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ON THE SURJECTIVITY OF THE WAHL MAP
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1. Introduction. In this paper we will prove a theorem (stated at the end of
this introduction) describing the rank of the Wahl map of a general curve of large
genus. We begin here by describing this map and some aspects of its significance.
To begin with, consider a smooth curve C, a line bundle L on C, and a linear

system V
_
H(C, L). Given a section o V of L, we can ty to define a

"differential" do of o, which will be a section of the tensor product K (R) L of the
canonical bundle K Kc with L, by choosing a trivializing section o0 of C,
writing o locally as

and setting

o(=) =/(=).o0

do= df (R) oo.

This clearly doesn’t work: if z0 is another trivializing section on L, with
Oo(Z) g(z). 0, we would have

o(z) =f(z).g(z).’to,

so that the "differential" would be

do ( f dg + g" df ) (R) "ro= df (R) oo + f dg (R) "ro,

i.e., it would differ from the earlier differential do by the addition of f. dg
The expression do is thus only well defined at the points where o is zero!
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This, however, also suggests a way to obtain a well-defined map, albeit not
between the same spaces. The key observation here is that the difference between
the two differentials we obtain above in terms of the two trivializations of L is
linear in o. This means that, given a pair of section o, V, the difference

Wv(O,) =do(R)-dz(R)o

will be a well-defined section of the tensor product K (R) L2, independent of the
choice of local coordinate. Since Wv is obviously skew-symmetric in o and z, we
thus have a natural map

Wv: A2V H(C, K (R) L).

By way of notation, we will denote by WL the map associated to the complete
linear series V H(C, L).

There are a number of alternative ways of viewing this map. One is to write

where o/z is interpreted as a meromorphic function. From this we obtain the
description of Wv as the map that associates to a decomposable tensor o/x z in
A2V the ramification points of the pencil spanned by o and z (whenever o and z
have no common zeroes); since the decomposable tensors form a copy of the
Grassmannian G(2, V) c P(A2V), which spans p(A2V), this characterizes WV.
Another way of expressing this last is in terms of the map

c -, p(v*)

associated to the linear series V, and its first associated map. This is the map

q)" C G(2, V*) IP(A2V*)

that sends a point p C to the tangent line to the image curve (C) at the
point (p), viewed as a point in the Grassmannian G(2, V*), which is in turn
mapped by its Pliicker embedding to P p(A2V*). Now, the pull-back to C of
the line bundle 0p(1) on P is the line bundle K (R) L2, and the corresponding
pull-back map on sections

H(P, Op(1)) A2V-o H(C, K (R) L2)

is just the map Wv above.
The image of Wv is called in this context the first associated linear series of V

and is denoted by V0). Observe in particular that if L is sufficiently special, then
just by comparing dimensions we see that this map cannot be surjective; indeed,
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it’s not immediately clear when a sublinear series of a complete linear series
H(C, M) is of the form V(1) for some other series V. On the other hand, we will
also see below that when the degree of L is large enough compared to the genus,
the first associated series of the complete series H(C, L) will be complete.
Another way to view the map Wv is via a generalization of it. Specifically,

suppose that L and M are any line bundles on the curve C, V H(C, L) and
V’

_
H(C, M) two linear series, and denote by (V, V’) the kernel of the

multiplication map

v (R) v’ --, n(c, L (R) M).

We then have a map

w,,,. (v, v’) --, n(c, r (R) M (R) K)

obtained by setting

w,,(Eo, (R) ,,) E(o, (R) d,- do, (R)

where the sections do and dri are defined locally as above; as before, we can
check that this is well defined. (In case V H(C, L) and V’ H(C, M), we
will write (L, M) for 9(V, V’) and Wt, M for Wv, v’.) Now, in the special case
where L M and V V’, we can describe (V, V’) in terms of the decomposi-
tion of V (R) V into alternating and symmetric parts: we have

(v, v) ^v _,
where 2 is the degree 2 part of the ideal of the image qv(C)

_
PV* of the curve

C under the map associated to the linear series V, viewed as a subspace of
SymmE(V)

_
V (R) V. It’s clear now that the map Wv, v is identically zero on 2

and is the map Wv above on A2V.
The more general map Wv, v, can be interpreted as given by a restriction of fine

bundles on the product C x C. Specifically, let h, r2: C C C be the
projection maps, set

and consider the restriction

NN(R)Oa=L(R)M.

The corresponding map on global sections is just the multiplication map
H(C, L) (R) H(C, M) H(C, L (R) M) above; so we can make the identifi-
cation

,(L, M) H(C C, N(-A)).
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Now, the restriction map

N(-A) N(-A) (R)0a= L (R) M (R) Kc

likewise induces a map on global sections

M) n(C, L (R) M (R)  Cc);

and this is the map WL, u above.
As one consequence of the last description of the map WL, u, we see that the

map W associated to a complete linear series V H(C, L) will be surjective
whenever

H(C C, N(-2A)) O.

This immediately implies the statement above, that the map WL will be surjective
whenever the degree of the series is sufficiently large compared to the genus.
Indeed, we can see that this will be the case whenever d deg(L) > 4g + 6 (see
the appendix); we do not know what the best possible estimate is.
One further general observation about the map Wv is that its definition may

be readily extended to singular curves C, as long as we replace the canonical
bundle Kc by the sheaf fl of Kiihler differentials on C (although L has to
remain invertible).

Clearly, the behavior of the map Wz depends very much on the linear series V
as well as on the geometry of the curve C. However, if we take V to be the
complete canonical series, we arrive at a map

/" A2H(C, K) ---) H(C, K3)

that depends only on the curve C, and on no further choices; it is this map that
we shall call the Wahl map of C. Obviously, any invariant of this map is an
invariant of C; in particular, the rank of the Wahl map is a basic numerical
invariant of C itself.
What geometric interpretation may be given to this rank? A more detailed

discussion is to be found in [W], but we will mention just one fact here: If the
curve C may be embedded on a K- 3 surface, the Wahl map of C cannot be
surjective (see also [BM]). Note that this ties in nicely with naive dimension
counts: on the one hand, the moduli of pairs (C, S), with C a smooth curve of
genus g and S a K 3 surface, have dimension 19 + g, so that the general curve
C might a priori appear on a K- 3 surface only when 19 + g > 3g- 3, i.e.,
when g < 11; on the other hand, the Wahl map can be surjective only when
g(g 1)/2 > 5g 5, i.e., when g > 10. In fact, it is the case ([MM], [Mu]) that
a general curve of genus g may be realized as the hyperplane section of a K- 3
surface if and only if g < 9 or g 11.
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The main result of this paper is to describe the behavior of the Wahl map on a
general curve. Specifically, we shall prove the

TI-I.OM. If C is a general curve of genus g > 10 with g 4 11, then the Wahl
map for C is surjective.

