR B
for some constants a and b, and similarly,
ol = ow; +d w.=cuj+(—c—d) Y = dv, + ¢ "
B wj(wj - 1) 4 uj(uj — l) 4 vj(vj -1)

for some constants ¢ and d. These constants can be expressed in terms of the
residues of w (restricted to those components), and it is easily checked that in
fact

—-respi_l(w|Ai)z,. - res,,i(wlA‘_)

(3.6) wly, = iz =) dz; and
—rest_l(wlBj)wj - rest(w]Bj)
wlpg = aw;.
! wi(w; — 1)

Using (3.5) and (3.6), we can express any w, restricted to any component,
locally at any of the nodes of X, in terms of the given residues.

4. The Wahl map. The purpose of this article is to prove the surjectivity of
the Wahl map W: A2H%wy) » H%(w%? ® Q%), which is defined as follows: Let
o and 7 be two global sections of w,. At any p € X, choose a local generator g
for the sheaf wy, and write ¢ = sg and 7 = tg, where s and ¢ are in Oy ,. Define
W(o A 1) = (tds — sdt)g?. W is independent of the choice of local generator for
wy and is therefore a well-defined map from A’H% wy) to H%(w%* ® @), as
desired.

On our graph curve X, Q% is not locally free; the torsion part of Q% is
supported at the nodes of X, and at each node is a 1-dimensional skyscraper
sheaf. Modulo torsion, Q% is the direct sum over the components C of X of the
sheaves QL. Since the torsion in QY is supported in dimension 0, it has no H?,
and, after tensoring with w$?, we obtain a short exact sequence

(4.1) 0 > H°(Tors(w%? ® Q%))
- H(02?® ) » @ H(wP? . ® L) - 0.
C
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For any component C (= 4; or B)) of X, wy]. is a line bundle of degree 1;
hence w$?| . ® QL has degree 0 on any C, and the last term of the sequence (4. 1)
is a complex vector space of dimension 2n.

Denote by @ the composition of the Wahl map W with the projection
H O(w?;2 ® Q%) » B Hw$?|c® Q) of (41). Our strategy to show that
W is surjective is first to show that ® is surjective, and then to show that
H%Tors(w$? ® Q%)) is in the image of W.

5. The surjectivity modulo torsion. Let ®: A’H(wy) - [, H(w3?(,, ®
Qe [GB H°(w§’;2|3 ® Q)] be defined as in section 4, and let <I>A and <I>B be
the composmon of ® w1th the 2n projections onto the direct summands of the
range of ®. At a general point of 4;, we can trivialize wy|, by using the local
generator (dz;)/z,(z; — 1). Let '

a,z; + b, a,z; + b,

wllA,- z. (Z _ 1) Z, an w2|A,- zi(zi _ 1) 2

by the definition of the Wahl map, we have that

dz; 2
(bAi(wl A wz) = [(azzi + bz)al dzi - (alzi + b1)02 dzi]l:z‘(z. _ 1):|

dz; 2
= [a;b, — a,b,] dz, D

The choice of local coordinate z; on A, gives an explicit isomorphism of
H%w%?|,, ® Q) with C, taking c - dz,[(dz,)/z,(z; — 1)]* to c. We will abuse
notation and refer to ®, as the map to C, composing with this isomorphism.
With this notation, ®, (o.a1 A w,) = a;b, — a,b,. Similar remarks apply to the
components &, 5, of ®; using the coordinate w; on B, if

wilp = St e 4 dw; and w,| - 2T * 4y dw
Vg wj(w 1) 2% wj(wj -1)

for some constants ¢ dy, €3, d,, then @p (w; A w,) = ¢1d; — ¢,d,. These calcu-
lations immediately give the following:

(5.1) LEMMA. Let w; and w, be global sections of wy. Then

resp,_l(‘*’xlA,) fesP,-(‘*’ﬂA,-)

51.1 @, (0, A wy) = det
( ) A,( 1 2) respl_l(w2lAi) resPi(w2|A‘.)
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and

fesg,_,(“’ds,) I'CSQ,(‘*’1|B,)

(512 Dp (0 A @) = det '
B\l 2 rest_l(wzlgj) rest(wZIBj)

Proof. From (3.5), the above calculations give that

‘I’A,(“’l A wy) = (‘fesp,_,(‘*’1|Ai))(_resa(‘*’2|Ai))

_("resn("’ll,q,.))("resﬁ_l("’zh,))’
which is the determinant given in (5.1.1). (5.2.2) is identical. Q.E.D.
Note that the determinant of (5.1.1) (respectively (5.1.2)) is simply the 1 — 3
minor of the 2 X 3 matrix whose rows are the residue triples of the sections w,
and w, on the component A4, (respectively B;).
We will use these formulas to compute the coordinates of ® for various pure

wedges of the global sections of w, defined in (3.3). Note that if either w, or w,
is not supported on a component C of X, then ®-(w; A w,) = 0.

(5.2) PROPOSITION. Assume g > 5, so that n > 4.
(5.2.1) Fix any a. Then

@, (np A 0,) = 0 for every i, and
0 ifj+paorpa+p

®p(npAo,)={ 1 ifj=pa
-1 ifj=pa+p

(522) Assume 2p +2<n. If 2<m<n-—2 and m #
+q, £2q,..., £(p — 1)q, then o, A o, ,, is in the kernel of ®.

