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Abstract

In this paper we construct a moduli space for marked rational elliptic surfaces of index two as a
non-complete toric variety of dimension nine. We also construct compactifications of this moduli space,
which are obtained as quotients of Al2 by an action of Gf’n.
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1. Introduction

We say a smooth and projective rational surface Y is a rational elliptic surface (RES) if Y
admits a relatively minimal fibration £ : ¥ — P! whose generic fiber is a smooth curve of
genus one. We do not necessarily assume the existence of a global section. If Y is a rational
elliptic surface, then there exists some m > 1, called the index of the fibration, so that £ is
given by the anti-pluricanonical system | — m Ky|. Moreover, m = 1 if and only if £ admits a
global section and whenever m > 1 there exists exactly one multiple fiber in Y, which is of
multiplicity m (see e.g. [6, Chapter V, §6]). In this paper we are interested in the case m = 2.

Rational elliptic surfaces of index m can be realized as a nine-fold blow-up of P2, where
the nine points are base points of a Halphen pencil (of index m) [6, Theorem 5.6.1] — these
are pencils of plane curves of degree 3m having nine (possibly infinitely near) base points of
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multiplicity m. The multiple fiber corresponds to the (unique) cubic curve through the nine
points. Any RES of index m comes with a rational m-section 6, which can be taken to be the
exceptional curve of the last of the nine blowups. It is not uniquely determined by &. If ¥
is a RES of index m with a given rational m-section €, we may contract all components of
fibers that do not meet 6, obtaining an elliptic surface ¥ having only rational double points
(i.e., double points of type ade). Doing this produces in a canonical way an elliptic surface
on which the m-section is relatively ample, and is the model that appears naturally in the
constructions given below. We will call the pair (Y, #) a marked RES of index m.

Counting parameters, we see that marked RESs of index one (also called Weierstrass
fibrations) depend on 8 parameters — these are parametrized by an open subset of the
Grassmannian G(2, 10) of pencils of plane cubics. However, the construction of the Jacobian
surface shows that marked RESs of index at least two depend on 9 parameters. Essentially, we
have the additional choice of the multiple fiber.

In [9] the moduli space of marked RESs of index one was constructed via geometric invariant
theory (GIT). A different compactification was later obtained in [8], where it is shown that the
moduli space is rational. More recently, modular compactifications via stable slc pairs have
also been constructed in [1-3]. In this article we address the problem of constructing a moduli
space for marked RESs of index two.

When the choice of a marked bisection is not part of the classification problem, then a
possible approach to constructing the corresponding moduli space has been considered in [10].
The addition of the additional data of the chosen bisection — the marking — seems to rigidify
things so that all the RES’s of index two are semi-stable. This is not the case for the unmarked
analysis [10] nor was the case for the RES’s of index one (the Weierstrass fibrations considered
in [9]).

First, in Section 2, we describe each marked RES of index two as a double cover of P! x P!,
and reduce the moduli problem to that of the branch curve. Next in Section 3 we normalize the
branch curve and prove that the moduli space corresponds to a quotient of A'® by G,, x Z/27Z,
which is realized as an explicit toric variety in Section 4. This leads to a non-compact quotient
space though.

We then relax the normalization of the equation for the branch curve and prove in Section 5
that the moduli space also corresponds to a specific quotient of A'> by G . This leads to
a multitude of toric GIT quotients, and we identify those that compactify the quotient space
obtained with the first approach. The description is completely explicit, defined by a fan with
prescribed cones. In Section 6 we also identify the unstable loci and show that all branch curves
that give rise to RESs of index two are stable points for the action. Our main result may be
presented as follows.