This, in conjunction with the result of Mori and Mukai [MM] in the case genus
11, settles the surjectivity of the Wahl map for a general curve of any genus.
Clearly it raises further questions: What can we say about the stratification of the
moduli space g given by the rank of the Wahl map? In particular, is it the case
that the closure of any of these strata--for example, the locus of curves whose
Wahl map fails to be surjective--actually coincides with the closure of the locus
of curves embeddable in K- 3 surfaces?
A word about technique. As is often the case when a theorem is to be proved

about the geometry of the general curve of a given genus, the basic technique
used in this paper is degeneration to a singular (but still stable) curve. On a
family of curves specializing to a stable curve, the canonical bundle of the general
fiber specializes to the dualizing sheaf to of the special fiber, and the Wahl map of
the general fiber C likewise specializes to what we may call the Wahl map of the
special fiber X:

w. x, n(x, ek (R)

The surjectivity of W is a Zariski open condition on the moduli space of stable
curves; thus, to prove the theorem above it is sufficient to exhibit a single stable
curve of genus g for which the map W is surjective. One novelty about the
present circumstance, however, is this: while it is often useful in other contexts to
look at specializa__tions to curves of compact typethat is, curves in the comple-
ment of Ao in g, or, equivalently, curves all of whose nodes are disconnecting
--we see here that if the curve Xpossesses any disconnecting nodes at all, then the
Wahl map of X cannot be surjectioe. Instead, for our present purposes, we want to
look at stable curves with a maximum number 3g- 3 of nodes, none of which
are disconnecting. Such curves will consist of a configuration of 2g 2 copies of
P, each of which will meet the others at exactly three nodes, and so will be
completely determined by its dual graph (which will be trivalent and at least
2-connected); they are correspondingly called graph curves and are the subject of
a monograph by Bayer and Eisenbud [BE]. There are finitely many graph curves
of each genus (the exact number is not known), which behave differently in many
respects. In particular, it is not the case for any g that the Wahl map is surjective
for all graph curves of genus g; the ones we use here were suggested by Eisenbud.
The authors would like to express their gratitude to the National Science

Foundation and to the Consiglio Nazionale dell Ricerche, whose support made it
possible for them to meet, talk (both among themselves and with Jonathan
Wahl), and carry out the work described here.
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2. The graph curve Xn,,. Fix a genus g and let n =g- 1. Choose p
{2,..., n 1} relatively prime to n, and let q {2,..., n 1} be the inverse of
p mod n, i.e., pq 1 (mod n).

Define a graph G,,, with 2n vertices (al,..., a., bl,..., b} whose edges
connect the vertices as follows:

Hence

ai is connected to ai+ 1(rood ) for every i,
by is connected to by+ 1(rood ) for every j, and
ak is connected to bpk(mod .) for every k.
by is connected to aqy(mod ,) for every j, also.

The graph G, , is trivalent and 3-connected as long as g > 3.
Let X, , X(G,,) be the associated "graph curve" [BE]; X, e consists of 2n

smooth rational components (Ax,..., A., Bx,..., B } having dual graph G,,
i.e., each vertex a (respectively by)corresponds to the component A (respec-
tively By)-= Px, and the nodes of X,p, where two distinct components meet
transversely, are determined by the edges of G, . For g > 4, X. r is a stable
curve of genus g whose canonical map embeds Xn, Into P f-l, with the
components of X, , going to straight lines [BE].

Let us label the nodes of X, , as follows: Define

Pi Ai N Ai+l(modn),

aj By Bj+l(modn), and

Rk .,4 k 0 Bpk(mod n),

for every i, j, and k. We will from now on drop the roodn from the subscripts of
the components A and By and the nodes Pi, Qj, and Rk.

3. Sections of the dualizing sheaf on Xn,. Let X X,,, , and denote by 0x
the dualizing sheaf of X. A section o of ox over X is determined by its
restrictions ola and 01 n., which are meromorphic 1-forms subject to the follow-
ing conditions"

(3.1.1)

(3.1.2)

(3.1.3)

(3.1.4)

(3.1.5)

(3.1.6)

to[,, and olB have only simple poles at the nodes of A and By,
and no other poles;respectively,

rese,_(to[,) + res,(tola,)+ rese,(0[,)= 0;

resQj_l(tolBj) + reSRq.(lsj)+ resQ(ols)= 0;

resv,(Wlx,) + resp,(Wla,+l)= 0;

resQj(t01j) + resQj(Wlsj+) 0;

resak(WlAk) + resak(OlGk) 0.
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(3.1.1) is from the definition of ox, (3.1.2) and (3.1.3) are the "sum of the
residues 0" condition on each restricted 1-form, and (3.1.4)-(3.1.6) are the
compatibility conditions at the nodes of X.

Conversely, given the restricted 1-forms 0lA and ols for every and j,
satisfying (3.1.1)-(3.1.6), there is a unique section o of ox over X with those
restrictions to each component of X [BE].

Fix three distinct points xx, x2, and x3 on pl. Given any three complex
numbers r1, r2, and r3, with r + r2 + r3 ---0, there is a unique meromorphic
1-form 0 on Pl whose only poles are at x, x2, and x3, such that these poles are
simple, and such that resx,(o ) r for each i. Since each component of X has
exactly three nodes on it, a global section of ox is determined by the 6n residues

res,,_l(olA,),resR,(ola,),res,,(ola,), for every i, and

resQj_(ols),resRqj(olB),resQj(olBj), for every j,

subject to the conditions (3.1.2)-(3.1.6). The reader can check that these equa-
tions impose 5n- 1 linearly independent conditions on the 6n complex num-
bers; hence the dimension of the space of global sections of 0c is 6n (5n 1)

6g 6 (5g 5 1) g, as expected.
It will be convenient to introduce the following notation.

(3.2) Definition. Let o be a global section of ox. The residue triple of o on A
is

restriple(ol,, ) (rese,_(ol,,),res,(olA,),res,(ol,,));
similarly, the residue triple of o on Bj is

restriple(olB) (resQ_(01Bj),resRqj(oln),resQ(oln;)).
Let us define certain global sections of 0x which will be used in the sequel, by

their residues; we will use residue triples to define them efficiently.

(3.3) Definition. Fix an integer a. Define % by declaring

(0,0,0)
restriple(%], ,) (0, 1,1)

(-1,1,0)

if : a,a + 1

ifi=a

ifi=a+l

and

(0,0,0)
(0,1,-1)restriple(%ls) (1,0, 1)
(1,-1,0)

if j :/: pa, pa + 1,..., pa + p
if j =pa
if j=pa + 1,...,pa+p-1
if j=pa +p
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Define rn by declaring

restriple(nl,) (0, 0, 0), for every i, and

restriple(/sI) ( 1,0,1), for every j.