(5.2.3) Assume 2p +1 < n. Then

0 ifi+a
@, (0, Ao,_y) = {1 i;i — and
0 ifj+pa
(I)Bj(da /\ ca_l) = {1 l:fj - pa.

(5.24) Assume 2p < n. Fixany a, andanyr — 1,..., p — 1. Then

‘DA,.(% A oMq,) =0 foreveryi, and

_ 0 ifj*pa+rorpa+p
(I)Bf(o"‘ A Orgr) = { -1 ifj=pa+rorpa+p’
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(5.2.5) Assume 2p < n. Then
‘I)A,.(Ua A oa+1_q) =0 foreveryi, and

3 0 ifj+pa+p—lorpa+p
tI)Bj(oa/\O.,H-q)"{_l ifj=pa+p—1lorpa+p’

Proof. Since 7 is not supported on any 4;, ®, (15 A ¢,) = 0 for every i. The
common support on the “B” components of o, and 1 are B,,, B,y 1,---» Bpayp
Using (5.1.2), we have

-1 1
@5 (15 A 0,) = det( 0 __1) =1,
-1
1

- -1,

patp

®,,.. (15 A 0,) = det(

and

(I’B,,.+,,.('TB Ag,) = det( 1 _%) =0
for m=1,..., p — 1; this proves (5.2.1).

Statement (5.2.2) is true simply because those sections have no common
support along any components of X.

If n > 3, then the common support on the “4” components of X of o,_, and
o, is only the component 4,, and

0 1
@, (0, A0, y) = det( _1 O) =1
by (5.1.1). If in addition 2p + 1 < n, then the common support on the “B”

components is only the component B,,, and

@5 (0, A0, ;) = det((l) _(1)) =1
by (5.1.2). This proves (5.2.3).

Since n >4, if r+0 and r# +p (modn), then ¢, and ¢,,, have no
common “A” component in their support. If 1 < r < p — 1, the common sup-
port on the “B” components of o, and o,,, are B,,.,,..., B, since
r+ p + 1< 2p < n. Again using (5.1.2), we have

q)Bpa+r(oa A 0,,+qr) = det((l) :1) = ._1’
QBpa+p(oa A 0,,+qr) = det(} _(1)) = _..1,
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and

pa+m

1 -1
®, (oaAoa+q,)=det(1 _1)=0

if m=r+1,..., p— 1. This proves (5.2.4).
Statement (5.2.5) is simply (5.2.4) applied with » = p — 1. Q.E.D.

Note that we have in fact computed ® for all pure wedges of the elements of
the basis {0,} U {n;}. The “missing” ones, o, A 0,,,, can be computed using
(5.2.3). The rest, namely, o, A o, for 1 < r < p — 1, can be computed using

a—qr
(524): 0, AGy_py= =044y N Oy = —0p_gp A Oq_grysgr
(5.3) COROLLARY. Assume that p is odd and 2p < n. Let
1 p-1 X
L,=- 7| A Oy — Y (-1 Ogm—1~kq N Ogm—(k+1)q |-
k=0

Then ®,(T,,) = O for every i, and
[0 ifj*Em
0, (T,) - {1 .

Proof. 1t is clear from (5.2.1) and (5.2.5) that ®, = O; it is zero on each term.
From (5.2.5),

_ 0 fj+m—-—k—-lorm-—k
(I)Bf(oq’"’l"“? A Ogm—k+13q) = -1 ifj=m—-—k—-lorm—-k’

so that the alternating sum telescopes, giving

p-1 0 if j#morm—p
(I)Bj Z (_l)koqm~1—kq A 6qm—(k+1)q) =(-1 if j=m
If p is odd, then (—1)” = —1 and the result follows from (5.2.1). Q.ED.

The I’s are “dual” to the B;’s with respect to the map ®, for odd p.
(5.4) COROLLARY. Assume thatp =2 andn > 5. Let

1 -1
Hm == E kzo(—l)koqm—l—kq A oqm—(k+1)q'
Then
®,(H,) =0 foreveryi, and

[0 ifj#Fm
(I)Bj(Hm) - {1 lf_]=m
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Proof. The assumptions 1mply that n is odd and 2p < n. Again ®, = 0 for
every i as in (5.3). For the @, s, the sum telescopes as above, and this time comes
all the way around the cycle; the only nonzero ® B, is @5 , and the contribution to
®, is —1 (from the k = 0 term) and (—1)" (from thek=n—1 term). Since n
is 0dd, the result follows. Q.E.D.

The elements H,, are “dual” to the B,’s in this case.
We can now state the main result of this section.

(5.5) PROPOSITION. Assume g > 5, so that n > 4. If either p is odd and
2p<n,orp=2andn>5, then ®: A2H°(wx)-> [ H (w3, ® Q)] e
[ @ H °(w§2| 5, ® QL )] is surjective.

Proof We claim that we can find 27 elements {v,} of A’H% wy) such that
the matrix with entries ®.(v,), as C ranges over the 2n components of X, has
rank 2n. This will suffice, since the target space has dimension 2n. In fact we can
achieve the matrix

I, 0
0

Order the rows by 4,,..., 4,, By,..., B,. Use for the first n y’s the elements
o; A 0;_,; by (5.2.3), this gives the left half of the desired matrix. To get the right
half, if p is odd and 2p < n, use the elements T, of (5.3), suitably ordered; if
p = 2and n > 5, use the elements H,, of (5.4), suitably ordered. Q.E.D.