Theorem 1.1. A moduli space for marked RES’s of index two exists as a non-complete toric
variety of dimension 9, obtained as a quotient of a single affine toric variety by an action
of G,,. Compactifications of this moduli space exist as complete toric varieties, obtained as
quotients of A'? by an action of G>

m:*

2. RES of index two as double covers of P! x P!

Consider P! x P!, and let i (resp. f) denote the class of a section (resp. of a fiber). Let F
be the non-minimal rational surface obtained from P! x P! by blowing-up a point p and then
blowing-up an infinitely near point (of order 1) at the intersection of the exceptional curve and
the proper transform f of the fiber through p.
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Let e, (resp. e;) denote the class of the second exceptional divisor (resp. the proper
transform of the first); note that f ~ f — 2ey — e;. Choose a reduced member C €
|4h + 3 f — dey — 2e;| = |4h + 3 f + 2e, + e1| with only ade singularities, that does not have
either f or e; as a component. We will show (Theorem 2.3) there is a 1 — 1 correspondence
between isomorphism classes of marked RESs of index two and isomorphism classes of such
curves C.

The condition that C does not contain e; as a component means that the singularity of C
at p is a double point. In fact C corresponds to a curve on P! x P! of bidegree (4, 3) with a
tacnode tangent to the fiber through p. In particular, when C is irreducible, then by the genus
formula, asking for C to have only ade singularities is redundant.

Starting from F and C as above, let 7 : Y’ — F be the double cover map with branch locus
Aequalto C+ f+ey ~ 2Qh+2f+ey+e1) ~ 22h+2f —3e,—e;). Since (C- f) = (C-e;) =0
the branch locus is smooth along f and e;.

The pencil | f| lifts to an elliptic fibration on Y’, since (f - A) = 4. The elliptic fiber lying
over the fiber through p is 7*(f + e + 2e»).

Now, because Kp = —2h — 2 f + 2e; + e, it follows that

Ky =n*Kp + A = 7*(Kp + A)2) = n¥(—e))

where A’ is the ramification locus of . Thus, by adjunction, the curve E := *(e;) is a curve
of genus one.

The curves f and e lift to (—1) curves Dy and D, respectively in Y'; let u : ¥/ — Y
denote their contraction. Then u*(u.Ky) = Ky — Dy — D, and Ky = Ky, and using the
projection formula we obtain

Kj = (uKy) = (Ky = D1 — D) - Ky = 0% (—e€2) - m(—e2) +2 =265 +2 =0

which implies that Y is a (relatively minimal) rational elliptic surface of index two with multiple
fiber 2u, E. Note that the genus of E = m*(e;) does not change under .

Consider finally the proper transform A on F of the horizontal section through the point p;
that is, & ~ h — e — e>. We note that C cannot have hasa component, otherwise the residual
curve C —h would satisfy (C —h)-e; = —1, so that it would have to contain e; as a component
as well, which we are forbidding. Hence / is not part of the branch locus of the double cover.
We have h2 = —1 and (h - C) = 1, so that (h - A) = 2. These two intersection points are
distinct: one is the intersection point with C and one is the intersection point with e;. Hence
0 = *(h) is a bisection of the elliptic fibration. It survives in the blowdown to Y as a smooth
rational bisection with self-intersection —1.

Conversely, we can prove

Proposition 2.1. Every rational elliptic surface of index two Y — P! arises this way. In
particular, it fits in a diagram:

y <Xy

NLZ:I

IF—W>]P’1 x P!

Proof. Let Y — P! be a RES of index two with multiple fiber 2Fy, and choose a smooth
rational bisection, say 6. On (Pic of) the generic fiber Y, we can consider the involution
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p — 06— p, which extends to an involution ¢ of Y and whose fixed locus consists of a 4-section
and two isolated points lying on Fj. The rational bisection passes through one of the two fixed
points for ¢. (In fact, by Riemann—Roch 6 restricted to Y;, we have a degree two map Y, — P!
and the involution we are considering is simply the corresponding covering involution. Then,
by Riemann-Hurwitz, on each smooth fiber the fixed locus consists of four points, hence there
exists a 4-section in Fix(t). Note however that such 4-section must meet F; at two points, and
thus we have two other isolated fixed points lying on Fj.)