Note that the residue triple is (0, 0, 0) if and only if the restriction of the 1-form
to that component is identically 0.
The reader may verify that the above residues satisfy (3.1.2)-(3.1.6) and so

define global sections % and r/ of tox.
It may be useful to envision these 1-forms with the following diagrams,

indicating their residues at the points P, Qj., and Rk on the various components.

.oo o o0  l_x olo 0 o1_=0
P_ R_ P_ R P R+t Pa+l Ra+2 Pa+2

-010 -1ll 0 -1 0 -1 -1

Qpa-i Ra Qpa Ra+q Qpa+p-2 Qpa+p-2 Qpa+r-1
Ra+ -q Ra+

/nla,---- 0 for every i;

Qy-2 Rqj_q Qy_t Rqj Q: Rqj+q Q:+x Rqj+2q

These are in fact all the sections of 0x that are needed:

(3.4) PROPOSIaIOr. The sections (o } and form a basis for H(X, Ox).

Proof. It is enough to show that they are linearly independent, since there are
n + 1 g dim H(X, Ox) of them. Let o arls + Eco for some constants
a and c. Assume 0 0; then restriple(ola)= (0,0,0) for every m. Since
restriple is linear, we have

(0, 0, 0) restriple(

a(restriple(la.))+ .,ci(restriple(oilm))
cm_ restriple(om_ lain) + Cm restriple(omla.)
(--Cm_l, Cm_l,0) -- (0, --Cm, Cm) (--Cm_l, Cm_ Cm, Cm).

This forces cm 0 for every m, so o at/n; hence a 0 and a 0. Q.E.D.
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Let zi be the coordinate on Ai such that z 0 at P, z 1 at R, and
z oo at P-I; z is a local coordinate on A at P. Similarly, let wj be the
coordinate on Bj such that w 0 at Q, w 1 at Rq, and wj oo at Q_ 1; w
is a local coordinate on B at Q. Let x 1 z and y 1/z; on A, x is a
local coordinate at Pi-x- Similarly, let uj 1 w and o 1/wfi on B, uj is a
local coordinate at Rq and o is a local coordinate at Q_ 1-

The 1-forms % and r/B we have defined above in (3.3) all have the form

az + b ax + (-a b)
(3.5) ol z(z 1) dz dxx,(x,- 1)
for some constants a and b, and similarly,

cw + a cu + (-c- a)
]s wj(w- 1) dw u(u- 1) du

byi + a

Yi(Yi- 1) dyi

dvj+c

v ( vj 1) dvj

for some constants c and d. These constants can be expressed in terms of the
residues of o (restricted to those components), and it is easily checked that in
fact

--res,,_(lA,)z res,,([,,)(3.6) [A, z;(z 1) dz, and

-res2_(0lBj)w res2j(lB)
alBJ w(wj- 1) dwj.

Using (3.5) and (3.6), we can express any o, restricted to any component,
locally at any of the nodes of X, in terms of the given residues.

4. The Wahl map. The purpose of this article is to prove the surjectivity of
the Wahl map W" A2H(x) -> H(a2 (R) f]c), which is defined as follows: Let
o and be two global sections of 0x. At any p X, choose a local generator g
for the sheaf x, and write o sg and tg, where s and t are in Ox. p. Define
W(o ^ ) ( tds sdt ) g2. W is independent of the choice of local generator for
x and is therefore a well-defined map from A2H(x) to H(o,2 (R) f), as
desired.
On our graph curve X, fc is not locally free; the torsion part of f]lx is

supported at the nodes of X, and at each node is a 1-dimensional skyscraper
sheaf. Modulo torsion, f]lx is the direct sum over the components C of X of the
sheaves f]. Since the torsion in f]c is supported in dimension 0, it has no Hx,
and, after tensoring with r2, we obtain a short exact sequence

(4.1) 0 H(Tors(o- (R)
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For any component C (= A or Bj) of X, 60xlc is a line bundle of degree 1;
hence 60,2 c (R) f has degree 0 on any C, and the last term of the sequence (4.1)
is a complex vector space of dimension 2n.

Denote by the composition of the Wahl map W with the projection
H(60"2(R) c)--* cH(60c21c (R) Xc) of (4.1). Our strategy to show that
W is surjective is first to show that is surjective, and then to show that
HO(Tors(60,2 (R) ()) is in the image of W.

5. The surjectivity modulo torsion. Let " A2H(60x) [/H(60zIA (R)

,)] H( I )] be defined as in section 4, and let , and nj be
the composition of with the 2n projections onto the direct summands of the
range of . At a general point of A, we can tfiviafize x[a, by usg the local
generator (dzi)/zi(z 1). Let

alz + b a2zi + b2
601A, (- 1) d

and 601, (i- 1) d,

by the definition of the Wahl map, we have that

t’’(60: A 602) [(a2zi + b2)ax dzi- (a:zi + zi( zidT"i- 1) ]2
albz azbl] dzi [

The choice of local coordinate z on A; gives an explicit isomorphism of
HO(60,2[,, (R) 1,) with C, taking c. dzi[(dz)/zi(z 1)] 2 to c. We will abuse
notation and refer to ,, as the map to , composing with this isomorphism.
With this notation, ,,(60: A 602)= a:b2- a2b. Similar remarks apply to the
components of ; using the coordinate wj. on Bj, if

ClW + d c2wj -t- d2

6011Bj wj(wj-1)dwj and OElBj w(w-1)dwj
for some constants Cl, dl, c2, d2, then (60 A 602) cd2 c2d1" These calcu-
lations immediately give the following"

(5.1) LEMMA. Let 601 and 602 be global sections of 60x. Then

A,(60: A 602)= det(res’-x(60:lA;)res/,_l(602 iAi)
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and

(5.1.2)

Proof.

.(x ^ a2) det

From (3.5), the above calculations give that

dPA,(I ^ z) (-rese,_(oll.,))(-rese,(to21.,))

-(-rese,(tl.,))(-rese,_(to21,)),
which is the determinant given in (5.1.1). (5.2.2) is identical. Q.E.D.

Note that the determinant of (5.1.1) (respectively (5.1.2)) is simply the 1 3
minor of the 2 3 matrix whose rows are the residue triples of the sections to

and o2 on the component A (respectively Bj).
We will use these formulas to compute the coordinates of for various pure

wedges of the global sections of tox defined in (3.3). Note that if either o or 02
is not supported on a component C of X, then c(1 A to2) 0.

