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 TRANSACTIONS OF THE
 AMERICAN MATHEMATICAL SOCIETY
 Volume 292, Number 2, December 1985

 NONCOMMUTATIVE ALGEBRAS OF DIMENSION THREE

 OVER INTEGRAL SCHEMES

 BY

 RICK MIRANDA AND MINA TEICHER

 ABSTRACT. In this article we describe the algebraic data which is equivalent

 to giving an associative, noncommutative algebra Ox over an integral k-scheme

 Y (where k is an algebraically closed field of characteristic 7& 3), which is locally

 free of rank 3. The description allows us to conclude that, essentially, all such

 are locally upper triangular 2 x 2 matrices, with degenerations of a restricted

 form allowed.

 O. Introduction. Let k be an algebraically closed field of characteristic unequal

 to 3, and let Y be an integral k-scheme. In this article we will describe the data
 necessary and sufficient to construct a noncommutative Or-algebra Ox which is

 associative with identity, and which is a locally free of rank 3 as an Or-module.

 The "obvious" construction for such an algebra is to take locally free Oy-module
 F of rank 2, and a nowhere zero section s: Oy > F. The subbundle L of F generated

 by s will be of rank 1, and the algebra Ox of endomorphisms of F preserving L will

 be locally free of rank 3 over Or; locally, Ox is isomorphic to the algebra of upper

 triangular 2 x 2 matrices. Our main theorem is that all noncommutative algebras
 of rank 3 are obtained using a similar construction, where the section s is allowed

 to have zeros; a precise statement is given in Theorem 10.
 The method used to analyze these algebras is similar to that employed in [1),

 where the commutative case was studied, and some algebro-geometric applications

 were made. It is somewhat surprising that the answer in the noncommutative case
 is much simpler than in the commutative case.

 The first author would like to thank the NSF and Bar-Ilan University for their

 generous support while doing this research.

 1. The local analysis. Let Ox be a noncommutative Oy-algebra of rank 3.

 Since char k 7& 3, the natural inclusion of Oy into Ox is split by one-third of the

 trace map. Let E c Ox be the locally free rank 2 submodule of Ox consisting
 (locally) of those elements whose trace is zero; in this case we have Ox -Oy @ E

 as Oy-modules. The multiplication in Ox is an Or-linear map Ox (8 oy Ox Ox,

 and is induced from the multiplication o: E Xoy E > Ox-Oy @ E of elements
 of E; the other factors of the multiplication in Ox are the natural multiplication

 in Or and the left and right Or-module structure on E. We are thus naturally

 led to the following question: What properties does the map X enjoy in this situa-

 tion? Conversely, we can ask: Which maps X induce a noncommutative associative

 multiplication on Oy @ E for which E is the "trace zero" submodule? The answer,
 locally, is given by the following
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 PROPOSITION 1. Let Oy be a local integral domain of finite type over k, E
 a free rank 2 Oy-module, and 4:E Xoy E t Oy @ E an Oy-linear map. Let
 Ox = Oy d3 E be the Oy-algebra whose multiplication is irzduced by 4. Then Ox is
 noncommutative, associative, and has E as its trace zero elements if and only if X
 has the form

 t0(Z @ Z) = 2a2 + az,

 X(w X z)-2ab - bz + 2aw,

 X(z X w) = 2ab + 2bz - aw,

 +(w X w) = 2b2 + bw,

 where {z, w} is any basis for E, and a and b are elements of Oy, not both zero.

 REMARK. The above form is independent of the choice of basis for E. This is
 implied by the proposition, but can also be checked directly quite easily.
 PROOF. We begin by proving the "only if" part, and assume that X induces a
 noncommutative associative algebra structure on Ox = Or @ E, with trace zero
 elements E.
 The general map @ can be written in the form

 X(zXw) = j+cz+fw,
 Q(w X w) = I + hz + bw,

 in Ox is implied by the associativity of
 = e1(e2e3) for ei E {z,w}. Therefore we

 (w2)w = w(w2),

 (w2)z = w(wz),

 (wz)w = w(zw),

 X(z X z) = i + az + gw,

 X(wXz) = k+ez+dw,
 where a, b, . . ., I are in Oy. Associativity
 triple products of basis elements (ee2)e3
 must have the following equations in Ox:

 (Z2)Z = Z(Z2)

 (z2)w = z(zw),

 (ZW)Z = Z(WZ),

 (WZ)Z = W(Z2), (ZW)W = Z(W2).

