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 PROCEEDINGS OF THE
 AMERICAN MATHEMATICAL SOCIETY
 Volume 91, Number 1, May 1984

 NONCLASSICAL GODEAUX SURFACES
 IN CHARACTERISTIC FIVE

 RICK MIRANDA'

 ABSTRACT. A classical Godeaux surface is a smooth minimal projective sur-

 face X, with K2 = 1, Pa = pg = 0 and PicT(X) = Z/5Z. A noncwlssical
 Godeaux surface is a smooth minimal projective surface X with K2= 1,
 Pa = 0, pg = 1 and PicT(X) = y5 or a5; such surfaces should exist in char-
 acteristic 5. It is the purpose of this note to construct nonclassical Godeaux

 surfaces in characteristic 5, with PicT(X) = P5. The method is to exhibit a
 smooth quintic surface on which Z/5Z acts, so that the quotient is smooth;
 this quotient is the desired surface.

 Let k be an algebraically closed field of characteristic 5. Choose coordinates

 [x, y, Z, zw for P3; this allows us to identify Autk(P3) with PGL(3, k), which I will
 do. Let a be the automorphism represented by the matrix

 I I 0 O'

 0 1 1 0

 O O 1 1.

 This element has order 5 and generates a cyclic group (a) isomorphic to Z/5Z on
 P3. It is not difficult to see that every action of Z/5Z on P3 which has only isolated

 fixed points is conjugate to the action of (a). The only fixed point of a is [1, 0,0 0].

 For any linear form 1 in x, y, z and w let N(l) = f|4= Ui(l) denote the norm
 of 1 under the action of a; N(l) is a quintic form which is invariant under a. Let
 V be the subspace of the space of quintic forms which is generated by norms of
 linear functions. Let v: P3 --* P(V) be the (a priori rational) map defined by the
 subspace V. I claim that, in fact, v is defined everywhere and is etale away from

 the fixed point [1, 0, 0, 0]. The argument proceeds in several steps.
 Let C {a E PGL(3)1 au = al} be the centralizer of a. Then

 ()a b c d A

 C = j a b c a 78 0 &

 and the action of C on P3 decomposes P3 into 4 orbits AO, A1, A2 and A3, where
 Ao = {[1, 0, 0, 0]} is the fixed point, A1 = {[x, 1, 0, 0]}, A2 = {[x, y, 1, 0]} and
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 10 RICK MIRANDA

 A3 {[x, y, z, 1] }. Note that C acts on forms in x, y, z and w in the standard way.

 LEMMA 1. (1.1) Iff is a quintic form in x, y, z and w which is invariant under
 a, and a E C, then al f is an invariant quintic.

 (1.2) Let p E P3, and assume that there exists an invariant quintic form f such

 that f(p) :8 0. Then for any q in the orbit of p under C, there exists an invariant
 quintic form g such that g(q) + 0.

 (1.3) Let (Pl,P2) E P3 X P3 and assume that there exists an invariant quirntic
 form f such that f (pi) = 0 and f (P2) #8 0. Then for any (ql, q2) in the orbit of
 (P1, P2) under C (using the diagonal action), there exists an invariant quintic form
 g such that g(ql) = 0 and g(q2) # 0.

 (1.4) Let p E P3 and assume that the space V of norms of linear functions
 separates tangent vectors at p. Then V separates tangent vectors at any q in the

 same orbit of p under C.

 PROOF. The first statement is trivial; the rest follow from it, using the general
 principle that if an invariant f has a certain property at p, and if a E C, then the
 invariant a-1 f has that property at q = Oz * p. Q.E.D.

 LEMMA 2. V has no base locus.

 PROOF. By (1.2), we need only check that one point in each orbit of C is not
 a base point for V. It is easily seen that N(x) is not zero at [1, 0, 0, 0] E Ao, N(y)
 is not zero at [O, 1, ,0] E A1, N(z) is not zero at [O, 0, 1, 0], and N(w) W5 is not
 zero at [O, 0, , 1]J. Q.E.D.

 LEMMA 3. V separates the orbits of (ca).