(5.2) PROPOSITION. Assume g > 5, so that n > 4.
(5.2.1) Fix any a. Then

for every i, and

0 ifj #= pa orpa + p
1 ifj =pa
1 ifj=pa+p

(5.2.2)

(5.2.3)

Assume 2p + 2 < n. If 2 < m < n 2 and m
5= q, + 2q,..., + (p 1)q, then % /x %+m is in the kernel of
Assume 2p + 1 < n. Then

,(tl A tl 1) ( 01 ifia
ifi=ot

and

(5.2.4)

On(e,,. ^ o,,_ 1) ( 01 ifj =/= pa
ifj =ga

Assume 2p < n. Fix any a, and any r 1,..., p 1. Then

A ( Oot / Oet+ qr) 0 for every i, and

*BJ(Ot / Oa+qr) -10 ifj =/= pa + r orpa + p

ifj pa + r orpa + p
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Assume 2p < n. Then

(Ai(Oa A Oa+l-q) 0 for every i, and

OnJ(^+t"-q)={-10 ifj 4= pa + p l orpa + p

ifj pa + p l orpa + p

Proof Since tin is not supported on any A, A,(rln / o) 0 for every i. The
common support on the "B" components of o,, and rib are B,,,, B,+ t,..., B,+,,.
Using (5.1.2), we have

On,.(n A o.) det -1 1)= 1
0 -1

Cn.+,(n A o.) det -1 1t -1
1 0 ]

and

Cn,.+.(rln ^ o) det( -11
for m 1,..., p- 1; this proves (5.2.1).

Statement (5.2.2) is true simply because those sections have no common
support along any components of X.

If n > 3, then the common support on the "A" components of X of o_t and

o is only the component A,,, and

Ca.(. ^ o_ x) det 0 1) =1-1 0

by (5.1.1). If in addition 2p + 1 < n, then the common support on the "B"
components is only the component B,,,,, and

1 -1)=10
by (5.1.2). This proves (5.2.3).

Since n > 4, if r 4= 0 and r 4= +p (mod n), then o and Oa+qr have no
common "A" component in their support. If 1 < r < p 1, the common sup-
port on the "B" components of o and O/qr are B,,,+r,..., B,+,, since
r + p + 1 < 2p < n. Again using (5.1.2), we have

1CBpa+r( {Ol A Oa + qr ) det
0

n.+,(Oa A Oa+qr ) det( 11
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and

if m r + 1,..., p 1. TNs proves (5.2.4).
Statement (5.2.5) is simply (5.2.4) applied with r p 1. Q.E.D.

Note that we have in fact computed for all pure wedges of the elements of
the basis { } u { }. The "ssing" ones, % A %+, can be computed using
(5.2.3). The rest, nely, % A %_q for 1 r p 1, c be computed using
(5.2.4): % A %_q -o._q A o. -%_q A O(a_qr)+qr.

(5.3) COROLLARY. Assume that p is odd and 2p n. Let

r. 2 B Oqm-1 ( 1)kOqm-l-kq Oqm-(k+l)q
kO

Then a,(F) 0 for eve i, and

[ o i/j, m
(F) [ 1 ifj=m"

Proo It is clear from (5.2.1) d (5.2.5) that a, 0; it is zero on each term.
From (5.2.5),

A Oq_+)q) [ 0 ifjm-k-lorm-k
By ( %m- kq [-1 ifj=m-k- lorm-k’

so that the alternating sum telescopes, ging

(p-1 )lOifjmrm-ptBi E (--1) kOqm-l-kq /k Oqm_(k+l)q --1 if j m
k=O (--1) ’ ifj=m--p

If p is odd, then (-1) ’ -1 and the result follows from (5.2.1).

The Fy’s are "dual" to the B’s with respect to the map , for odd p.

(5.4) COROLLARY. Assume that p 2 and n > 5. Let

ln-1
nm= " E (--1)kqm-l-kq /k Oqm_(k+l)q.

k--O

Then

t,, ( Hm ) 0 for every i,

f 0 ifj, m
n ( H,, ) 1 ifj=m

and

Q.E.D.
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Proof The assumptions imply that n is odd and 2p < n. Again A, 0 for
every as in (5.3). For the n ’s, the sum telescopes as above, and this time comes
all the way around the cycle; the only nonzero n xs , and the contribution to, is -1 (from the k 0 term) and (-1)" (from the k n 1 term). Since n
is odd, the result follows. Q.E.D.

The elements H are "dual" to the Bj’s in ts case.
We can now state the mn result of ts section.

(5.5) Pooswo. Assume g 5, so that n 4. If either p is odd and
2p n, or p 2 and n 5, then : A2H(x) H(21A ,)]
[. H(wEls fl,)] is suective.

Proof We dm that we can find 2n dements { k } of AH(x) such that
the mat with entries c(k), as C ranges over the 2n components of X, has
ra 2n. Ts will suffice, since the target space has dimension 2n. In fact we can
aceve the mat

Order the rows by A,..., A, B,..., B. Use for the first n ’s the elements
o A o_; by (5.2.3), tNs Nves the left half of the desired mat. To get the
half, if p is odd and 2p n, use the elements F of (5.3), suitably ordered; if
p 2 and n 5, use the elements H of (5.4), suitably ordered. Q.E.D.

We will require an understanding of the kernel of .
(5.6) Pooso. Assue p 2 and n 7. Then ker() is spanned by the

following eleems:

(5.6.1) o, o,., here 2 m n 2

andre, (q-1) {q,q- 1}
(5.6.2) A O O A O._q- O. A

Proof The elements of (5.6.1) are those with no common support along any
of the components of X, so they are certnly in ker(). By (5.2.3), no term of the
form o A o can appear in any element of the kernel of : the , (or ,+)
component will be nonzero and cannot be canceled by a contribution from any
other term by (5.2.4). We are left with finding the finear combinations of the
three terms appearing in (5.6.2) wch are in the kernel of ; the reader can
check that (5.6.2) is coect. Q.E.D.

(5.7) PROPOSITION. Assumep is oddand 2p + 2 n. Then ker() is spanned
by the following elements:

(5.7.1) oAo+, for2mn-2
andre q, 2q,..., (p l)q

(5.7.2) o, O.+q, + r,,+, + r,,+,, fo, r a,..., ? 1.
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Proof. The dements of (5.7.1) are simply those of (5.2.2) again. Those of
(5.7.2) are obtained from (5.2.4) and (5.3). That they span ker() follows from
the computations of (5.2) and the fact that the F,’s are dual to the Bj’s. Q.E.D.

This completes our analysis of the map . We now proceed to show that
H0(Tors(0),2 (8) lx)) is in the image of W.