 Using the above general form for the multiplication map X, we can compute both
 sides of each of these 8 equations in terms of 1, z, and w (which are a basis for
 Ox), and equate the three coefficients: This produces the explicit conditions on
 a, , . . ., I for the multiplication in Ox to be associative.

 For the two equations (Z2)z = Z(z2) and (W2)W = W(W2), this gives the following
 six conditions: gj = gk, ge = gc, gd = gf, hj = hk, hf = hd, and he = hc. If either
 g or h is nonzero, then j = k, e = c, and d = f is forced, since Oy is an integral
 domain. However, this implies that +(z @ w) = X(w @ z) and so the multiplication
 in Ox would be commutative, contrary to assumption. Therefore, we must have

 (1)  g = h = O.

 The other six associations produce 18 equations in the coefficients, of which 2
 are identities and 2 are redundant; the remaining 14 are

 * * Z -

 aJ = cz + JJ,

 j+fc =0,

 i+af = f2)
 ci + fk = ei-
 j + ca + fe =
 ei + dk = ak,
 i + ad = d2,

 bk = ek+dl,

 k + ed = O,
 I + be = e2,
 ej+dl =ck+ fl,
 k+ef +db= j+cd+ fb,
 cj + fl = bj,
 I + bc = C2.

 +dj,

 = k+ea+dc,
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 One can now solve for the four coefficients , j, k, and 1, obtaining

 (2) i = f2 -af, j = -fc, k = -ed, I = e2 -be.

 Upon substituting these expressions into the 10 unused equations, 2 become
 identities and 4 are redundant; the remaining 4 are easily factored and can be

 expressed as

 (C-e)(a-f-d)=0) (c-e)(b-e-c)=O,

 (d- f)(a - f - d) = 0, (d- f)(b - e - c) = 0.

 Note that with these reductions, the multiplication in Ox will be commutative

 if and only if c = e and d= f; therefore, we may assume that either c- e or d- f

 is nonzero in Oy. In either case, the above equations imply that

 (3) f = a-d and e = b-c,

 since Or is an integral domain.

 This completes the analysis of the conditions imposed by associativity. The final

 piece of data to be used is that E is the submodule of trace zero elements of Ox;

 this is equivalent to trace(z) = trace(w) = O, since trace is Oy-linear. A calculation

 shows immediately that, in our situation, trace(z) = a + f and trace(w) = b + e, so

 that

 (4) e=-b and f--a.

 Solving for the other coefficients in terms of a and b, using (1)-(4), gives m the
 form required by the proposition; moreover, a and b cannot both be zero (Ox is

 commutative in this case).

 Conversely, it is an easy exercise to check that if X is in that form, then Ox is
 noncommutative and associative, with E as the trace-zero submodule. Q.E.D.

 COROLLARY 2. Let Oy be a local integral domain over k. Then every non-

 commutative Oy-algebra Ox, which is locally free of rank 3 as an Oy-module, is

 isomorphic to Ortz,w}/I, where Or{z,w} is the polynomial ring over Oy in the

 noncommuting variables z and w, and I is the 2-sided ideal generated by

 (z + a)(z-2a), (w + b)(z-2a), (z + a)(w-2b), (w + b)(z - 2a),

 for some a, b in Oy, not both zero.

 PROOF. When expanded, the above four equations for I become exactly the 4
 multiplication rules for computing Z2, ZW, WZ, and w2 in terms of 1, z, and w in

 Ox, as given by Proposition 1. Q.E.D.

 2. The global analysis. By Proposition 1, a noncommutative Or-algebra Ox)

 which is locally free of rank 3 over Or, is locally determined by two elements a and

 b in Oy. Although, as was previously remarked, the form of the multiplication
 map X does not depend on the local choice of basis for the trace zero submodule

 E, these two elements a and b certainly do. In order to globalize this analysis, we

 must describe the maps X without resorting to any choice of basis.

