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TRANSACTIONS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 292, Number 2, December 1985

NONCOMMUTATIVE ALGEBRAS OF DIMENSION THREE
OVER INTEGRAL SCHEMES

BY
RICK MIRANDA AND MINA TEICHER

ABSTRACT. In this article we describe the algebraic data which is equivalent
to giving an associative, noncommutative algebra Ox over an integral k-scheme
Y (where k is an algebraically closed field of characteristic # 3), which is locally
free of rank 3. The description allows us to conclude that, essentially, all such
are locally upper triangular 2 X 2 matrices, with degenerations of a restricted
form allowed.

0. Introduction. Let k be an algebraically closed field of characteristic unequal
to 3, and let Y be an integral k-scheme. In this article we will describe the data
necessary and sufficient to construct a noncommutative Oy-algebra Ox which is
associative with identity, and which is a locally free of rank 3 as an Oy-module.

The “obvious” construction for such an algebra is to take locally free Oy-module
F of rank 2, and a nowhere zero section s: Oy — F. The subbundle L of F generated
by s will be of rank 1, and the algebra Ox of endomorphisms of F preserving L will
be locally free of rank 3 over Oy ; locally, Ox is isomorphic to the algebra of upper
triangular 2 X 2 matrices. Our main theorem is that all noncommutative algebras
of rank 3 are obtained using a similar construction, where the section s is allowed
to have zeros; a precise statement is given in Theorem 10.

The method used to analyze these algebras is similar to that employed in [1],
where the commutative case was studied, and some algebro-geometric applications
were made. It is somewhat surprising that the answer in the noncommutative case
is much simpler than in the commutative case.

The first author would like to thank the NSF and Bar-Ilan University for their
generous support while doing this research.

1. The local analysis. Let Ox be a noncommutative Oy-algebra of rank 3.
Since char k # 3, the natural inclusion of Oy into Oy is split by one-third of the
trace map. Let E C Ox be the locally free rank 2 submodule of Ox consisting
(locally) of those elements whose trace is zero; in this case we have Ox = Oy @ E
as Oy-modules. The multiplication in Ox is an Oy-linear map Ox ®o, Ox — Ox,
and is induced from the multiplication ¢: E ®o, E — Ox = Oy @ E of elements
of E; the other factors of the multiplication in Ox are the natural multiplication
in Oy and the left and right Oy-module structure on E. We are thus naturally
led to the following question: What properties does the map ¢ enjoy in this situa-
tion? Conversely, we can ask: Which maps ¢ induce a noncommutative associative
multiplication on Oy @ E for which E is the “trace zero” submodule? The answer,
locally, is given by the following
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706 RICK MIRANDA AND MINA TEICHER

PROPOSITION 1. Let Oy be a local integral domain of finite type over k, E
a free rank 2 Oy-module, and ¢:E @0, E — Oy ® E an Oy-linear map. Let
Ox = Oy ® E be the Oy -algebra whose multiplication 1s induced by ¢. Then Ox is
noncommutative, associative, and has E as its trace zero elements if and only if ¢
has the form

(2 ® 2) = 2a% + az, d(z @ w) = 2ab + 2bz — aw,
o(w ® 2) = 2ab — bz + 2aw, d(w ® w) = 2b2 + bw,
where {z,w} s any basis for E, and a and b are elements of Oy, not both zero.

REMARK. The above form is independent of the choice of basis for E. This is
implied by the proposition, but can also be checked directly quite easily.

PROOF. We begin by proving the “only if” part, and assume that ¢ induces a
noncommutative associative algebra structure on Ox = Oy @ E, with trace zero
elements F.

The general map ¢ can be written in the form

(z®z) =1+ az+guw, P(z@w)=j+cz+ fu,
d(w®z)=k+ez+dw, d(w @ w) =1+ hz+ bw,

where a,b,...,l are in Oy. Associativity in Ox is implied by the associativity of
triple products of basis elements (ejez)es = e1(eze3) for e; € {z,w}. Therefore we
must have the following equations in Ox:

(P)z=2(2%),  (W)w=w(w?),
(22w = 2(2w), (w?)z = w(wz),
(2w)z = z(wz), (wz)w = w(zw),
(wz)z = w(2?), (zw)w = z(w?).