6. The torsion part. Let p (= P, Qj, or Rk) be one of the nodes of X, and
assume that the components meeting at p are C and D. Locally near p, X is
defined by st 0, where we will assume that s 0 defines C and 0 defines
D. The dualizing sheaf 0)x is generated at p by the form ds/s- dt/t, and the
KS.hler differentials fixx are generated at p by ds and dt, with the relation
ds + s dt 0. The torsion in 0)(2(R) 1X is 1-dimensional at p, generated by
(ds/s- dt/t)2 (R) (tds- sdt).
Our main tool will be the following:

(6.1) LEMMA. Let 0)1 and 0)2 be sections of 0)x. Let p be a node of X, the
intersection of components C and D. Assume that, using the local coordinates
described abot;e,

0)1 and

0)2

where the fi’s and gi’s are regular at O. Then, locally at p,

^ ,0:)= (tds- sdt)

c2
ds

Cl
g(t)

C2
g(t) +t

c C2

gt(t) g(t) + 2 g(t) g2(t)
g;(t) g(t)

dt

times
d dt ) 2.
s
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Proof Simply calculate (we’ll ignore the (-
W(. A t2) [c. / sf2(s ) / tg2(t)]

dSs dtt )2 in the following)

X [(f(s) + slY(s))ds + (g(t) + tgt(t))dt]

-[ + 4() + tgt)]

[(f,_() + /()) d + (g(t) + tg(t)) dr]

[(fxc2 f2cx) + s(f{c2 fcl) + s2(f{f2 ffl)] ds

+ [gc2- g2c) + t(g;c2- gzc) + t2(g;g2- ggl)] dt

+[fg2- f2gl](tds- sdt),

which is the desired result. Q.E.D.

(6.2) COROLLARY. If w A w2 ker(), andp is a node of X, then (using the
notation of (6.1))

/(tl A tO2)=(fx(O)g2(O)--f2(O)gl(O))( dss dt ) (R) (td- dt)

locally near p.

Proof. If t A to2 ker(), then W( A to2) H(Tors(o2 (R) flc)),
which is locally generated by ds s dt at p; the term above is the torsion part
of (6.1). Q.E.D.

The choice of local coordinates s and on the two components C and D
meeting at a node p gives an isomorphism of H(Tors(0,2 (R) fc)) at p with C,
using the generator

s

described above. It also provides us with a natural projection onto the torsion
part: the "torsion part" of [c + sf(s) + tg(t)] ds + [d + sh(s) + tk(t)] dt is

[g(0) h(0)]
(tds sdt).

We have chosen coordinates at all of the nodes in section 3, and we will use
these to identify H(Tors(02 (R) f]lx)) with C 3n. In particular, at Pi, the coordi-
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nates are z and Yi+l; at Qj, the coordinates are wj and Vj+I; at R k, the
coordinates are xi and u,k. Note that the order is important" we will use as local
generator for x the sections (ignoring subscripts for the moment)

__dz __dY (atP),
dw dv

(at Q ) and (atR).
z y w o x u

We will denote the coordinates of the Wahl map W by subscripting the node"
W,,, WQ., and WRk will be the 3n coordinates of W on the kernel of . When
applied to an element not in the kernel of , the notation We,, W, and Wg
will denote the local Wahl map followed by projection onto the torsion part.
With this notation, we have the following:

(6.3) PROPOSITION. Let to and 022 be two sections of tox. Then

(6.3.1) Wp,(to A to2)=

(6.3.2) WO.( to1 A to2) and

(6.3.3) Ws,(to A o2)
resok(tol s) reset(to1 [)
res2(to2 s) rese(to2[)

Proof We’ll only check (6.3.1); the others follow from an identical calcula-
tion. Fix a section to of tox. At P A n A+ 1, we have coordinates z and yi+ 1,

with local generator

dz Yi+I
Zi Yi+

From (3.6), we have

rese,_(to[,,)z resp, (to 1,,)
tol,, zi(z 1) dzi

esp,(tol,,)+ zi 1-z, z’-’
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Using (3.5), we have

-rese(wla,+l)zi+ resg+l(wl.. )
Zi+l(Zi+ 1) dZi+

-rese,+x(w I,,+)yi+
Yi+l(Yi+l-1)

resg+l(wl,.)Yi+l + resv,(wl,+x) dYi+l
(1 Yi+I) Yi+l

resv,(wl,,/) + Yi+x 1 Yi+

resv,(wl,/) Yi+ 1 Yi+ Yi+t

Hence, locally at P,

resv,(wl,) + zi + Yi+l i+1z-I

times
dz dYi+
Zi Yi+

We are now in a position to use (6.2):

which is the determinant of (6.3.1). Q.E.D.

Our first use for these formulas is to show that the torsion part at each Pi is in
the image of the Wahl map.

(6.4) PROPOSITION. Assume that 3p + 2 < n. Then 0,,,_ A ore+ is in the
kernel of b and

1 ifi=m
0 ifi.m"

Moreover, WQj(Om_ ^ o,,+1) 0 for every j, and b/Rk(Om_ A Ore+l)= 0 for
every k.
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Proof The assumption on p insures that the only common support of tim-1
and ore+ is Pro" Hence tim-1 A tim+ ker(), all lfit, 0 for 4: m, and every
I/Qj and /nk 0 also. The computation of Idle,m(%_ A tim/ 1) is from (6.3.1):

h/,.(%_ ^ %+) det 0 1 1 1 Q.E.D
-1 0 ]

The torsion part at the Qj’s is just as easy to handle:

(6.5) PROPOSITION. Assume that 2p + 3 < n and q + 4 < n. Then %m--1 /k

qm+q is in the kernel of t} and

1
[Qj ( tiqm-1 A tiqm+ q ) 0

Moreover, llp,(Oqm_ A %re+q) 0 for every and ]Rk(%m_ /k Oqm+q) 0 for
every k.

Proof Again the assumptions imply that the only common support of %,_
and %,+q is the point Qm, so that tiq,,-1 A tiqm+q ker() and the only
nonzero value for lfi/is lfi/Qm. Here (6.3.2) is used:

Qm( tiqm-1 A tiqm + q) det( 01 1 ] 1 Q.E.D.
0 }

It remains to analyze the image of the WR’S. Unfortunately, we have not been
able to find sections to and 2 of ox which have only one Rk in their common
support, so that we could use the techniques of the previous two propositions. We
fall back on brute force.

(6.6) LEMMA.

(6.6.1) Wn,(*IB A ti) (0 ifk, a

1 ilk=a"

/k tia- q ) 0 Ck * Ol
(6.6.2) 1 ilk=a"

(6.6.3) lfi/s(o, A tia + q ) ( 0 Ck :/:: Ol -I- q
-1 ifk=a+q

Proof (6.6.1) is a straightforward application of (6.3.3):

1
WR(r/B A o) det ,

0 )._res,( )=(0resek(ol) o A,, 1
i/k a

ifk=a"
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To prove (6.6.2), note that res,k(%l,k) 4= 0 only if k a, so that the second
column of the matrix used to compute Wrk(% A %_q) is nonzero only if k a
or k a q. We have

]Ra( (Ia A Oa_q) det -1 1)= 1
-1 0

and

WRa q( O’R A O’a __q) det 0 0) =0,
-1 1

proving (6.6.2). The final statement follows from (6.6.2).