Denote by p : Y’ — Y the blow-up of these two points and by ¢ the induced involution on
Y'. The quotient surface F = Y’/ is a rational surface which comes with a P!-fibration to P!
and by construction the branch locus is of the form C + §; + 6,, where C is a 4-section (which
is the image of the 4-section on Y) and §; are the images of the two exceptional curves. We
may assume that §; corresponds to the fixed point through which the given rational bisection
passes. In particular, 8,2 = —2. The curve e in F which corresponds to Fj is a (—1)-curve so
we can contract it; both §; and 8, will then become (—1)-curves. We then contract §;; at this
point the curve §, will be such that 8% =0, and gives a fiber of the P!-fibration. The curve C
now has a tacnode at a point p on §,, with a vertical tangent. The bisection descends to the
horizontal section of Fy that passes through the tacnode point p. Hence we have a birational
morphism ¢ : F — Fy for some N. We claim that up to reversing the roles of §; and §,
we must have N = 0 and the branch curve (hence C) is as described at the beginning of this
section. If we choose {f, h, e, §1} as basis for Pic(F) then C ~ 4h +3 f —4e —28; and C does
not contain §; or &, or the horizontal section through p. O

Remark 2.2. More generally, if S — P! is any elliptic surface with two multiple fibers of
multiplicities 2m; and m, (m, odd) and a multisection of degree 2m m, (gcd(2my, my) = 1),
then one can construct another elliptic surface J"1"2(S) — P! whose generic fiber consists
of the set of line bundles of degree mm, on the generic fiber of S. This surface comes with
a natural involution determined by the multisection and it has exactly one multiple fiber of
multiplicity two. In [7], Friedman shows that J™1"2(S) can be described as a branched double
cover of the surface obtained by blowing up ' twice at a point in a fiber. The branch curve lies
in the linear system |40 + (2k 4+ 1) f — 4e, — 2e;|, where o is the negative section, f denotes
the class of a fiber, e; and e, are the proper transforms of the exceptional curves, and the
numbers k and N satisfy p,(S) = k — N — 1. In Proposition 2.1 we consider the particular
case when S is rational, m; = m, = 1 and hence S ~ J"1"2(S).

The above explicit description is a “bottom up” one in some sense: one starts with the branch
curve with certain prescribed singularities and constructs the elliptic surface as a double cover.
It may be more natural, and more appropriate in making constructions in families, to have
a“top-down” approach as well. With this in mind, we present the following description of how
marked RES’s of index two can be realized as double covers of P! x P!.

Fix the pair (Y, 0) as above. Denote by Fy the (reduced) fiber that is the double fiber, so
that the fiber class is F = 2Fy; Fj is also the anti-canonical class —Ky. Note that since 0 is
smooth and rational, and 6 - Ky = —1, we must have 62 = —1. Let p = 0 N Fy be the point
of intersection of 8 with the double fiber; since 6 - F = 2, we have 6 - F; = 1, so that 6 and
Fy meet transversally at p.

Since F, does not move on Y, but 2Fy = F does move in a base-point-free pencil, the
normal bundle of Fj in Y is a two-torsion class 7 in the Picard group of F,. We may write 7
as a divisor, uniquely as ¢ — p, where p is the point of intersection with 8 as noted above, and
q is another (distinct from p) point on Fy. (i.e., g is uniquely determined by the pair (Y,0).)
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We note that the line bundle Oy(0) has trivial H', which follows from the restriction
sequence to @, noting that 62 = —1:

0— Oy — O35(0) — Oy(—1) — 0;

since the left and the right sheaves have trivia} H', so does the middle sheaf.
Consider now the divisor class 6 + F on Y. We have the short exact sequence

0— 03(0) — O30 + Fo) — Og(p+7) — 0

which then shows that H 1((’),7(9+F0)) = 0 too, since the left and right sheaves have trivial H'.
Since the left and right sheaves have one-dimensional H°, we conclude that 2°(O5(8 + Fy)) =
2, so that |0 + Fy| is a pencil on Y.