Using the above general form for the multiplication map ¢, we can compute both
sides of each of these 8 equations in terms of 1, z, and w (which are a basis for
Ox), and equate the three coefficients: This produces the explicit conditions on
a,b, ..., for the multiplication in Ox to be associative.

For the two equations (22)z = z(z?) and (w?)w = w(w?), this gives the following
six conditions: g7 = gk, ge = gc, gd = gf, hj = hk, hf = hd, and he = hc. If either
g or h is nonzero, then 5 = k, e = ¢, and d = f is forced, since Oy is an integral
domain. However, this implies that ¢(z ® w) = ¢(w ® z) and so the multiplication
in Ox would be commutative, contrary to assumption. Therefore, we must have

(1) g=h=0.

The other six associations produce 18 equations in the coefficients, of which 2
are identities and 2 are redundant; the remaining 14 are

aj =ci+ f7, bk = ek + dl,

7+ fe=0, k+ed =0,

i+af = f2, [+ be = €2,

ci+ fk=e+dj, e7 +dl = ck + fl,
j+ca+ fe=k+ea+dc, k+ef+db=7+cd+ fb,
e1 + dk = ak, cj + fl = by,

i +ad=d>? I+ be =c2.
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NONCOMMUTATIVE ALGEBRAS OF DIMENSION THREE 707

One can now solve for the four coefficients 7, 7, k, and [, obtaining
(2) i=f%—af, j=—fc, k=—ed, 1|=¢e?—be.

Upon substituting these expressions into the 10 unused equations, 2 become
identities and 4 are redundant; the remaining 4 are easily factored and can be
expressed as

(c—e)la—f—-d)=0, (c—e)(b—e—c)=0,
(d=f)la—f—-d)=0, (d—f)b—e—c)=0.

Note that with these reductions, the multiplication in Ox will be commutative
if and only if ¢ = e and d = f; therefore, we may assume that either ¢ — e or d — f
is nonzero in Oy . In either case, the above equations imply that

(3) f=a-d and e=b-c,

since Oy is an integral domain.

This completes the analysis of the conditions imposed by associativity. The final
piece of data to be used is that E is the submodule of trace zero elements of Ox;
this is equivalent to trace(z) = trace(w) = 0, since trace is Oy-linear. A calculation
shows immediately that, in our situation, trace(z) = a+ f and trace(w) = b+e, so
that

(4) e=-b and f=—a.

Solving for the other coefficients in terms of a and b, using (1)-(4), gives ¢ the
form required by the proposition; moreover, a and b cannot both be zero (Ox is
commutative in this case).

Conversely, it is an easy exercise to check that if ¢ is in that form, then Ox is
noncommutative and associative, with E as the trace-zero submodule. Q.E.D.

COROLLARY 2. Let Oy be a local integral domain over k. Then every non-
commutative Oy -algebra Ox, which is locally free of rank 3 as an Oy -module, s
isomorphic to Oy {z,w}/I, where Oy {z,w} is the polynomial ring over Oy in the
noncommuting variables z and w, and I s the 2-sided ideal generated by

(2+a)(z—2a), (w+b)(z—2a), (z+a)(w—2b), (w+b)(z-2a),
for some a,b in Oy, not both zero.

PROOF. When expanded, the above four equations for I become exactly the 4
multiplication rules for computing 22, zw, wz, and w? in terms of 1, z, and w in
Ox, as given by Proposition 1. Q.E.D.

2. The global analysis. By Proposition 1, a noncommutative Oy-algebra Ox,
which is locally free of rank 3 over Oy, is locally determined by two elements a and
b in Oy. Although, as was previously remarked, the form of the multiplication
map ¢ does not depend on the local choice of basis for the trace zero submodule
E, these two elements a and b certainly do. In order to globalize this analysis, we
must describe the maps ¢ without resorting to any choice of basis.

Write ¢ = ¢1 @ ¢2, where ¢1: E o, E — Oy is the 1st coordinate of ¢
and ¢2: E Qp, E — E is the 2nd coordinate. Let H(E) be the submodule of
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708 RICK MIRANDA AND MINA TEICHER

Hom,, (E ® E, E) consisting of those maps ¢ which are locally of the form
$2(2® 2) = az, d2(z @ w) = 2bz — aw,
d2(w ® 2) = —bz + 2aw, d2(w ® w) = bw
for some local basis {z,w} of E.
PROPOSITION 3. H(E) is canonically isomorphic to E*.