(6.7) COROLLARY. Assume p 2 and n > 7. Then

B A (I 0 A Oa_ q 0 A Oa+ q ker((I)) and

Q.E.D.

hI(To A % % A %_q % A %+q) =(0 ifk:C:a
1 ifk=a

Proof The first statement follows from (5.6.2), and the calculation of Wsk is
obtained from the previous lemma. Q.E.D.

Let us proceed to the case when g is odd, so that n is even and p cannot be
equal to 2.

(6.8) LEMMA. Assume p is odd and 2p + 3 < n.

(6.8.1) Ws(%^%+ q)= ( 0 ifk.a+l-q
-1 ifk=a+l-q

(6.8.2) W(Fm)
-1 ifk= qm- 1

ifk= qm- q, qm- 3q, qm 5q,...,qm- ( p 2) q
fk qm 2q qm 4q qm ( p 1)q
otherwise

Proofi Unless k a or k a + 1- q, the second column of the matrix
whose determinant computes (6.8.1) is zero. For k a, the second row of the
matrix is zero; here we use 2p + 3 < n. For k a + 1 q,

/R,+_q(Oa A Oa+l_q) detl -1 Ol -1
-1 1 ]

proving (6.8.1).
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The second statement is a straightforward computation:

Wnk(Fro) Wrk(r/s ^ oq, 1) E ( 1)xwn( Oqm xq
x.O

/ Oqm--(x+ 1)q) ]
_{ 0 ifkV:qm-1)-1/2 ifk=qm-1

(_1)
0

.xO 21-
ifkqm- (x + l)q
ifk=qm- (x + l)q]’

which is zero unless k qm q, qm 2q, qm 3q,..., qm (p 1)q qm
-1 +q, or qm-pq=qm-1. If k=qm-1, then WRk(Fm)=-1/2-
(-1)’-1(1/2) -1, since p is odd. If k qm yq with 1 < y < p 2 and y
odd; then WRk(F,,) -(-1)Y-1(1/2) -1/2. If k qm yq with 2 < y < p

1 and y even, then WRy(F,,) -(-1)Y-1(1/2) 1/2. This is (6.8.2). Q.E.D.

(6.9) COROLLARY. Assume p is odd and 2p + 3 < n. Then

K -2(a A {la+l_ q + Fpa+p_ + rpa+p ) - ker(*) and

0 ifka,a-q,a+ 1-q
1 ifk=a(K.) 2 ifk=a-q
3 ifk=a+l-q

Proof. The first statement is (5.7.2), with r =p- 1. To finish, again just
compute"

__(o ifka+l-q}ifk=a+ 1-q

2
1

-1
0

ifk=a-q
if k a + 1 2q, a + 1 4q,..., a + 1 (p 1)q
ifk=a+l-3q, a+ 1-5q, ,a+ 1-pq
otherwise

2
1

-1
0

ifk=a

ifk=a+l-q,a+l-3q,...,a+l-(p-2)q
ifk=a+l-2q, a+l-4q,...,a+l- (p-1)q
otherwise
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The terms of the last two parts telescope, leaving as the only nonzero terms
k=a+l-q, a-q, and a. Ifk=a, WRk= -l (from the second part) + 2
(from the third part)= 1. If k a- q, WRk 2 (from the second part). If
k a + 1 q, then WR 2 (from the first part) + 1 (from the third part) 3.

Q.E.D.

Let U c ker() be the subspace spanned by the K’s, and let V c
H(Tors(to$2(R) flx)) be the subspace consisting of sections supported at the
Rk’S. From the prefious corollas, the projection of the Wahl map from U to V
has as image the row space of n x n "circulant" matrix C whose first row is
(2, 3, 0, 0,..., 0,1, 0, 0,..., 0) (where the 1 is the (q + 1)st ent), d whose
succeeding rows e obtfined from the first by a cyclic sft. (Ts first row is the
image of gq+ t-)

(6.10) LE. The circulant matrix C is nonsingular if q is odd.

Proo In general, the deternant of a circulant matrix whose first row is
(a0,..., a_x) is

=0 j0

where e2i/ (see [G], section 34, exercise 19, for example). Therefore we
must show that for each i, q + 3 + 2 0. Assume that there efists an such
that q + 3 + 2 0; then 3 + 2 -q, wch is an n th root of unity and
hence is on the ut circle. Write x + iy; then 3 + 2 (3x + 2)= 3iy,
andso9x2+12x+4+9y2=l.Sincex2+y2=l,wehavel2x+4+9=l,
or x -1, forcing y 0 and -1. However, in ts case q + 3 + 2
(-1)q -3 + 2 -2, since q is odd. Ts contradiction proves the lemma.

Q.E.D.

7. The eases of genera : 13. The analysis of the torsion part in the previous
section puts us in position to prove our main theorems. We begin with the even
genus case.

(7.1) TH.ORM. Assume g is even and g > 10. Then the Wahl map for the
graph curve Xs_ 1,2 of genus g is surjective.

Proof. By hypothesisn=g-1 >9andp=2, sothat3p+2=8<n. By
Proposition (5.5), is surjective, so that we need only check the surjectivity onto
the torsion part. This follows from (6.4), (6.5), and (6.7) once we check that
q + 4 < n. Since n is odd, q g/2, so we require (g/2) < g- 5, or g > 10.

Q.E.D.

The odd genus case is trickier.

(7.2) TH.ORM. Assume that g is odd and g > 15. Let p be the smallest prime
number not dividing g 1. Then the Wahl map for the graph curve Xg_ 1, , of genus
g is surjective.
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Proof As above, let n =g- 1 and q p-1 (mod n). Assume for the mo-
ment that 3p + 2 < n and q < n- 4. By (5.5), is surjective, and we must
show that W" ker() H(Tors(to$2 (R) fc)) is surjective. Since n is even, p
and q are odd, so that (6.4), (6.5), (6.9), and (6.10) apply. Hence the column
space of a matrix of the form

0

0 0 Cr

is in the image of /[ker(O), where the rows are ordered by the P’s, Q’s, and
Rk’S, in that order, and the elements generating the columns are those of (6.4),
(6.5), and (6.9), in a suitable order. By (6.10), this matrix has rank 3n; since this is
the dimension of H(Tors(to2 (R) flx)), /[ke(O is surjective.

It remains to show that 3p 4- 2 < n and q < n 4. Assume that 3p 4- 2 >
n + 1, or n < 3p + 1. If p 3, then n < 10, or g < 11, a contradiction. If
p=5, then n< 16; however, if n=14 or 16, p=3, and n>14. We may
therefore assume p > 7. Let p, denote the ruth prime number, so that P 2,
P2 3, P3 5, etc. Assume that p p,,; hence 2.3 p,,_tln. But 3p,, + 1
> n > 2 3 P,,-1 > 6Pro--1 > 3p, + 6, since there is always a prime num-
ber between r and 2r 2 for any r > 7/2 (Bertrand’s postulate, which we apply
with r p,,_ 1). This contradiction proves that 3p + 2 < n.