This pencil has no fixed components. Indeed, the only possible fixed components are the
curves 6 and Fj, and if either one is fixed, the residual (which is the other one) would move
in a pencil, and neither curve does. Since 02 = —1,6-Fy = 1, and FO2 = 0, we see that
(6 + Fy)*> = 1, so there is exactly one simple base point to the pencil |6 + Fp|.

That base point must be the point g; the restriction sequence to Fy above shows that 6 + Fj
restricts to Fy in the sheaf Op,(p + ) = OF,(¢q), which has a unique section (that vanishes at
the point ¢). Hence every section of Oy (6 + Fy) vanishes at g.

The general member of |6 4+ Fy| is a smooth genus one curve, passing through ¢. (This
follows from adjunction since Ky = —Fy so that (6 + Fy)- (0 + Fo+ Ky) = (0 + Fp)-6 = 0.)

If we blow Y up at the point ¢, we obtain a rational surface Y, and the pencil |6 + Fp| lifts
to a base-point free pencil |E| whose general member is curve of genus one; we have E? = 0
now.

We now have two maps from ¥ to P': one comes from the original elliptic fibration (given
by the linear system |F|); and the other comes from the pencil |E|. This gives a regular map
7Y — P! x Pl

The general fiber of 7 is obtained by intersecting two general elements of the two pencils;
and since E - F = (0 + Fy) - F = 2, we conclude 7 is a double cover.

Hence we have proved the following.

Theorem 2.3. There is a 1 — 1 correspondence between isomorphism classes of marked RESs
of index two and isomorphism classes of curves C in P! x P! of bidegree (4, 3) with a double
point tacnode with vertical tangent, such that C does not contain the fiber or the horizontal
section through the tacnode, and has only ade singularities.

3. Normal forms for the branch locus

The curve C is (the partial resolution of) a (4, 3) curve with a double point singularity which
is at least a tacnode at p (i.e. locally analytically we have w” 4 z* = 0) and which is tangent to
the fiber f at p (so that when resolving the singularity we blow-up a point in the intersection
of the fiber and the first exceptional curve).

Therefore, we may choose coordinates ([x : y], [« : v]) in P! x P! which places the point p
at x = u = 0 and the fiber f through p is defined by u = 0. The curve C is then given by a
bihomogenous equation fc := Y a;;u'x/v3~y*=/ = 0 of degree four in [x : y] and of degree
three in [u : v], and C has the required tacnode at p = ([0 : 1], [0 : 1]) with vertical tangent
(u = 0) if and only if

dgo = do1 = A = agz = ajg = ay; = 0.
5
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Moreover, we may choose the coordinates so that the curve C meets the horizontal section
through p (now defined by x = 0) at the point x = v = 0; hence we may also assume that
az) = 0.

Furthermore,

3

Lemma 3.1. The curve C must contain the monomials u*vy* and x*v® with nonzero

coefficients.

Proof. We have noted above that C cannot contain either the vertical fiber or the horizontal
section through p as components. If ay = 0, then all a;o = 0 in f, so that x divides fc- and
the horizontal section would be a component. If aps = 0, then all ay; = 0 in fc, so that u
divides fc and the vertical fiber would be a component. [

There is another normalization of f¢ to exploit. Up to changing the coordinates [x : y],
but fixing [0 : 1], we can further assume a;; = 0. In fact, a transformation of the form
[x : y] — [ax : y] where ¢ = —ay;/4ax) makes ap; vanish.