PROOF. Define the transformation v: E* — H(E) by sending a functional
a: E — Oy to the map ¢2(a): EQ® E — E, defined by

¢2(a)(e1 ® e2) = 2a(ez)er — afer)es,

for €1, ez € E. The reader can check that ¢2(«) is indeed in H(E), and that ~ is an
isomorphism, by choosing a basis {z,w} for E, and using the dual basis {z*,w*}
of E*. The map ¢ in the local form above corresponds to the functional defined
by a(z) = a, a(w) =b. Q.E.D.

This description of H(E) completes the analysis of the second coordinate ¢, of
the multiplication map ¢ for Ox; since the description given by Proposition 3 is
independent of the choice of basis for E, and is natural, the local analysis sheafifies,
and so in general, ¢, is induced from a global section of E*.

By Proposition 1, the first coordinate ¢; of ¢ is locally determined by ¢,. In
fact, there is a global coordinate-free description of ¢; also.

Let ¢2 be a global section of H(E), corresponding to a global section of E*, or
amap a: E — QOy.

PROPOSITION 4. With the above notation, the map ¢1: E @ E — Qy 1s the
composition of 2(a ® a): E® E — Oy @ Oy with the multiplication in Oy .

PROOF. This can be checked locally. Let z,w be a local basis for E. If ¢ has
the form of Proposition 1, then, as remarked during the proof of Proposition 3,
its second coordinate ¢ corresponds to the element az* + bw*, i.e., « is the map
a(z) = a, a(w) = b. Therefore, (2a ® a)(z ® 2) = 2a%, (2a ® a)(z ® w) = 2ab,
(20 ® a)(w ® 2) = 2ba, and (20 ® a)(w ® w) = 2b%, which is exactly the map
¢1. Q.E.D.

Putting these propositions together, we have the

THEOREM 5. LetY be an integral k-scheme. Then:

(1) Isomorphism classes of noncommutative Oy -algebras Ox which are locally
free of rank 3 as Oy -modules are in one-to-one correspondence with isomorphism
classes of pairs (E, ), where E is a locally free rank 2 Oy -module and a: E — Oy
is a nontrivial Oy -linear map (or, equivalently, a global section of E*).

Write Ox(E, ) for the algebra corresponding to the pair (e, o).

(2) Ox(E,a) = Oy & E as Oy-modules, and E corresponds to the submodule
of Ox(E,a) consisting of elements of trace zero. The multiplication map ¢ =
01D P EQE — Oy ® E 1s locally in the form of Proposition 1, for some local
basis {z,w} of E. Globally, the map ¢ € T'(H(E)) corresponds to the map o under
the isomorphism of Proposition 3, and the map ¢1 s 200 .

An algebra over a k-scheme Y restricts to an algebra over each of its closed
points, i.e. an algebra over the residue fields. In this way, an Oy-algebra can be
viewed as a family of k-algebras parametrized by Y.
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NONCOMMUTATIVE ALGEBRAS OF DIMENSION THREE 709

PROPOSITION 6. Let y be a closed point of the integral k-scheme Y, and let
Ox(E, a) be a noncommutative Oy -algebra of rank 3. Let Ox(y) = Ox(E, a)®k(y)
be the restriction of Ox(E, a) to the residue field k(y) at y.

(1) If a # 0 at y, then Ox(y) s 1somorphic to the algebra of 2X 2 upper triangular
matrices over k(y).

(2) If a =0 at y, then Ox(y) = k[z,w]/(2%, 2w, w?).

PROOF. We may of course work locally for these statements, and choose a basis
{z,w} for E over the local ring of Y at y. Write a(z) = a, a(w) = b; then the
form of Proposition 1 applies, and we see that if @ and b are both zero at y, then
2?2 = 2w = wz = w? = 0, proving (2). To prove (1), we may assume a # 0 at y.
Then the map

Lot o (- 0 e [ —b 1
01/ * 0 2a)° 0 2

is an isomorphism of Ox(y) with the algebra of upper triangular 2 x 2 matrices
over k(y). Q.E.D.

