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PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 91, Number 1, May 1984

NONCLASSICAL GODEAUX SURFACES
IN CHARACTERISTIC FIVE

RICK MIRANDA!

ABSTRACT. A classical Godeaux surface is a smooth minimal projective sur-
face X, with K% = 1, po = p; = 0 and Pic"(X) = Z/5Z. A nonclassical
Godeaux surface is a smooth minimal projective surface X with K;"( =1,
pa =0, pg = 1 and Pic"(X) = us or as; such surfaces should exist in char-
acteristic 5. It is the purpose of this note to construct nonclassical Godeaux
surfaces in characteristic 5, with Pic"(X) = ps. The method is to exhibit a
smooth quintic surface on which Z/5Z acts, so that the quotient is smooth;
this quotient is the desired surface.

Let k be an algebraically closed field of characteristic 5. Choose coordinates
[z,y, z, w] for P}; this allows us to identify Auty(P3) with PGL(3, k), which I will
do. Let o be the automorphism represented by the matrix

1 100
0110
0011
00 01

This element has order 5 and generates a cyclic group (o) isomorphic to Z/5Z on
P3. It is not difficult to see that every action of Z/5Z on P? which has only isolated
fixed points is conjugate to the action of (¢). The only fixed point of o is [1,0,0,0].

For any linear form [ in z, y, z and w let N(I) = H?:o o*(l) denote the norm
of [ under the action of o; N(I) is a quintic form which is invariant under o. Let
V be the subspace of the space of quintic forms which is generated by norms of
linear functions. Let ¢: P3 --» P(V) be the (a priori rational) map defined by the
subspace V. I claim that, in fact, ¢ is defined everywhere and is étale away from
the fixed point [1,0,0,0]. The argument proceeds in several steps.

Let C = {a € PGL(3)|ac = oa} be the centralizer of o. Then

and the action of C on P3 decomposes P2 into 4 orbits Ag, A1, A and A3, where
Ao = {[1,0,0,0]} is the fixed point, Ay = {[z,1,0,0]}, A2 = {[z,y,1,0]} and
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10 RICK MIRANDA

As = {[z,y, z,1]}. Note that C acts on forms in z, y, z and w in the standard way.

LEMMA 1. (1.1) If f is a quintic form in z, y, z and w which is invariant under
o, and a € C, then o+ f 1s an tnvariant quintic.

(1.2) Let p € P3, and assume that there exists an invariant quintic form f such
that f(p) # 0. Then for any q in the orbit of p under C, there ezists an invariant
quintic form g such that g(q) # 0.

(1.3) Let (p1,p2) € P32 x P2 and assume that there exists an invariant quintic
form f such that f(p1) = 0 and f(p2) # 0. Then for any (q1,q2) in the orbit of
(p1,p2) under C (using the diagonal action), there exists an invariant quintic form
g such that g(q1) = 0 and g(g2) # 0.

(1.4) Let p € P2 and assume that the space V of norms of linear functions
separates tangent vectors at p. Then V separates tangent vectors at any q wn the
same orbit of p under C.

PROOF. The first statement is trivial; the rest follow from it, using the general
principle that if an invariant f has a certain property at p, and if @ € C, then the
invariant o~! - f has that property at ¢ = a-p. Q.E.D.

LEMMA 2. V has no base locus.

PROOF. By (1.2), we need only check that one point in each orbit of C' is not
a base point for V. It is easily seen that N(z) is not zero at [1,0,0,0] € Ag, N(y)
is not zero at [0,1,0,0] € A;, N(z) is not zero at [0,0,1,0], and N(w) = w® is not
zero at [0,0,0,1]. Q.E.D.

LEMMA 3. V separates the orbits of (o).

PROOF. Assume that p and q are in different orbits of (o). By (1.3), we may
assume that p = [1,0,0,0], [0,1,0,0], [0,0,1,0] or [0,0,0,1], and (by symmetry)
that the dimension of the C-orbit of ¢ is no greater than that of the C-orbit of p.
This eliminates p = [1,0,0, 0] from consideration and leaves three cases.

Case 1. p=0,0,0, 1], ¢ = [0, Yo, 20 wo]. In this case write o* -q = [z;,ys, 2, W]
for 0 < ¢ < 4. Since ¢ is not in the orbit of p under (o), (z;,ys, 2;) # (0,0,0) for
any <. Hence there is a linear form {(z,y, z) such that I(z;,y;, 2;) # 0 for 0 <7 < 4.
Then f = N(l)isin V, f(q) # 0 and f(p) = 0.

Case 2. p =10,0,1,0], ¢ = [zo, Yo, 20,0]. Using the same technique as in Case

1, and writing ¢* - ¢ = [z, ¥, %, 0], one can choose a linear form [(z, y) such that if

/= N(1), then (q) # 0 and f(p) = 0.
Case 3. p=10,1,0,0], ¢ = [z0,¥0,0,0]. In this case f = N(z) vanishes at p and

f(g) #0. Q.E.D.
LEMMA 4. V separates tangent vectors at all p # [1,0,0,0] in P3.

PROOF. By (1.4), we need only check this at one point in each orbit Ay, A2 and
As of C. Again there are 3 cases to consider.

Case 1. p =[0,0,0,1]. In this case a computation shows that N(az + by + cz)
has, at p, the linear term

(az + by + cz)[e(b+ 2¢)(a + 3b+ 3c)(4a + b+ 4c))

which is general, for general a, b and c.
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NONCLASSICAL GODEAUX SURFACES 11

Case 2. p=0,0,1,0]. Here the linear term of N(az + by + cw) at p is
(az + by + cw)[b(a + 2b)(3a + 3b)(a + 4b)]

which is general, for general a, b and c.

Case 3. p = [0,1,0,0]. Here the linear term of N(az + bz + cw) at p is
(az + bz + cw)[4a?] and is therefore general. Q.E.D.

The previous lemmas provide exactly what is needed to verify the claim and the
proof of the following is complete.

PROPOSITION 5. The map ¢: P3 — P(V) is a reqular map which is étale away
from the fized point [1,0,0,0] and separates the orbits of (o).

COROLLARY 6. The image Z of P3 under the map ¢ is the quotient of P3
under the action of (o), and is smooth except possibly at ¢([1,0,0,0]).

COROLLARY 7. There exists a smooth quintic surface Y in P3 which is invari-
ant under (o).

PROOF. By Bertini’s theorem, there exists a smooth hyperplane section X of
Z in P(V) since Z has only one isolated singularity. The quintic surface is the
pull-back of X to P3. Q.E.D.

Of course, the surface X is the quotient of Y by (o) and is the alleged nonclassical
Godeaux surface. It remains to compute the invariants of the general such X. Let
m: Y — X be the quotient map. By [1, Theorem 2.1],

Zs = ps = ker(m: Pic X — PicY),

where G denotes the Cartier dual of a finite group scheme G. This is precisely
Pic"(X), since Y is simply connected and H°(Y,(1) = 0 (see [1, Example 2.3]).
Therefore, H!(X, Ox) has dimension one. Since r is étale, ca(X) = 1co(V) = 11,
and Ky = n*Kx, so that K% = 1K = 1. By Noether’s formula x(0x) = 1, so
pg(X) =1 and p,(X) =0.

Classical Godeaux surfaces have been constructed in all characteristics by W.
Lang [2]. I wish to thank him for suggesting this problem. I am also indebted to
M. Artin for a helpful conversation.
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