 PROOF. Assume that p and q are in different orbits of (a). By (1.3), we may
 assume that p = [1,0 ,0 , O], [O, 1,0 , O], [0, 0, 1, 0] or [0, 0,0 , 1], and (by symmetry)
 that the dimension of the C-orbit of q is no greater than that of the C-orbit of p.

 This eliminates p = [1, 0, 0, 0] from consideration and leaves three cases.
 Case 1. p = [0,0 ,0 , 1], q = [xo, Yo, zo wo]. In this case write vi q = [xi, Yi, Zi, wiJ

 for 0 < i < 4. Since q is not in the orbit of p under (a), (xi, yi, Zi) :8 (0,0 ,0 ) for
 any i. Hence there is a linear form l(x, y, z) such that l(xi, yi, zi) 7 0 for 0 <i <4.
 Then f = N(l) is in V, f(q) 7 0 and f(p) = 0.

 Case 2. p = [0, 0, 1, 0], q [XeoI Yo I Zo, 0]. Using the same technique as in Case
 1, and writing vic q =[xi, Yi, Zi, 0], one can choose a linear form l(x, y) such that if
 f = N(l), then f(q) 0 0 and f(p) = 0.

 Case 3. p = [0, 1, 0, 0], q = [xo, yo, 0, 0]. In this case f = N(x) vanishes at p and
 f (q) #0 O. Q.E.D.

 LEMMA 4. V separates tangent vectors at all p :8 [1, 0, 0, 0] in P3.

 PROOF. By (1.4), we need only check this at one point in each orbit A1, A2 and
 A3 of C. Again there are 3 cases to consider.

 Case 1. p = [0,0 ,0 , 1]. In this case a computation shows that N(ax + by + cz)
 has, at p, the linear term

 (ax + by + cz)[c(b + 2c)(a + 3b + 3c)(4a + b + 4c)]

 which is general, for general a, b and c.
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 NONCLASSICAL GODEAUX SURFACES 11

 Case 2. p = [0, 0, 1, 0]. Here the linear term of N(ax + by + cw) at p is

 (ax + by + cw)[b(a + 2b)(3a + 3b)(a + 4b)]

 which is general, for general a, b and c.

 Case 3. p = [0,1,0,0]. Here the linear term of N(ax + bz + cw) at p is
 (ax + bz + cw) [4a4] and is therefore general. Q.E.D.

 The previous lemmas provide exactly what is needed to verify the claim and the

 proof of the following is complete.

 PROPOSITION 5. The map 0: P3 z P(V) is a regular map which is etale away
 from the fixed point [1, 0, 0, 0] and separates the orbits of (ar).

 COROLLARY 6. The image Z of P3 under the map X$ is the quotient of P3

 under the action of (a), and is smooth except possibly at 0([1, 0, 0, 0]).

 COROLLARY 7. There exists a smooth quintic surface Y in P3 which is invari-

 ant under (a).

 PROOF. By Bertini's theorem, there exists a smooth hyperplane section X of
 Z in P(V) since Z has only one isolated singularity. The quintic surface is the

 pull-back of X to P3. Q.E.D.
 Of course, the surface X is the quotient of Y by (a) and is the alleged nonclassical

 Godeaux surface. It remains to compute the invariants of the general such X. Let

 ir: Y -* X be the quotient map. By [1, Theorem 2.1],

 Z5 = /5 -ker(ir: PicX -* PicY),

 where G denotes the Cartier dual of a finite group scheme G. This is precisely

 PicT(X), since Y is simply connected and HO(Y, Q') = 0 (see [1, Example 2.3]).
 Therefore, H'(X, Ox) has dimension one. Since Xr is etale, c2(X) = c2(Y) = 11,

 and Ky = r*Kx, so that Kk2 = K2 = 1. By Noether's formula X(Ox) =1, so
 pg (X) = 1 and Pa (X) = 0.

 Classical Godeaux surfaces have been constructed in all characteristics by W.

 Lang [2]. I wish to thank him for suggesting this problem. I am also indebted to
 M. Artin for a helpful conversation.