We will require an understanding of the kernel of ®.

(5.6) PROPOSITION. Assume p =2 and n > 1. Then ker(®) is spanned by the
following elements:

(5.6.1) 6, NGy, Where2Z<m<n-—2
andm# +(q—-1) = {q,q -1}
(5.6.2) Ng A Oy = O AGy_y— Oy A Gyl

Proof. The elements of (5.6.1) are those with no common support along any
of the components of X, so they are certainly in ker(®). By (5.2.3), no term of the
form o; A 0;, can appear in any element of the kernel of ®: the ®, (or @, )
component w111 be nonzero and cannot be canceled by a contribution from any
other term by (5.2.4). We are left with finding the linear combinations of the
three terms appearing in (5.6.2) which are in the kernel of ®; the reader can
check that (5.6.2) is correct. Q.E.D.

(5.7) PROPOSITION. Assume p is odd and 2p + 2 < n. Then ker(®) is spanned
by the following elements:

(5.7.1) Oy NGy, for2<ms<n-—2
andm # +q,+2q,...,+(p—1)q
(5.7.2) Oy A Oyigrt Tpsrt Tpoypy forr=1,...,p -1
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Proof. The elements of (5.7.1) are simply those of (5.2.2) again. Those of
(5.7.2) are obtained from (5.2.4) and (5.3). That they span ker(®) follows from
the computations of (5.2) and the fact that the I,’s are dual to the B;’s. Q.E.D.

This completes our analysis of the map ®. We now proceed to show that
HO%Tors(w%? ® 24)) is in the image of W.

6. The torsion part. Let p (= P, Q j» OF R,) be one of the nodes of X, and
assume that the components meeting at p are C and D. Locally near p, X is
defined by st = 0, where we will assume that s = 0 defines C and ¢ = 0 defines
D. The dualizing sheaf w, is generated at p by the form ds/s — dt/¢, and the
Kihler differentials Q' are generated at p by ds and dr, with the relation
tds + sdt = 0. The torsion in w%? ® Q% is 1-dimensional at p, generated by
(ds/s — dt/t)? ® (tds — sat).

Our main tool will be the following:

(6.1) LEMMA. Let w, and w, be sections of wy. Let p be a node of X, the
intersection of components C and D. Assume that, using the local coordinates
described above,

w, = (¢ + sfi(s) + tgl(t))(? - ?) and
o2 = (e o(5) + () £ - )

where the f;’s and g;’s are regular at 0. Then, locally at p,

fi(s)  £(s)

W(er A 02) = gi(1) g,(1)

(tds — sdt)

c

fHi(s)  fo(s)

51 (&)

H(s) £(s)

fi(s)  fo(s)
f1(s)  £(s)

2

+ s + s

&

51 ¢y
gi(1) g (1)

5] (43
gi(z) g3(1)

gi(t)  g(1)
gi(t) g5(1)

2

+ ¢ dt

. (ds dt)2
times | — — — | .
s t
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, . s dt\* .
Proof. Simply calculate (we’ll ignore the (T - T) in the following)

W(w; A @) = [ + sf,(s) + 18,(1)]
X [(fi(s) + f{ (5)) ds + (g:(1) + 18{(2)) ]
=[er + sfi(s) + 18:(1)]
X [(fa(s) + sf5(5)) ds + (g2(2) + 183(2)) ]
= [(fie2 = 1) + s(fies = fier) + s*(fifo = fi1,)] ds
+g1c, — 8201) + t(gie, — gier) + 1*(818, — g381)] dt
+[ /182 — f,&](tds — sat),

which is the desired result. Q.E.D.

(6.2) COROLLARY. If w; A w, € ker(®), and p is a node of X, then (using the
notation of (6.1))

ds  dt\?
W(a, A ) = (020) = £OmO)( T = | © (s - san)

locally near p.

Proof. If w; A w, € ker(®), then W(w, A w,) € HTors(w$? ® 24)),
which is locally generated by tds — sdt at p; the term above is the torsion part
of (6.1). Q.ED.

The choice of local coordinates s and ¢ on the two components C and D
meeting at a node p gives an isomorphism of H(Tors(w%? ® Q%)) at p with C,
using the generator

described above. It also provides us with a natural projection onto the torsion
part: the “torsion part” of [¢ + sf(s) + 1g(¢)]ds + [d + sh(s) + tk(¢)] dt is

[£(0) — #(0)]

5 (tds — sdt).