Finally, we must show that q < n 4. Assume not; then, since n is even and q
is odd, we must have either q n 1 or q n 3. If q n 1, then p q-
(mod n) n 1, violating 3p + 2 < n. If q n 3, then 3 is relatively prime
to n, so p 3. Therefore 1 (mod n)= pq (mod n)= -9 (rood n), so n 10
and g 11, violating g > 15. Q.E.D.

8. The genus 13 ease and the main theorem. Although the specific results of
the previous sections do not suffice to prove the surjectivity of the Wahl map for
genus 13, the graph curve X12,5 (n 12, p q 5) of genus 13 is a reasonable
candidate to try the calculations out on. What we will show in this section is that
in fact the Wahl map for X2,5 is surjective.
By Proposition (5.5), since p- 5 is odd and 2p < n, we have that :

A2H(txx2) (c H(t- lc (R) f) is surjective; this is the surjectivity of the
Wahl map’modulo torsion, i2lence we need only demonstrate the surjectivity onto
the torsion.
Note also that 2p + 2 < n; therefore Proposition (5.7) applies and ker() is

spanned by the following dements:

(8.1) % ^ %+6, for any a;

(8.2) Kr, % ^ %+ 5r + Fs+ + Fs+ 5, for r 1,2, 3,4, and any a.
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Note that in this case

1[ 4 ]F,,,
2 ln ^ o5,,,_ E (-1) k

O5m_l_5k / O5m_5k_ 5
k-0

--0’5m+1 A O’5m+9

"1-O’5m+8 A O’5m+4- O’5m+3 A O5m+ll].

First some preliminary calculations, which are immediate consequences of
Proposition (6.3).

(8.3) LMM. Assume that n 12 andp q 5, andfix any a.

(8.3.1) for every 1,

Ibis2 (rib A %) 0 for every j, and

1 ifk=aYtt. ( nB A %) 0 fk 4= ot

(8.3.2) lpi ( 0 I 0 +3 ) 0 for every i,

Qj( 0 A (I + 3) 0 for every j, and

(8.3.3)

-1
lR’( Oa /k Oa + ) 0

ifk=a+3
ifk4=a+ 3"

We, (o ^ %+ 5) 0 for every i,

2,(% ^ %+5) { -10 ifJotherwise= 5a or 5a + 5 and

(8.3.4)

-1 ilk=a+5
0 ifk4a+5"

for every i,

1
]

Qj ( O /k O’a+6) -1
0

ifj=5a+ 5

ifj 5a + ll
otherwise

and

%+6) 0 for every k
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for every i,

853

-1 ifj= 5a + 4
ifje5a+4’

and

-1 ifk=a+8

-1 ifi=a- 1(8.3.6) W,,(% A Oa+10 ) 0 ifi a 1"

These are the basic tools for the rest of the calculation. Using (8.3.1) and
(8.3.5), we have

(8.4) COROLLARY. Fix any m. Then

We, ( rm) 0 for every i,

we,(r.) +
0

ifj= m- l, m 3, orm 5

ifj=m-2orm-4
otherwise

and

-1 ifk 5m- 1

-1/2 if k 5m + 7 or 5m + 9

+1/2 ifk 5m + 2 or 5m + 4
0 otherwise

Now the Wahl map on the dements Kr, generating the kernel of can be
found:

(8.5) COROLLARY. Fix any a.
(8.5.1) Idiio,(Kl,,) 0 for every i,

-2
-1

-1/2
0

ifj=5a+ 5

ifj 5a +1,5a + 3,5a + 9, or 5a +11,

ifj 5a + 2, 5a + 4, 5a + 8, or 5a + 10

ifj 5a + 6 or 5a + 7
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and

ifk=a+4
ifk=a+3, a+7, ora+9

ifk a + 2, a + 5, a + 8, or a + lO

ifk a + 1, a + 6, or a + 11

-1(8.5.2) t,,,,(K,,) 0

(8.5.3) ]hit, ( K3, a) 0 for every i,

+1
-1

/’O./( K3, a) +1/2

0

ifk=5a+ l

if k 5a or 5a + 2

ifk=5a+3or5a+ 11

ifk=5a+4or5a+ 10
otherwise

and

+1
-1

0

ifk=a+5
ifk=a+2ora+ lO

ifk=a+7
ifk=a+ 3ortx+ 8
otherwise

(8.5.4) IAte,(K4,) 0 for every i,

Wt2 ( K,,) -1/2
0

ifj=5a+4

ifj= 5a + ll,

otherwise

and- ifk a + 8

lhln( K4,) -1 ilk=a+7
-1/2 ifk a

0 otherwise

We are now in a position to make the analysis. We must show that the vectors
in C 36 whose coordinates are the We,, W, and W values of the elements

% ^ %+6, and the K,’s, span (36. Since p,(K2, a) span the Pi coordinates,
and the We, coordinates of all other dements are zero, it suffices to show that the

WO and tAt coordinates of the elements % A %+6 and the K ,,’s, r 4: 2, span
C 2,. In fact, using the elements % ^ %+6, it suffices to show that the Wo +
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(j 0,...,5) and the WRk (k 0,...,11) coordinates of the elements Kl, a,

K3, , and K4,,, span C18. After multiplying by 2 to eliminate denominators, these
36 vectors in C8 are the following:

[Qo Q1 Q2 Q3 Q4 Q5 Ro Rx /{2 R3 R4 R5 R6 R7 R8 R9 Rio Rxx]

Kl,o: [-4 +1 -2 +2-2-1 -3 0-1 +1 -2-1 0 +1 -1 +1 -1 0]

K1,1." [+1 -2 +2-2-1-4 0-3 0-1 +1-2-1 0 +1-1 +1-1]

KI, Z: [-2 +2-2-1-4 +1 -1 0-3 0-1 +1 -2-1 0 +1 -1 +1]

K1,3: [+2 -2 -1 -4 +1 -2 +1 -1 0-3 0 -1 +1 -2 -1 0 +1 -1]

K1,4: [-2 -1 -4 +1 -2 +2 -1 +1 -1 0 -3 0 -1 +1 -2 -1 0 +1]

Kx,5: [-1 -4 +1 -2 +2-2 +1 -1 +1 -1 0-3 0-1 +1 -2-1 0]

K1,6." [-4 +1 -2 +2-2-1 0 +1 -1 +1 -1 0-3 0-1 +1-2-1]

K1,7: [+1 -2 +2-2-1-4,-1 0 +1-1 +1-1 0-3 0-1 +1-2]