That the degeneration of {(£ %)} to k[z,w]/(22, 2w, w?) is an essentially codi-
mension 2 phenomenon is shown by the above proposition.

3. Ox(E,a) as an algebra of endomorphisms. The aim of this final section
is to globalize Proposition 6, i.e. to show that Ox = Ox(E,a) is an algebra of
endomorphisms of a locally free rank 2 Oy-module, in fact of E. Let m: Ox — E
be the canonical projection, and let r: Ox — Hom(Ox, Ox) be the regular represen-
tation of Ox. The projection 72 induces a map m: Hom(Ox, Ox) — Hom(Ox, E)
and the inclusion of E into Ox induces :: Hom(Ox, E) — Hom(E,E). Let f; =
tomor:Ox — Hom(E, E); it is an Oy-linear map, and locally, §1(z) sends e € E
to mo(ze).

Let v: E — Hom(Oy, E) be the natural isomorphism, and let ¢/: Hom(Oy, E) —
Hom(E, E) be the map given by composition with a: E — Oy. Then 2 = o/ oyo
m9: Ox — Hom(E, E) is Oy-linear and, locally, 82(z) sends e € E to a(e) - mo(x).

PROPOSITION 7. The Oy-linear map 8 = By + B2: Ox — Hom(E, E) s an
Oy -algebra monomorphism.

PROOF. This can be checked locally. Choose a basis {z,w} for E, and write
a(z) = a, a(w) = b. By identifying Hom(E, E) with 2 x 2 matrices over Oy, we

have
ﬂ(1)=<(1) 2), ﬂ(z)=<25 f”a>, ﬁ(w)=<;a" ;’b),

using the definition of 3(z)(e) = mo(ze) + a(e)ma(z). It is an easy exercise to verify

that 8(22) = B(2)?, B(zw) = B(2)B(w), B(wz) = B(w)B(z), and B(w?) = B(w)?,

which we will leave to the reader. This suffices to prove the proposition. Q.E.D.
Note that the map « is recovered from this representation by the composition

E — Ox & Hom(E, E) "3° Oy.

The subalgebra of Hom(FE, E) isomorphic to Ox consists entirely of endomor-
phisms which locally “factor through o”:
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710 RICK MIRANDA AND MINA TEICHER

LEMMA 8. Locally, every endomorphism g in 3(Ox) 1s such that a o g factors
through «, i.e. there exists an element t € Oy, such that the diagram

E 5 Oy
gl lmultiplication by t
E 5 0O

commutes.

PROOF. It suffices to check that, if {z, w} is a local basis for E over Oy, then
B(1), B(z), and B(w) satisfy the above diagram for some t. We leave it to the reader
to check that t = 1 works for (1), t = 2a works for §(z), and t = 2b works for
B(w). Q.E.D.

By Lemma 8, any endomorphism in 3(0x) must preserve the kernel of o, which
is arank 1 subsheaf of F; at points where « # 0, a basis for £ may be extended from
a generator for this kernel, and the elements of 8(0x) will be represented by upper
triangular matrices in this basis. However, it is not true that 8(0x) consists of all
such matrices, i.e. 3(Ox) is not the algebra of all g in End(FE) which locally satisfy
Lemma 8. Our algebra 3(Ox) is only the algebra of g’s which “obviously” satisfy
the commutative diagram. Let us be more precise: Motivated by the construction
of the Koszul complex, we make the following

DEFINITION 9. Let E be a locally free rank 2 Oy-module and a: E — Oy a
nontrivial Oy-linear map. The Koszul algebra of (E, «), denoted by K(E, «) is the
subalgebra of End(FE) generated (locally) by the matrices

8) (o) (20)

with respect to some local basis {z,w} of E, where a(z) = a, a(w) = b.

It can be easily checked that K (e, ) is locally free of rank 3 as an Oy-module,
and that it is a subalgebra of End(FE). Moreover, every element of K(E, ) locally
satisfies Lemma 8, and the algebra is independent of the local choice of basis for E.

THEOREM 10. The map B is an isomorphism of Ox(E, ) onto the Koszul
algebra K(E, ).