We have chosen coordinates at all of the nodes in section 3, and we will use
these to identify H(Tors(w$? ® Q%)) with C3". In particular, at P,, the coordi-
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nates are z; and y,,;; at Q;, the coordinates are w; and v;.,; at R, the
coordinates are x; and u,,. Note that the order is important: we will use as local
generator for w, the sections (ignoring subscripts for the moment)

dz dy dw dv dx du
- 5 (at P), ” . (at @), and - ” (at R).
We will denote the coordinates of the Wahl map W by subscripting the node:
W, WQ , and W, will be the 3n coordinates of W on the kernel of ®. When
apphed fo an element not in the kernel of @, the notation Wp, WQ » and Wp,
will denote the local Wahl map followed by projection onto the torsion part.
With this notation, we have the following:

(6.3) PROPOSITION. Let w; and w, be two sections of wy. Then

resg,, (w1l4,,) resp (@],

(63.1)  Wp(w;Aw)= ’
) p,( 1 2) TCSR,H(“’ZUM) rCSRi(wzlA,«)

requm( “’1|B,-+1) requj(w1|Bj)

(632) W, (w0 Aw)=
) requj+q(w2| B,H) requj(w2| B, )

, and
reSQ,,k(“’ﬂB,,k) rest(wllAk)

(633)  Wy(w A wy) = .
RdHL T2 resQ,k(w2| B,,k) resp, (w,4,)

Proof. We’ll only check (6.3.1); the others follow from an identical calcula-
tion. Fix a section w of wy. At P, = 4; N A4, ,, we have coordinates z; and y,.,,
with local generator

dz;  dyy,
—_ - for wy.
Z Yi+1
From (3.6), we have
I, = —IeSp ("’lA) resP(“’|A) dz
“la zi(z; - 1) i
+ dz;
= [resp,.(wlAi) + z’.( respi—l(wlAi)— zljesl’,(wlA,) )]721_

- [rsntot) = o [ 2deta)) |

z;—1 z,
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Using (3.5), we have

_resp,(“’|,4,+1)zi+1 - rCSAI’P,I(""|A,A_1)

201(2i01 = 1)

dz; 14

©lg,, =

_ ""l'eSPiH(wlA’.“)yi+l - resPi(wlAi+1) dy
Yis1(ix1 — 1) a

rest',“(‘*’h,-l)yiﬂ + res}>,(“’|,4,,,1) ay; 1

(1 = Yi+1) YVis1
IS p, ) +re . ay,
= respi(wlAm) +yi+1( P,“(wlA,lﬂzy 1SP1(°"|A,_1) ] ! +11
] i+ i+
Ies dv.
= reSp,("’lAm) - yi+1( Iiﬁ'l‘()‘j‘l‘lﬁl) )] -:H: '
- i+ i+

Hence, locally at P,

I'CSRi(wlAi) ) +y ( resRin(wlAin) )]
i+1

w = |resp(w|,) + z
[ ' ' ozl 1-yin
. dz,  dyiy,y
times — — .
Z; Jit1

We are now in a position to use (6.2):
WP,»(wl Awy) = (_feSR,.(‘*’1|A,))(resk,+1("~’2|,4,“))

—(—resg, (@l,)) (resg,_,(@1l4,,,));
which is the determinant of (6.3.1). Q.E.D.

Our first use for these formulas is to show that the torsion part at each P, is in
the image of the Wahl map.

(6.4) PROPOSITION. Assume that 3p + 2 < n. Then o,_, A 6,1 is in the
kernel of ® and

1 ifi=m
WP,-(om—l A om+1) = {0 lfl *m’

Moreover, Wy (0,1 A 6,,41) = 0 for every j, and Wy (0,,_1 A 0,.1) =0 for
every k.
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Proof. The assumption on p insures that the only common support of a,,_;
and o,,,, is P,. Hence o,,_; A 0, € ker(®), all W, = 0 for i # m, and every
W, and W, = 0 also. The computation of W, (0,,_; A 0,,,,) is from (6.3.1):

W, (6,1 A Opyy) = det( _‘1) (1)) -1. QE.D.

The torsion part at the Q’s is just as easy to handle:

(6.5) PROPOSITION.  Assume that 2p + 3 < n and q + 4 < n. Then o,,,_; A
Oymaq i in the kernel of ® and

1 ifj=m
wQ,(oqm—l A oqm+q) = {0 lf] *m’

Moreover, Wp (0,,,_1 A 0,,,.,) = 0 for every i and Wy (0,,,_1 A 04, ,) = 0 for
every k.

Proof. Again the assumptions imply that the only common support of o,,,_;

and o, ., is the pqint Q,.» so that Ogm=1 A Ogmq € ker(®) and the only
nonzero value for W is W, . Here (6.3.2) is used:

0 -1
Wy (041 A Oppiy) = det(l 0) =1. QED.

It remains to analyze the image of the Wy, ’s. Unfortunately, we have not been
able to find sections w; and w, of w, which have only one R, in their common

support, so that we could use the techniques of the previous two propositions. We
fall back on brute force.

(6.6) LEMMA.

oo watamne) = {1l
(662) We(ono )= {y Tl
(663) Weloinon) ={ ] fimart

Proof. (6.6.1) is a straightforward application of (6.3.3):

1 0 0 ifk+a
We, (115 A 0,) = dc‘( . respk(oalAk)) = resp (o) = {1 ifk=a’
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To prove (6.6.2), note that resp(0,|,,) # 0 only if k = a, so that the second

column of the matrix used to compute Wy (o, A ,_,) is nonzero only if k = a
or k = a — q. We have

WR‘,(% A oa_q) = det( -1 1) =1

-1 0
and
0 o
W, (0, A0,_,) = det( -1 1) =0,
proving (6.6.2). The final statement follows from (6.6.2). Q.E.D.