 Write X = <51 @ X2, where 1:E Xoy E Oy is the 1st coordinate of Y

 and 2: E Xoy E > E is the 2nd coordinate. Let H(E) be the submodule of
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 HOmOY (E X E, E) consisting of those maps 2 which are locally of the form

 2(Z @ Z) = az, 2(Z @ W) = 2bz-aw,

 2(W @ Z) =-bz + 2aw, 2(W @ w) = bw

 for some local basis {z, w} of E.

 PROPOSITION 3. H(E) is canonically isomorphic to E*.

 PROOF. Define the transformation :E* ) H(E) by sending a functional

 sx: E Oy to the map 2(a) E X E E, defined by

 X2(ol)(el X e2) = 20l(e2)el-ol(el)e2,

 for el, e2 E E. The reader can check that 2(a) is indeed in H(E), and that ? is an
 isomorphism, by choosing a basis {z,w} for E, and using the dual basis {z*,w*}

 of E*. The map 2 in the local form above corresponds to the functional defined

 by al(z) = a, sx(w) = b Q E D
 This description of H(E) completes the analysis of the second coordinate 2 °f

 the multiplication map X for Ox; since the description given by Proposition 3 is
 independent of the choice of basis for E, and is natural, the local analysis sheafifies,

 and so in general, 2 is induced from a global section of E*.

 By Proposition 1, the first coordinate 1 of X is locally determined by 2. In

 fact, there is a global coordinate-free description of 1 also.

 Let 2 be a global section of H(E), corresponding to a global section of E*, or

 amapsx:E )Or.

 PROPOSITION 4. With the above notation, the map X1:E X E ) Oy is the
 composition of 2(sx X sx): E X E ) Or G3 Or with the multiplication in Or.

 PROOF. This can be checked locally. Let z,w be a local basis for E. If X has

 the form of Proposition 1, then, as remarked during the proof of Proposition 3,

 its second coordinate 2 corresponds to the element az* + bw*, i.e., a is the map

 sx(z) = a, sx(w) = b. Therefore, (2sx X sx)(z X z) = 2a2, (2sx X sx)(z X w) = 2ab,

 (2sx @ sx)(w X z) = 2ha, and (2sx @ sx)(w @ w) 2b2, which is exactly the map

 . Q.E.D.

 Putting these propositions together, we have the

 THEOREM 5. Let Y be an integral k-scheme. Then:
 (1) Isomorphism classes of noncommutative Or-algebras Ox which are locally

 free of rank 3 as Oy-modules are in one-to-one correspondence with isomorphism

 classes of pairs (E, sx), where E is a locally free rank 2 Or-module and sx: E Or

 is a nontrivial Oy-linear map (or, equivalently, a global section of E*).
 Write Ox(E, sx) for the algebra corresponding to the pair (e, sx).
 (2) Ox(E,ol) -Oy ffl E as Oy-modules, and E corresponds to the submodule

 °f Ox(E,sx) consisting of elements of trace zero. The multiplication map X =
 X1 ffl 2: E @ E ) Oy ffl E is locally in the form of Proposition 1, for some local

 basis {z, w} of E. Globally, the map 2 E r(H(E)) corresponds to the map a under
 the isomorphism of Proposition 3, and the map X1 is 2sx X sx.

 An algebra over a k-scheme Y restricts to an algebra over each of its closed

 points, i.e. an algebra over the residue fields. In this way, an Oy-algebra can be

 viewed as a family of k-algebras parametrized by Y.
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 PROPOSITION 6. Let y be a closed point of the integral k-scheme Y, and let

 Ox(E, sx) be a noncommutative Or -algebra of rank 3 . Let Ox (y) = Ox (E, sx) fX k(y)
 be the restriction of Ox(E, sx) to the residue field k(y) at y.

 (1) If oe + O aty, then Ox(y) is isomorphic to the algebra of 2x2 upper triangular

 matrices over k(y).

 (2) If (:x = 0 at y, then Ox(y)-k[z, w]/(z2, zw, w2).

 PROOF. We may of course work locally for these statements, and choose a basis
 {z, w} for E over the local ring of Y at y. Write al(z) = a, (:x(w) = b; then the

 form of Proposition 1 applies, and we see that if a and b are both zero at y, then
 Z2 = ZW = WZ = W2 = O, proving (2). To prove (1), we may assume a + O at y.
 Then the map

 (° 1) ' ( ° 2a) ' ( 0 2b)

 is an isomorphism of Ox(y) with the algebra of upper triangular 2 x 2 matrices
 over k(y). Q.E.D.