All these reductions tell us we can organize the coefficients g;; in a matrix of the form:

U3 MU2 lztzl} M3

4
X dps di4  Qz4 434

X}y 0 a3 an axn
%y 0 an an an
xy3 0 0 0 axn

y4 0 0 ano 0

We define Q = {20,04, 12, 13, 14,22, 23,24, 31,32, 33,34} to be the set of (double)
indices appearing in the exponents of the terms for possible fc, as above.

At this point the set of automorphisms of P! x P! which preserve this normal form for f¢
are of the form ([x : y], [u : v]) — ([tx : y], [su : v]) for nonzero s, t € G,,. Of course in the
vector space containing such polynomials f¢ we also have the homothety (sending f¢ to rfe
for r # 0) as well.

We will call such an equation f¢ allowable if ayy # 0, aps # 0, and f¢ = 0 has only ade
singularities otherwise. This proves the following.

Proposition 3.2.  Define the action of G2 on A (with coordinates {a;j | ij € Q}) by
(r,s,1) - a;; = rsitjaij. The isomorphism classes of possible branch curves C are in 1 — 1
correspondence with the allowable G -orbits of this action.

We have yet one more normalization to propose. Since by Lemma 3.1 the coefficients ay
and ag4 are nonzero, we may use elements of G?n to make these two coefficients equal to one.
The subgroup of G3, that fixes these coefficients is equal to the set of elements of the form
(r,s,1) = (174, 12, t); these form a subgroup isomorphic to G,, x Z/27Z.

Using this further normalization, we have the following. Define O = Q \ {20, 04} =
{12, 13, 14, 22, 23, 24, 31, 32, 33, 34} to be the set of remaining indices.

Proposition 3.3. Define the action of G,, x Z/27Z on A' (with coordinates {aij 1ij € o))
by (t € Gy, e e {£1})) - a;; = t2i+'7_4eiaij. The isomorphism classes of possible branch curves
C are in 1 — 1 correspondence with the allowable G,, x 7, /2Z-orbits of this action.
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4. The G,, x Z/27Z quotient of A°

In order to construct the quotient A'°/(G,, x Z/27) we can first take the quotient by the
Z/2Z action; for this we identify the invariants for that action. Since the element (1, —1, 1)
acts on g;; trivially if i is even, and as multiplication by —1 if 7 is odd, it follows that a Laurent
monomial ]_[l.j a?}” is invariant if and only if miy + mi3 + m4 + m3; + m3o + m33 + may is
even. Therefore, we have the following generators for the invariant Laurent monomials:

w12 =0122
w,-jzaij/alg 1]6{13, 14,3],32,33,34}
Wij = ajj l] [S {22, 23,24}

The only condition on a Laurent monomial in the w;; variables is that, as monomial in the
a;; variables, it has all nonnegative exponents. Hence we see that the quotient A'*/(Z/27) is
isomorphic to the affine toric variety ¥ = Speck[N], where N is the monoid of monomials
w?}j whose exponents {n;;} satisfy the following ten inequalities

ij
2n12 — N3 — g — N3 — N3y —n33 —nag >0 (D
ni >0 ij #12 (@)
That is,
k[N] = k[wa, waz, wagl[wiz, wpw;j, wpw;jwy] = klaxn, axs, ax, lla;jay]

for ij, kl € {12, 13, 14, 31, 32, 33, 34}.

Now, recall the elements (#7*,7%,7) act on a; as multiplication by r*7/=%; this same
exponent applies to the induced action on w;;. Thus, regrading the ring k[N] so that w;; has
degree 2i + j — 4, we have that

AY/(G,, x Z)27) ~ (A" )(Z/27)))G,, =~ Y G, ~ Projk[N]

In particular, the basic open sets of A'°/(G,, x Z/27Z) are determined by inverting the
generators of k[N] of strictly positive degree, and then taking Spec of the degree zero part
of the corresponding fraction ring.
Given a generator f = [], jcd w;lj"j € k[N], a Laurent monomial HUGQ wipjij lies in the
degree zero part of the fraction ring k[N][1/f] if and only if the exponents {p;;} satisfy

D Qi+ j—4p; =0

ijeQ
(which allows us to solve for p;3 in terms of the other exponents); in addition we must have:

2p12+ pra+2pn +3ps+4pu+2p3 +3pn+4ps3+5pu >0 (3)
whenever 2n1, = n13 + nis + 131 + 13 + 133 + nay;

2p1a+2pn +3ps+4pu+3p3+4pn+5p33+6pu <0 4)
whenever n3 = 0; and

pij =0 (5)

for ij # 12,13 whenever n;; = 0.