(6.7) COROLLARY. Assumep =2 andn > 1. Then

Ng A G — 0, AG,_,— 0, Ao, Eker(®) and

WRk(nB A Oy — Oy A oa—q — Oy A oa+q

_ [0 ifk#a
)_{1 ifk=a’

Proof.  The first statement follows from (5.6.2), and the calculation of Wy is
obtained from the previous lemma. Q.E.D.

Let us proceed to the case when g is odd, so that n is even and p cannot be
equal to 2.

(6.8) LEMMA. Assume p is odd and 2p + 3 < n.

0 fk#a+1-—gq
(6.8.1) ka(oa/\oa+l—q)={_.1 ifk=a+1-gq"

(6.8.2) Wi (T,)

ifk=qgm-1
ifk=gqm—q,qm —3q,qm = 5q,...,gm — (p — 2)q

ifk=qm—2q,qm —4q,...,qgm — (p — 1)q
otherwise

Proof. Unless k=a or k=a + 1 — ¢, the second column of the matrix
whose determinant computes (6.8.1) is zero. For k = a, the second row of the
matrix is zero; here weuse 2p+ 3 < n.Fork=a+ 1 — g,

WR (oa A °a+1—q) = det( 1 0) = _1’

-1 1

a+l-q

proving (6.8.1).
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The second statement is a straightforward computation:

1
WRk(rm) = __2-|:ka("3 A 0qm—l) E ( 1) WRk( Ogm—1-xq qm—(x+1)q)

0 ifk#gm-1
-3 fk=gm-1

p-1 0 ifk#gm—(x+1

x=0 2 =gm—(x+1)q

which is zero unless k = gm — g, qm — 2q,qm — 3q,...,qm — (p — 1)qg = gm
—1+gq, or gn—pg=qm—1. If k=gm—1, then Wy (T,) = -1/2 -
(-1)?7Y1/2) = —1,since pisodd. If k =gm —yq with1 <y <p—2and y
odd, then W (T,,)) = —(-1)”~ 11/2) = =1/2. 1tk =gm — yqg with2 <y <p
— 1 and y even, then W, (T},)) = —(-1)’~ 11/2) = 1/2. This is (6.8.2). Q.E.D.

(6.9) COROLLARY. Assume p is odd and 2p + 3 < n. Then

Ky==2ag A0y g+ Tppipy + Tpey,) Eker(®) and

pa+p

0 ifk+a,a—qg,a+1—g
1 ifk=a

We,(K,) = 2 ifk=a-—gq
3 fk=a+1-9g

Proof. The first statement is (5.7.2), with r = p — 1. To finish, again just
compute:

WRk(—2(oa A Oyyrog+ T

pa+p—1

)

[0 ifk*a+l-g
T\2 ifk=a+l-g

2 ifk=a-gq
+ 1 ifk=a+1-2q,a+1—-4q,...,a+1—-(p—1)g
-1 ifk=a+1-3¢q,a+1-5¢q,...,a+1—pg
0 otherwise
2 ifk=a
+ 1 ifk=a+1-gq,a+1-3q,...,.a+1—-(p—2)q

-1 ifk=a+1-2q,a+1-4q,...,a+1-(p-1)q|
0 otherwise
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The terms of the last two parts telescope, leaving as the only nonzero terms
k=a+1-g,a—gq and a. If k = a, Wy = —1 (from the second part) + 2
(from the third part) = 1. If k =a — g, Wy =2 (from the second part). If
k=a+1- g, then Wp_= 2 (from the first part) + 1 (from the third part) = 3.

Q.E.D.

Let U C ker(®) be the subspace spanned by the K/s, and let V' C
H%Tors(w%* ® Q%)) be the subspace consisting of sections supported at the
R,’s. From the previous corollary, the projection of the Wahl map from U to V'
has as image the row space of an n X n “circulant” matrix C whose first row is
2,3,0,0,...,0,1,0,0,...,0) (where the 1 is the (¢ + 1)st entry), and whose
succeeding rows are obtained from the first by a cyclic shift. (This first row is the
image of K.

(6.10) LeMMA. The circulant matrix C is nonsingular if q is odd.

Proof. In general, the determinant of a circulant matrix whose first row is
(ags--.,a,_q)1is

n—1[n-1
(e
i=0\ ;=0
where §, = e?™/" (see [G], section 34, exercise 19, for example). Therefore we
must show that for each i, !9 + 3{! + 2 # 0. Assume that there exists an i such
that {9 + 3¢ + 2 = 0; then 3§ + 2 = —{/9, which is an nth root of unity and
hence is on the unit circle. Write §! = x + iy; then 3! + 2 = (3x + 2) = 3iy,
and so 9x2 + 12x + 4 + 9y2 = 1. Since x> + y2 =1, wehave 12x + 4 + 9 =1,
or x = —1, forcing y = 0 and {! = —1. However, in this case {4 + 3§, + 2 =
(-1)?—-3+2= -2, since ¢ is odd. This contradiction proves the lemma.
Q.ED.

7. The cases of genera # 13. The analysis of the torsion part in the previous
section puts us in position to prove our main theorems. We begin with the even
genus case.

(7.1) THEOREM. Assume g is even and g > 10. Then the Wahl map for the
graph curve X,_, , of genus g is surjective.