 That the degeneration Of {(O k)} to k[z,w]/(z2,zw,w2) is an essentially codi-
 mension 2 phenomenon is shown by the above proposition.

 3. Ox(E, al) as an algebra of endomorphisms. The aim of this final section
 is to globalize Proposition 6, i.e. to show that Ox- Ox(E,o) is an algebra of

 endomorphisms of a locally free rank 2 Oy-module, in fact of E. Let T2: °X ) E
 be the canonical projection, and let r: Ox ) Hom(Ox, Ox) be the regular represen-

 tation of Ox. The projection T2 induces a map 7r: Hom(Ox, Ox) > Hom(Ox, E)

 and the inclusion of E iIltO Ox induces i: Hom(Ox) E) Hom(E, E). Let p1 = i o 7r o r: Ox Hom(E, E); it is an Or-linear map, and locally, :1(x) sends e E E

 to r2(xe).

 Let ey: E Hom(Or, E) be the natural isomorphism, and let all: Hom(Oy, E) Hom(E, E) be the map given by composition with al: E Or. Then p2 = R/ ° 5 °

 T2: °X - > Hom(E, E) is Or-linear and, locally, p2(x) sends e E E to a(e) * T2(X).

 PROPOSITION 7. The Or-linear map 13 = :1 + 132: °X ) Hom(E,E) is an
 Or-algebra monomorphism.

 PROOF. This can be checked locally. Choose a basis {z, w} for E, and write
 (x(z) = a, sx(w) = b. By identifying Hom(E,E) with 2 x 2 matrices over Oy, we
 have

 :(1) = (O 1) ' :(Z)= ( O -a) X 13(w)= ( 3a 2b) '

 using the definition of /3(x)(e) = 7r2(xe) + ol(e)7r2(X). It is an easy exercise to verify
 that :(Z2) = p(z)2, p(ZW) = p(Z):(W), :(WZ) = p(W)p(Z), and :(w2) = :(w)2,
 which we will leave to the reader. This suffices to prove the proposition. Q.E.I).

 Note that the map Ol is recovered from this representation by the composition

 E ) Ox Hom(E, E) Oy.

 The subalgebra of Hom(E, E) isomorphic to Ox consists entirely of endomor-

 phisms which locally "factor through Ol":
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 LEMMA 8. Locally, every endomorphism g in 13(0X) is such that al o g factors
 through a, i.e. there ezists an element t E Oy, such that the diagram

 E Or

 gt lmultipltcation by t

 E Oy

 commutes.

 PROOF. It suffices to check that, if {z,w} is a local basis for E over 0y, then
 p(1), :(z), and p(w) satisfy the above diagram for some t. We leave it to the reader
 to check that t = 1 works for :(1), t = 2a works for /3(z), and t = Sb works for :(W). Q.E.D.

 By Lemma 8, any endomorphism in p(0x) must preserve the kernel of ot, which
 is a rank 1 subsheaf of E; at points where Ol 7& 0, a basis for E may be extended from
 a generator for this kernel, and the elements of p(0x) will be represented by upper
 triangular matrices in this basis. However, it is not true that p(0x) consists of all
 such matrices, i.e. p(0x) is not the algebra of all g in End(E) which locally satisfy
 Lemma 8. Our algebra p(0x) is only the algebra of g's which "obviously" satisfy
 the commutative diagram. Let us be more precise: Motivated by the construction of the Koszul complex, we make the following

 DEFINITION 9. Let E be a locally free rank 2 0y-module and al: E ) Oy a
 nontrivial 0y-linear map. The Koszul algebra of (E, a), denoted by K(E, a) is the subalgebra of End(E) generated (locally) by the matrices

 A1 00 Ka bA tO OA
 t0 lJ ' t0 oJ ' ta bJ

 with respect to some local basis {z, w} of E, where al(z) = a, a(w) = b.
 It can be easily checked that K(e, sx) is locally free of rank 3 as an 0y-module,
 and that it is a subalgebra of End(E). Moreover, every element of K(E, c:x) locally
 satisfies Lemma 8, and the algebra is independent of the local choice of basis for E.
 THEOREM 10. The map: is an isomorphism of Ox(E,ol) onto the Koszul algebra K(E, (x).