Therefore, if one fixes the monomial f to be inverted, we obtain conditions on the p;;’s that
yield an affine toric variety; these toric varieties can then be glued together to give the toric
description of Proj k[N]. For this, it is enough to invert the generators of N of positive degree.

7
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Specifically, we work in the Z° < R° with coordinates indexed by Q \ {13} =
{12,14,22,23, 24,31, 32, 33, 34}. Given a positive degree monomial generator f, the relevant
inequalities (3), (4), (5) that apply define a cone (as the intersection of the half-spaces given by
these conditions) that determine the monoid and thus the coordinate ring of that open subset
of the Proj. The coefficients of these inequalities (in terms of the p;; coordinates) give vectors
in the dual space that define the dual cones as their convex hull; this viewpoint realizes the
Proj as being defined by the familiar fan of dual cones.

The following table gives the relevant cones for each positive degree generator of N.

generator of k[N] inequalities that define the cone
wyj, j =2,3,4 (3), (4), pre = Oforkl #12,2j
wipWi3 Or w%2w13 Pre = O for k¢ #* 12
wiw;j orwiw;;, ij € {14, 31, 32,33, 34} (4), pre > Oforke # 12, ij
wlzw%3 (3), pre = Oforkl # 12
WiW13Wij, l] (S {14, 31, 32, 33, 34} (3), Pre = Ofor k¢ ;ﬁ 12, l]

wpw;jwy i, ij,i'j € {14,31,32,33,34}  (3), (4), pre = Oforkl # 12,ij,ij'

The reader will note that some of these cones are the same; that is not a complete surprise.
In addition, some cones are subsets of others, which correspond to larger open subsets of the
Proj. Hence for the Proj construction we can focus on the minimal cones only. There are nine
of these: the three in the first row, the one in the fourth row, and the five in the sixth row (when
i’j’ = ij) in the above table, and are described by the following:

Cy3 :(3)and py¢ > Oforkl # 12
Cij(ij #12,13):(3), (4), and px¢ > Oforkl # 12, i

(The rationale for the indexing will become clear in the next section.)

This Proj is not a complete variety however; the monomial w;, has degree zero and appears
in every toric coordinate ring. It gives an affine invariant of the marked RES of index two Y,
which determines the J-invariant of the (reduced) double fiber and has the following geometric
interpretation.

Considering Y as a double cover of P! x P! as in Section 2, we see that, on the second
blowup F, then we have an affine coordinate n on the second exceptional curve e, such that
the four branch points on e; are at 0, oo, and the two roots of the quadratic equation

7+ won+1=0

This implies that the genus one curve Fy that becomes the reduced double fiber has J-invariant
equal to 33 — wh)/(4 — w}y).

The discriminant of the quadratic is seen here as giving the criterion for the double fiber
to be singular: when wj, = £2, the double fiber must be of type I,, for some 1 <n <9 [6,
Proposition 5.1.8].

In any case the construction, along with Proposition 3.3, gives us the following; it is
essentially the first part of Theorem 1.1.

Theorem 4.1. The subset of Proj(k[N]) corresponding to orbits of allowable branch curves
is a moduli space for marked RESs of index two.

5. The G2, quotient of A2

Our goal in this section is to present the analysis of the G, quotient of A!? with the goal
of compactifying the moduli space constructed in the previous section.