PROOF. This can be checked locally; choose a basis {z,w} for E. Then

N i B B R )

and similarly for B(w), showing that 8 maps Ox(E,a) into K(E,a). On the
other hand, (2¢) = 1[B(2) +aB(1)] and similarly for (2 ) which proves surjectiv-
ity. QE.D.

It may seem that we have defined our way out of identifying the algebra Ox(E, a)
by the above, and that is a fair criticism. To be complete, we should answer the
following question: How far is the Koszul algebra from the full subalgebra of End(E)
consisting of elements which locally satisfy Lemma 87 Let us denote this algebra
by Ox(E, @) and let C be the cokernel of the inclusion of Ox(E, a) = K(E, a) into
Ox (E, ). Our answer to the above question is to identify the algebra Ox(E, a).
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NONCOMMUTATIVE ALGEBRAS OF DIMENSION THREE 711

PROPOSITION 11. (1) The sheaf C is supported on the zero locus Z of o (whose
tdeal sheaf is a(E) C Oy).

(2) Let D be the diwvisor of zeroes of a, and write E(D) for E @ Oy(D). Note
that o factors through Oy (—D), thereby inducing a map o(D): E(D) — Oy. Then
Ox(E,a) = Ox(E(D), a(D)). ~

(3) If Y 1s factorial and D 1is zero, then C 1is zero and Ox(E,a) = Ox(E, ).

(4) If Y 1s factorial, then Ox(E, ) = Ox(E(D), a(D)).

PROOF. To prove (1), we may work locally, and choose a basis {z,w} for E;
moreover, if we assume «a # 0 at y € Y, then we may assume a # 0 at y, so that a is
a unit in the local ring Oy, at y, and by replacing z by a~!z we may assume a = 1.

In this case K(E, ) is generated by the matrices (39), (12), and (99). Assume

finally that (?2) is in Ox(E, ). Hence there is a ¢t € Oy,y such that p + bu =t
and q + bv = tb. Therefore,

(5 g>=@_ub)(; g)Ht_v)(; g)+u(g g)

and is in K(E, a), proving (1).

To prove (2), consider the map @: E — Oy(—D) (which is a!), and note that
for an endomorphism g of E, a o ¢ factors through « if and only if @ o g factors
through @. In addition, the algebra of endomorphisms of E factoring through @
is isomorphic to the algebra of endomorphisms of E(D) factoring through «(D);
the isomorphism is obtained by twisting the maps by Oy (D). Hence Ox(E, a) is
isomorphic to Ox(E(D), a(D)).

For the rest, assume Y is factorial. Working locally, if D = 0 then, when one
factors a and b into irreducibles, there can be no common factors. Moreover, since
« is not identically zero, we may assume that neither a nor b is zero. Let (5 g) be
in 5X(E, a). Then there exists ¢t in Oy such that ap + bu = at and ag + bv = bt.
Therefore, a|bu and b|ag, and since D = 0, a|u and b|g. Write u = ar and g = bs;
then p+ br =t and as + v = t, so that p — as = v — br. Call this element z; then

(0 2) <o 1) o5 8) (05

and is therefore in K(E, o) = Ox(E,a). Thus C = 0, proving (3).
Statement (4) follows from applying (3) to the pair (E(D), a(D)); by construc-
tion, the divisor of zeroes of a(D) is zero, so that

Ox(E(D), (D)) = Ox(E(D), a(D)).

By (2), Ox(E,a) = Ox(E(D),a(D)) in any case; combining these isomorphisms
proves (4). Q.E.D.

Finally, let us address the following situation. Suppose L is a locally free rank
1 subsheaf of a locally free rank 2 sheaf F. Let A be the sheaf of algebras of
endomorphisms of F preserving L. The above proposition allows us to determine
A in the case where Y is factorial, as follows. Let D be the divisor of zeroes of
the inclusion 7: L — F. By twisting and dualizing, ¢ corresponds to a map a: F* ®
L — Oy whose divisor of zeroes is also D; moreover, A is naturally isomorphic to
Ox(F*® L, ). Therefore by Proposition 11, (4), A = Ox(F*® L® Oy (D), a(D)).
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