 PROOF. This can be checked locally; choose a basis {z, w} for E. Then
 p(z) = (2a 3b ) = -a ( l °) +3 (a b),

 and similarly for :(w), showing that p maps Ox(E,oe) into K(E,sx). On the
 other hand, (0 0) = 31[p(z) +ap(1)] and similarly for (° b) which proves surjectiv- ity. Q.E.t).

 It may seem that we have defined our way out of identifying the algebra 0x (E, a)
 by the above, and that is a fair criticism. To be complete, we should answer the
 following question: How far is the Koszul algebra from the full subalgebra of End (E)
 consisting of elements which locally satisfy Lemma 8? Let us denote this algebra
 by Ox(E, a) and let C be the cokernel of the inclusion of Ox(E, sx)- K(E, sx) into - -
 Ox(E,). Our answer to the above question is to identify the algebra Ox(E,oe).
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 PROPOSITION 1 1 . (1) The sheaf C is supported on the zero tocus Z of al (whose
 ideal sheaf is cx(E) c Oy).

 (2) Let D be the divisor of zeroes of cx, and write E(D) for E @ Oy(D). Note

 that sx factors through Oy(-D), thereby inducing a map sx(D): E(D) Oy. Then

 Ox (E, a)-Ox (E(D), (x(D))
 (3) If Y is factoriat and D is zero, then C is zero and OX(E, (x)- OX(E, sx).

 (4) If Y is factorial, then Ox(E, a) -Ox(E(D), sx(D)) .

 PROOF. TO prove (1), we may work locally, and choose a basis {z,w} for E;
 moreover, if we assume og 7& 0 at y e Y, then we may assume a + O at y, so that a is
 a unit in the local ring Oy,y at y, and by replacing z by a-tz we may assume a = 1.

 In this case K(E,sx) is generated by the matrices (0°), (l b), and (°b)* Assume

 finally that (P q) is in Ox(E, cx). Hence there is a t E OrXy such that p + bu = t
 and q + bv = tb. Therefore,

 ( P q ) = (v - ub) ( 0 l ) + (t - v) ( O O ) + u ( 1 b )

 and is in K(E, sx), proving (1).

 To prove (2), consider the map o:E Oy(-D) (which is ol!), and note that

 for an endomorphism g of E, Ol o g facbors through Ol if and only if Ol o g factors

 through o. In addition, the algebra of endomorphisms of E factoring through O
 is isomorphic to the algebra of endomorphisms of E(D) factoring through c(D);

 the isomorphism is obtained by twisting the maps by Oy(D). Hence Ox(E,o) is

 isomorphic to Ox(E(D)) a(D))

 For the rest, assume Y is factorial. Working locally, if D = O then, when one

 factors a and b into irreducibles, there can be no common factors. Moreover, since
 ce is not identically zero, we may assume that neither a nor b is zero. Let ( P q ) be

 in Ox(E, a). Then there exists t in Oy such that ap + bu = at and aq + bv = bt.
 Therefore, albu and blaq, and since D = O, alu and blq. Write u = ar and q = bs;
 then p + br = t and as + v = t, so that p - as = v - br. Call this element x; then

 (8 v) (O 1) (O O) (a b) '

 and is therefore in K(E, cx)-Ox(E, cx). Thus C = O, proving (3).

 Statement (4) follows from applying (3) to the pair (E(D), sx(D)); by constrllc-
 tion, the divisor of zeroes of (x(D) is zero, so that

 Ox(E(D), (:x(D)) -Ox(E(D), sx(D)).

 By (2), Ox (E, sx)- Ox (E(D), (:x(D)) in any case; combining these isomorphisms
 proves (4). Q.E.D.

 Finally, let us address the following situation. Suppose L is a locally free rank
 1 subsheaf of a locally free rank 2 sheaf F. Let A be the sheaf of algebras of
 endomorphisms of F preserving L. The above proposition allows us to determine

 A in the case where Y is factorial, as follows. Let D be the divisor of zeroes of
 the inclusion i: L > F. By twisting and dualizing, i corresponds to a map oe: F* X
 L > Oy whose divisor of zeroes is also D; moreover, A is naturally isomorphic to

 Ox(F* XL, cx). Therefore by Proposition 11, (4), A-Ox(F* XLX Oy(D), sx(D)).
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