8
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For this analysis we generally follow the prescriptions of Chapter 12 of [5] which we find
convenient; the reader may also consult Chapter 14 of [4].

The GIT quotient of the (diagonalized) action of G2 on A!? as described in Proposition 3.2
is a toric variety which depends on the choice of a G -linearization L, of the trivial line
bundle, which is determined by a character x of G2. Such a character may be written as
(r,s,t) — r*1s°2¢t* and depends on the three integers «;.

Briefly, the construction is as follows. Given a monomial f = ]_[i jco a;;ij , the action of an
element (r, s, 1) € G, is of the form (r,5,1) - f = rP1sP2t% f where the B;’s are determined
by

111 1 1 1 11 111°.1 Bi
Am=(201 112223333 m=|s (6)
042342341234 Bs

1
where m = (mag, mos, M2, M3, Mya, Moy, Ma3, Mog, M31, M3, M33, M34)" .
Such a monomial is then x-homogeneous of degree d if B; = du; for each i, which gives
the equation

A-m=du; N

these monomials form the ring of invariant sections of the linearized line bundle L, which
determines the toric GIT quotient.

In particular, if we define S, to be the space of monomials a” = [, ico a:';-"j , where m is
a solution to (7) with m;; and d non-negative, we obtain an isomorphism of finitely generated
k-algebras

kIS) = @D kIS = @D (A, L34

d>0 d=0

and the GIT quotient A'%// X G2 determined by the character x is the Proj of this graded ring.

Note that the rows of A determine a particular embedding G, < G2, hence A induces
a map between the corresponding character groups, and we have the following short exact
sequence

Bt

0 M 72 A

YA 0 (®)

where B is the matrix whose rows give us a basis for the kernel lattice of A, which we denote
by M, and B’ denotes the transpose of B.
Concretely, we may take as B the matrix

By By B Bis By By By By By By By By

-1 -1 2 0 0 0 0 0 0 0 0 0
0 0 1 -2 1 0 0 0 0 0 0 0
-1 0 2 =2 0 1 0 0 0 0 0 0
-1 0 3 -3 0 0 1 0 0 0 0 0 9
-1 0 4 -4 0 0 0 1 0 0 0 0 ©)
-1 1 2 =3 0 0 0 0 1 0 0 0
-1 1 3 -4 0 0 0 0 0 1 0 0
-1 1 4 -5 0 0 0 0 0 0 1 0
-1 1 5 -6 O 0 0 0 0 0 0 1

where, in the first row above, we have simply given names to the columns of the matrix,
corresponding to the coordinates in Z'? given by the (double) indices in the set Q. These twelve

9



R. Miranda and A. Zanardini Indagationes Mathematicae xxx (Xxxx) xxx

columns of B will determine the cones of the fan that exhibits the GIT quotient A'?//, G
as a toric variety. We note that the final ten columns correspond exactly to the conditions (3),
(4), (5) that were found in our toric description of the Proj defining the quotient of A'° by the
G x Z/)27 group.

5.1. Support sets and the semistable locus

Given a monomial a” which lies in S; for some d, we define D(m) to be the invariant open
set consisting of all the points of A'> where a”* does not vanish. Thus, by definition, we have

AIZ)YY _ U U D(m)
d>0a"eS,

Since D(im) only depends on the set of indices ij for which m;; # 0, it is convenient to
define the support of a monomial a” to be the subset of the set of indices Q where the variable
a;; appears with a strictly positive exponent:

Supp(a™) = {ij | m;; > 0}.

To any subset I C Q we can then associate an invariant open D(I) C A!? consisting

of points with non-zero coordinates indexed precisely by /. And since D(m) = D(I) for
I = Supp(a™), and D(I) C D(J) if J C I, it follows that
@aHy=J b

minimal / €Supp(S)

where Supp(S) denotes the poset formed by the set of all support sets of all invariant monomials
in k[S].