Proof. By hypothesis n =g —1>9and p =2,s0that 3p + 2 =8 < n. By
Proposition (5.5), ® is surjective, so that we need only check the surjectivity onto
the torsion part. This follows from (6.4), (6.5), and (6.7) once we check that
q + 4 < n. Since n is odd, ¢ = g/2, so we require (g/2) < g— 5, or g > 10.

Q.ED.

The odd genus case is trickier.
(7.2) THEOREM. Assume that g is odd and g > 15. Let p be the smallest prime

number not dividing g — 1. Then the Wahl map for the graph curve X,_, , of genus
g is surjective.
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Proof. As above, let n=g—1 and ¢ = p~! (mod n). Assume for the mo-
ment that 3p + 2 < n and ¢ < n — 4. By (5.5), ® is surjective, and we must
show that W: ker(®) —» H%Tors(w$? ® Q)) is surjective. Since n is even, p
and g are odd, so that (6.4), (6.5), (6.9), and (6.10) apply. Hence the column
space of a matrix of the form

I, 0 =«
0 I, =
0 0 cT

is in the image of W|,,q), where the rows are ordered by the P;’s, Q,’s, and
R/’s, in that order, and the elements generating the columns are those of (6.4),
(6.5), and (6.9), in a suitable order. By (6.10), this matrix has rank 3#; since this is
the dimension of H°(Tors(w3? ® Q%)), W|,xo) is surjective.

It remains to show that 3p + 2 < n and g < n — 4. Assume that 3p + 2 >
n+1,or n<3p+1. If p=3, then n <10, or g <11, a contradiction. If
p =S5, then n < 16; however, if n =14 or 16, p = 3, and n > 14. We may
therefore assume p > 7. Let p,, denote the mth prime number, so that p; = 2,
P, =3, p; = 5, etc. Assume that p =p,; hence2-3-----.p . |n.But3p, + 1
>n>»2-3-----p._1>6p,_, = 3p,+ 6, since there is always a prime num-
ber between r and 2r — 2 for any r > 7 /2 (Bertrand’s postulate, which we apply
with r = p,,_,). This contradiction proves that 3p + 2 < n.

Finally, we must show that ¢ < n — 4. Assume not; then, since » is even and ¢
is odd, we must have either g =n —lorgq=n—3.1f g=n —1,then p = g7}
(mod n) = n — 1, violating 3p + 2 < n. If ¢ = n — 3, then 3 is relatively prime
to n, so p = 3. Therefore 1 (mod n) = pg (mod n) = —9 (mod n), so n =10
and g = 11, violating g > 15. Q.E.D.

8. The genus 13 case and the main theorem. Although the specific results of
the previous sections do not suffice to prove the surjectivity of the Wahl map for
genus 13, the graph curve X, s (n = 12, p = q = 5) of genus 13 is a reasonable
candidate to try the calculations out on. What we will show in this section is that
in fact the Wahl map for X, 5 is surjective.

By Proposition (5.5), since p =15 is odd and 2p < n, we have that ®:
NH%wy, ) > . H%wF |- ® QL) is surjective; this is the surjectivity of the
Wahl map modulo torsion. Hence we need only demonstrate the surjectivity onto
the torsion.

Note also that 2p + 2 < n; therefore Proposition (5.7) applies and ker(®) is
spanned by the following elements:

(8.1) o, A 0,.¢, foranya;

(82) K,,=0,A0,.5,+ 5, ,+ s, forr=1,2,3,4,andany a.
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Note that in this case
1

4
k
L=~ 2|8 AGsp1 = 2 (1) 0515k A Osp_sis
k=0

= - 5['73 A Ospi11 = Ospmi11l N sy F 05,046 A Ospin — 051 A Ospyig

+ 0548 A Ospyig = Oz A Ospiqy ]

First some preliminary calculations, which are immediate consequences of
Proposition (6.3).

(8.3) LEMMA. Assume thatn =12 andp = q = 5, and fix any a.
(8.3.1) W, (13 Ao,) =0 foreveryl,
WQ,("?B Aao,) =0 foreveryj, and

1 ifk=a
WRk(nB/\oa)={0 lfkq&a‘

(8.3.2) Wp (0, A 0,43) =0 forevery i,
Wy, (0, A 6,.3) =0 foreveryj, and

-1 ifk=a+3
WRk("“’\"a“):{ 0 ifk#a+3

(8.3.3) W, (0, A 0,45) =0  forevery i,

-1 ifj=5aor5a+5’ and

W, A =
2, (0 A 0a15) { 0 otherwise

-1 ifk=a+5
WRk(oa/\oa+5) ={ 0 lfk¢a+ 5°

(8.3.4) W, (0, A 0,.6) =0 foreveryi,
1 ifj=5a+5

WQj(oa A Gyig) = { -1 ifj=5a+11
0 otherwise

W (0, A 0,.6) =0  for every k.
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(8.3.5) W, (0, A 0,,5) =0 foreveryi,

_[-1 ifj=5a+4
WQJ("“A"“”)"{ 0 ifj*sa+a M

-1 ifk=a+38
WRk(oaAoa+8)={ 0 ifk+a+38"
(8.3.6) Wpl(oa/\ﬂano):{ 0 i;ia&a—l'

These are the basic tools for the rest of the calculation. Using (8.3.1) and
(8.3.5), we have