K1,8: [-2 +2-2-1-4 +1-2-1 0 +1-1 +1-1 0-3 0-1 +1]

K1,9". [+2 -2 -1 -4 +1 -2 +1 -2 -1 0 +1 -1 +1 -1 0 -3 0 -1]

K1,1o; [-2-1-4 +1-1 +2-1 +1-2-1 0 +1-1 +1-1 0-3 0]

K1,11: [-1-4 +1-1 +2-2 0-1 +1-2-1 0 +1-1 +1-1 0-3]

K3,o: [-2 +2-2 +1-2 +1-3 0-2-1 0 +2 0 +1-1 0-2 0]

K3,x: [+2 -2 +1 -2 +1 -2 0-3 0-2 -1 0 +2 0 +1 -1 0-2]

K3,2: [-2 +1 -2 +1-2 +2-2 0-3 0-2-1 0 +2 0 +1 -1 0]

K3,3: [+1 -2 +1 -2 +2,-2 0-2 0-3 0 -2 -1 0 +2 0 +1 -1]

K3,4: [-2 +1 -2 +2 -2 +1 -1 0 -2 0 -3 0 -2 -1 0 +2 0 +1]

K3,5: [+1 -2 +2-2 +1 -2 +1-1 0-2 0-3 0-2-1 0 +2 0]

K3,6." [-2 +2-2 +1-2 +1 0 +1-1 0-2 0-3 0-2-1 0 +2]

K3,v: [+2-2 +1 -2 +1 -2 +2 0 +1-1 0-2 0-3 0-2-1 0]

K3,s: [-2 +1 -2 +1-2 +2 0 +2 0 +1 -1 0-2 0-3 0-2-1]

K3,9: [+1 -2 +1 -2 +2 -2 -1 0 +2 0 +1 -1 0 -2 0 -3 0 -2]

K3,xo: [-2 +1 -2 +2-2 +1 -2-1 0 +2 0 +1 -1 0-2 0-3 0]

K3,11: [+1 -2 +2 -2 +1 -2 0-2 -1 0 +2 0 +1 -1 0 -2 0-3]

K4,o: 0 0 0 0 -3 -1 -1 0 0 0 0 0 0 -2 -3 0 0 0]

K4,1: 0 0 0 -3 -1 0 0 -1 0 0 0 0 0 0 -2 -3 0 0]

K4,2: 0 0 -3 -1 0 0 0 0 -1 0 0 0 0 0 0 -2 -3 0]

K4,3: 0 -3 -1 0 0 0 0 0 0 -1 0 0 0 0 0 0 -2 -3]

K4,4: -3 -1 0 0 0 0 -3 0 0 0 -1 0 0 0 0 0 0 -2]

K4,5." -1 0 0 0 0 -3 -2 -3 0 0 0 -1 0 0 0 0 0 0]

K4,6: 0 0 0 0 -3 -1 0 -2 -3 0 0 0 -1 0 0 0 0 0]

K4,7: 0 0 0 -3 -1 0 0 0 -2 -3 0 0 0 -1 0 0 0 0]

K4,8: 0 0 -3 -1 0 0 0 0 0 -2 -3 0 0 0 -1 0 0 0]

K4,9: 0 -3 -1 0 0 0 0 0 0 0 -2 -3 0 0 0 -1 0 0]

K4,1o: [-3 -1 0 0 0 0 0 0 0 0 0 -2 -3 0 0 0 -1 0]

K4,11:[-1 0 0 0 0 -3 0 0 0 0 0 0 -2 -3 0 0 0 -1]
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It may be checked by any reasonably intelligent machine, using a reasonably
persistent typist, that this matrix in fact does have full rank 18. We used
MACSXq.A. Therefore:

(8.6) THEOM. The Wahl map for the graph curve X1% 5 is surjective.

Since the surjectivity of the Wahl map is a Zariski open condition in moduli,
we have the following "genetic" statement, using (7.1), (7.2), and (8.6):

(8.7) THv.ORM. Assume that g > 12 or g 10. Then the Wahl map for the
general curve of genus g is surjective.

This is our main theorem. Note that it is the best possible result in this vein; as
mentioned in the introduction, it is known that for all stable curves of genus < 9
or genus 11, the Wahl map fails to be surjective.

Appendix: Surjectivity of the map W for L of large degree.
mentioned that the map

In the text, it is

w,.. A:/-/(o, :)
is surjective whenever the degree d of L is large enough with respect to the genus
g of C. More generally, Wahl [W] has shown that the map WL, t is surjective if
deg(L) > 5g + 1 and deg(M) > 2g + 2, implying of course that WL is surjec-
tive when d > 5g + 1. In this appendix, we give an elementary proof that W is
surjective whenever d > 4g + 6 (and, more generally, that Wz, t is surjective if
both deg(L) and deg(M) > 4g + 6). The set of pairs of degrees for which W., t
is known to be surjective is thus the shaded area in the diagram below; it seems
likely that the actual region is somewhat larger, though we have no guess how
large.
To prove our statement, we use the characterization given in the text, that the

Wahl map Wz associated to a complete linear series V H(C, L) will be
surjective whenever

HI(C C, N(-2A)) 0,

deg(L)

5g+l

4g+6

2g+2

this appendix

Wahl

----+ deg(M)
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where %, %: C C C are the projection maps and N rl*L (R) %*L. To
check this condition, observe first that a curve embedded by a complete linear
series MI of degree 2g + 1 or greater is quadratically normal, so that the
multiplication map

H(C, M) (R) H(C, M) H(C, M2)

is surjective. It follows, since HI(C C, q*M %*M) 0, that

HI(C C, ’*M (R) r’M (R) (P(-A)) O.

From this we see that if M is any line bundle of degree 2g + 3 or more, the
restriction map from the line bundle q*M (R) %*M (R) (-A) on C C to any
pair of fibers of C C over C is surjective on global sections. Since q*M (R)

%*M (R) (-A) is very ample on each fiber, it follows that it is very ample (and
has vanishing first cohomology) on C C.
Now suppose that L has degree at least 4g + 6; as before, set N %*L (R)

%*L. If the degree of L is even, we can write the line bundle N(-2A) as a
square

N(-2A) P2

where

P q*M (R) %*M (R)

for some line bundle M on C of degree at least 2g + 3. By the above, the linear
system PI will contain smooth irreducible curves D; consider the sequence

0 --+ cxc(P) --+ (_Ocxc(2P) --+ (.0D(2P) --+ 0.

By degree considerations the line bundle dD(2P) is nonspecial; since we already
know that HX(C C, d)c c(P)) 0, it follows that H(C C, N(- 2A)) 0.

Essentially the same argument applies in case the degree of L is odd, and to
show that the map WL, M is surjective whenever the degrees of both L and M are
greater than or equal to 4g + 6.

[BE]
[BM]

[G]
[MM]
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