 REFERENCES

 1. S. T. Jensen, Pward groups of quotients by finite commutative group schemes, Math. Scand. 42

 (1978), 197-210.

 2. W. Lang, Classical Godeaux surfaces in characteristic p, Math. Ann. 256 (1981), 419-427.

 DEPARTMENT OF MATHEMATICS, COLORADO STATE UNIVERSITY, FORT COLLINS,

 COLORADO 80523

 Current address: Department of Mathematics, Tufts University, Medford, Massachusetts 02155

This content downloaded from 
�������������129.82.95.71 on Fri, 22 Apr 2022 22:18:50 UTC�������������� 

All use subject to https://about.jstor.org/terms


	Contents
	image 1
	image 2
	image 3

	Issue Table of Contents
	Proceedings of the American Mathematical Society, Vol. 91, No. 1 (May, 1984), pp. 1-172
	Volume Information
	Front Matter
	Higher Whitehead Groups of Certain Bundles Over Seifert Manifolds [pp. 1-5]
	Discrete Ordered Sets whose Covering Graphs are Median [pp. 6-8]
	Nonclassical Godeaux Surfaces in Characteristic Five [pp. 9-11]
	Abelian p-Groups A and B Such that  Reduced [pp. 12-14]
	Totally Zippin p-Groups [pp. 15-18]
	Universality of Small Lattice Varieties [pp. 19-24]
	A Finite Global Azumaya Theorem in Additive Categories [pp. 25-30]
	Cubic Subfields of Exceptional Simple Jordan Algebras [pp. 31-36]
	A Formula for Ramanujan's Tau Function [pp. 37-40]
	Restricted Lie Algebras with Semilinear p-Mappings [pp. 41-45]
	Path Derivatives and Growth Control [pp. 46-48]
	Hyperbolicity of a Complex Manifold and Other Equivalent Properties [pp. 49-53]
	Extreme Points of Subordination Families with Univalent Majorants [pp. 54-58]
	The Spectral Diameter in Banach Algebras [pp. 59-63]
	Equivalence of the Green's Functions for Diffusion Operators in R: A Counterexample [pp. 64-68]
	Bloch Constants for Meromorphic Functions Near an Isolated Singularity [pp. 69-72]
	Extreme Points of a Class of Subordinate Functions [pp. 73-74]
	Criteria for Closedness of Vector Measures [pp. 75-80]
	Approximate Unitary Equivalence of Power Partial Isometries [pp. 81-84]
	Oscillation of Linear Second-Order Differential Systems [pp. 85-91]
	The Lorentz Space as a Dual Space [pp. 92-94]
	Maximal and Minimal Solutions to a Class of Elliptic Quasilinear Problems [pp. 95-101]
	Boundary Behaviour of Level Curves of Harmonic Functions [pp. 102-104]
	Curvature and the Backward Shift Operators [pp. 105-107]
	On a Conjecture of M. S. Robertson [pp. 108-110]
	Additivity of Measure Implies Dominating Reals [pp. 111-117]
	Nonseparating Almost Continuous Retracts of I [pp. 118-122]
	A Complement Theorem for Shape Concordant Compacta [pp. 123-132]
	A Tower of Spectra that Realizes a Chain Complex [pp. 133-138]
	A Fixed Point Theorem for Inverse Limits of Fans [pp. 139-142]
	䄠䝥湥牡汩穡瑩潮⁯映瑨攠卩敲灩ń獫椠周敯牥洠孰瀮‱㐳ⴱ㐶�
	Most Maps of the Pseudo-Arc are Homeomorphisms [pp. 147-154]
	Two Problems of Dowker [pp. 155-158]
	Alexander Modules [pp. 159-162]
	Every Mapping of the Pseudo-Arc Onto Itself is a Near Homeomorphism [pp. 163-166]
	䄠乯瑥⁯渠Šč数楮❳⁔桥潲敭⁛灰⸠ㄶ㜭ㄷそ
	A Correction to "Arens Regularity and the Algebra of Double Multipliers" [p. 171]
	Erratum to "A Maximal Realcompactification with 0-Dimensional Outgrowth" [p. 172]
	Back Matter