(8.4) COROLLARY. Fix any m. Then

W, (T,) =0 forevery i,

-3 ifj=m-1,m—-3,0rm->5
WQ,(Fm)= +1 ifj=m-2o0orm—4 , and
0  otherwise

ifk=5m-1
ifk=5m+ Tor5Sm+9

1fk=5m+2or5m+4.
otherwise

|

+
O D= N =

ka( L) =

Now the Wahl map on the elements K, , generating the kernel of ® can be
found:

(8.5) COROLLARY. Fix any a.
(85.1) Wp(Ky,) =0 for every i,

-2 ifj=5a
-1 ifj=5a+5

Wy, (K ) = +1 ifj=5Sa+1,5a+3,5a+9,0r5a+11,
-1 ifj=5a+2,5a+4,5a+8, or5a+ 10
0 ifj=5Sa+6orS5a+17
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and
-2 ifk=a
-1 ifk=a+4
W (K, ,)=(+3 ifk=a+3,a+7,0ora+9
-3 ifk=a+2,a+5 a+8,0ora+10
0 ifk=a+1l,a+6,0ora+11

-1 ifi=a-1
(8.52) W, (K,,) —{ 0 ifi#a—1"

(8.5.3) W,(K;,) =0 foreveryi,

+1 ifk=5a+1

-1 ifk=S5aorS5a+2
Wy (K; o) ={+3 ifk=5a+3orSa+11, and

-3 ifk=5a+4o0r5a+10

0 otherwise

-2 ifk=a

+1 ifk=a+5

-1 ifk=a+20ra+10
We(Ksa) =1 11 ifk=a+1 '

2

-3 ifk=a+30ra+38

0 otherwise

(8.54) W,(K,,) =0 foreveryi,

-2 ifj=5a+4

WQ,(K4,a) =\{—-% ifj=5a+11, and
0 otherwise
-3 ifk=a+38
-1 ifk=a+7
WRk(K4,a) = 1 f .
-2 fk=a
0 otherwise

We are now in a position to make the analysis. We must show that the vectors
in €3¢ whose coordinates are the Wp, Wy, and Wy values of the elements
o, A 0,,¢ and the K, s, span C*. Since W, (K, ,) span the P; coordinates,
and the W, coordinates of all other elements are zero, it suffices to show that the
W, and W , coordinates of the elements o, A 0, and the X, ,’s, r # 2, span
C 2“ . In fact, usmg the elements o, A 0, ,, it suffices to show that the W, + W,
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(j=0,...,5) and the W, (k =0,...,11) coordinates of the elements K, ,,
K, ., and K, , span C!8, After multiplying by 2 to eliminate denominators, these
36 vectors in C!8 are the following:

[Qo & @2 Q3 Q4 Qs Ry Ry Ry Ry Ry Ry Rg¢ Ry Ry Ry Ryy Ry]
Kiogo [-4 +41 =2 42 -2 -1 =3 0 -1 +1 =2 -1 0 +1 -1 +1 -1 0]
Ky [+1 -2 42 -2 -1 -4 0-3 0 -1 +1 -2 -1 0 +1 -1 +1 -1]
Ky [-2 +2 -2-1-4+1-1 0-3 0-1+4+1 -2 -1 0 +1 -1 +1]
Ky [+2 -2 -1 -4 +1 -2 +1 -1 0 -3 0 -1 +1 -2 -1 0 +1 -1]
Kig [-2 -1 -4 +1 -2 +2 -1 41 -1 0 -3 0 -1 +1 -2 -1 0 +1]
Kis: [-1 -4 41 -2 +2 -2 41 -1 +1 -1 0 -3 0 -1 +1 -2 -1 0]
Kig: [-4 +1 -2 +2 -2 -1 0 +1 -1 +1 -1 0 -3 0 -1 +1 -2 -1]
Kz [+1 =2 42 =2 -1 =4 -1 0 +1 -1 41 -1 0 =3 0 -1 +1 -2]
Kjg: [-2 +2 -2 -1 -4 +1 -2 -1 0 +1 -1 +1 -1 0 -3 0 -1 +1]
Kjo: [+#2 -2 -1 -4 +1 -2 +1 -2 -1 0 +1 -1 +1 -1 0 -3 0 -1]
Kijoo [-2 -1 =4 +1 -1 42 -1 #1 -2 -1 0 +1 -1 +1 =1 0 -3 0]
Ky [-1 -4 41 -1 +2 -2 0 -1 41 -2 -1 0 +1 -1 +1 -1 0 -3]
K3or [-2 +2 -2 +1 -2 41 -3 0 -2 -1 0+2 0 +1 -1 0 -2 0]
K3;: [+2 -2 +1 -2 41 -2 0-3 0-2-1 0+2 0 +1 -1 0 -2]
Kyt [-2 +1 -2 +1 -2 +2 -2 0 -3 0-2-1 0+2 0 +1 -1 0]
Kyyo [+1 =2 +1 =2 42 -2 0 -2 0 -3 0 -2-1 0 +2 0 +1 —1]
Kyjg [-2 +41 -2 42 -2 41 -1 0 -2 0 -3 0-2-1 0 +2 0 +1]

Kys: [+1 -2 42 -2 +1 -2 41 -1 0 -2 0 -3 0 -2 -1 0 +2 0]
Kye: [-2 +2 -2 +1 -2 41 0 +1 -1 0 -2 0 -3 0 -2 -1 0 +2]
Ky [+2 -2 41 -2 41 -2 +2 0 +1 -1 0-2 0 -3 0 -2 -1 0]
Kyg: [-2 +1 -2 +1 -2 +2 0 +2 0 +1 -1 0 -2 0 -3 0 -2 -1]
Kyo: [+1 -2 +1 -2 42 -2 -1 0 +2 0 +1 -1 0 -2 0 -3 0 -2]
Kjpop [-2 +1 =2 42 =2 41 =2 -1 0 +2 0 41 -1 0 -2 0 -3 0]
K3y [+41 -2 42 -2 41 -2 0 -2 -1 0 +2 0 +1 -1 0 -2 0 -3]
Kigt [ 0 0 0 0-3-1-1 0 0 0 0 0-2-3 0 0 O]
K4 L OO 0-3-1 0 0-1 0 0 0 O O O0-2-3 0 0]
Ksy: [ O 0-3-1 0 0o 0-1 0 0 0 0 O O0-2-3 0]
Ki» 1 0-3-1 0 0 0 0 0 0-1 0 0 0 0 0 0 -2 -3]
Kego [-3-1 0 0 0 0-3 0 0 0-1 0 0 0 0 0 0 -2]
Kys: [-1 0 0 0 0 -3 -2 -3 0 0-1 0 0 0 0 0 o]
Ky [ O 0 0 0-3-1 0-2-3 0 0 0-1 0 0 0 0 O]
Ky [0 0 0-3-1 0 0 0-2-3 0 0 0-1 0 0 0 0]
Kyg: [ O 0-3-1 0 0 0 0 0-2-3 0 0 0-1 0 0 0]
Kio: [ 0 -3 -1 0 0 0 0 0-2-3 0 0 0-1 0 0]
Ki100 [-3 -1 0 0 0 0 0 0 0-2-3 0 0 0-1 0]
Kiyp (-1 0 0 0 0-3 0 0 0 O 0-2-3 0 0 0 -1]
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It may be checked by any reasonably intelligent machine, using a reasonably
persistent typist, that this matrix in fact does have full rank 18. We used
MACSYMA. Therefore:

(8.6) THEOREM. The Wahl map for the graph curve X, s is surjective.

Since the surjectivity of the Wahl map is a Zariski open condition in moduli,
we have the following “generic” statement, using (7.1), (7.2), and (8.6):

(8.7) THEOREM. Assume that g > 12 or g = 10. Then the Wahl map for the
general curve of genus g is surjective.

This is our main theorem. Note that it is the best possible result in this vein; as
mentioned in the introduction, it is known that for all stable curves of genus < 9
or genus 11, the Wahl map fails to be surjective.

Appendix: Surjectivity of the map W, for L of large degree. In the text, it is
mentioned that the map

W, : A’H°(G, L) - H°(C, KL?)

is surjective whenever the degree d of L is large enough with respect to the genus
g of C. More generally, Wahl [W] has shown that the map W, ,, is surjective if
deg(L) > 5g + 1 and deg(M) > 2g + 2, implying of course that W, is surjec-
tive when 4 > 5g + 1. In this appendix, we give an elementary proof that W, is
surjective whenever d > 4g + 6 (and, more generally, that W, ,, is surjective if
both deg(L) and deg(M) > 4g + 6). The set of pairs of degrees for which W, ,,
is known to be surjective is thus the shaded area in the diagram below; it seems
likely that the actual region is somewhat larger, though we have no guess how
large.

To prove our statement, we use the characterization given in the text, that the
Wahl map W, associated to a complete linear series ¥V = H%(C, L) will be
surjective whenever

HY(C x C,N(-24)) =0,

deg(L)
Sg+l A
4g+6 this appendix
2g+2 Wahl

> deg(M)
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where m, m,: C X C - C are the projection maps and N = m*L ® m,*L. To
check this condition, observe first that a curve embedded by a complete linear
series |M| of degree 2g + 1 or greater is quadratically normal, so that the
multiplication map

H°(C,M) ® H°(C, M) - H°(C, M?)
is surjective. It follows, since H(C X C, m*M X m*M) = 0, that
HY(C X C,m*M ® m*M ® 0(—A)) =0.

From this we see that if M is any line bundle of degree 2g + 3 or more, the
restriction map from the line bundle #*M ® 7*M ® O(—A) on C X C to any
pair of fibers of C X C over C is surjective on global sections. Since m*M ®
m*M ® O(—A) is very ample on each fiber, it follows that it is very ample (and
has vanishing first cohomology) on C X C.

Now suppose that L has degree at least 4g + 6; as before, set N = 7*L ®
a*L. If the degree of L is even, we can write the line bundle N(—2A) as a
square

N(-24) = P?,
where
P=a*MQ® n,*M ® O(—A)

for some line bundle M on C of degree at least 2g + 3. By the above, the linear
system |P| will contain smooth irreducible curves D; consider the sequence

0 = Ocxc(P) = Ocyc(2P) > 0,(2P) - 0.

By degree considerations the line bundle @, (2 P) is nonspecial; since we already
know that HY(C X C, Oc(P)) = 0, it follows that H(C X C, N(—2A)) = 0.

Essentially the same argument applies in case the degree of L is odd, and to
show that the map W, ,, is surjective whenever the degrees of both L and M are
greater than or equal to 4g + 6.
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