Now, if 7 is a support set for an invariant monomial in S, for some d, then D(]) is an affine
variety with coordinate ring isomorphic to k[Z;], where Z; is the monoid of monomials g™
such that m;; > O precisely when ij ¢ I.

Since D([) is invariant under the action of G2, we can consider the corresponding quotient
D(1)/G3,, whose coordinate ring is the subring of k[Z;] generated by invariant monomials. A
monomial g € k[Z,] is invariant if and only if A -m = 0, i.e. m lies in the kernel lattice
M. Thus, letting M; = {a™ € k[Z;]; m € M} we see that the coordinate ring of D(I)/an is
k[M;], which we can easily recognize as the coordinate ring of an affine toric variety.

Concretely, let {e;;} denote the standard basis of Z'? (indexed by Q) and let {e*} denote
the dual basis. A monomial @™ lies in k[M;] if and only if m;; = e};(m) = 0 whenever ij¢l.
That is, M; is determined by an intersection of half-spaces — a cone The dual cone, which
we denote by oy, is the cone generated by the columns of B which are indexed by Q \ I.

The set of all cones {07} where I runs over all the minimal support sets in Supp(S) form a
fan X, in M* ® R ~ R? and the quotient (A'?)**//,G3 is the toric variety associated to this
fan.

When Y, is simplicial there are no strictly semi-stable points [5, Proposition 12.1] and
(A2 // Xan = (A?)y/ Xan is a geometric quotient.

5.2. Support sets and the secondary fan

As the character yx varies, the GIT quotient A'?//,G> changes, but there are only finitely
many distinct quotients up to isomorphism. These are parametrized by finitely many disjoint

10
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(0,4) (3:4)

3:1)

Fig. 1. Chambers.

chambers lying in a fan whose support is the convex cone generated by all the columns of A.
This fan, called the secondary fan, lives inside Hom(an, G,) ®R ~ R3, and on each chamber
the quotient A'?//, G2, does not change. Since each column of A has first coordinate equal to
one, this chamber decomposition can be represented by Fig. 1:

Given any character x we can then identify the corresponding support sets using Lemma 5.1
below. For a finite set of points P = {g;} C R?, we define the strict convex hull of the set P
to be the set of points of the form Zi r;gi wWhere Zi r; = 1 and each r; is strictly positive.

Lemma 5.1. Given a character x : (r,s,t) — r®s2t®, with oy > 0, let b = /o) and
c = a3/ay. A subset I C Q is a support set for an invariant monomial in Sy for some d if and
only if the point (b, c) lies in the strict convex hull of {(i, j); ij € I}.

Proof. We note that all numbers involved are rational.

First suppose I = Supp(][; el a?}" ), where each m;; appearing here is at least one, and the
monomial is invariant. The invariance implies that we have Eq. (7), which we may then write
as

1 o1
E mi; i =d (6%}
ijel J o3

Dividing all quantities by do; gives

1
> ) -
—~ day | .
ijel ]

o S =

11
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If we define r;j = m;j/doy, we have 3, rij =1, and 3., 73 <;> = (i), which shows

that the point (b, ¢) € R? is in the strict convex hull of the points (i, j) in I as required.
Conversely, if (b, ¢) is in the strict convex hull, then by definition there are strictly positive
rational numbers r;; such that

1 1
Zl’ij i = b
ijel Jj c

and multiplying through by «; gives

1 o
E Ol]l"l‘j I = | o
ijel J o3

Now choose d so that m;; = da,r;; € Z for all ij € I. Multiplying through by d gives Eq. (7)
and so the monomial [];;.; a;;” is in Sy, and it is invariant. The strictness gives us that r;;,
and hence m;;, is strictly positive for each ij € I, and so [ is indeed the support set of this

monomial. [J

We also prove

Lemma 5.2. [If I is a minimal support set for an invariant monomial in Sy for some d, then
7] <3.

Proof. Suppose |/| > 4. Let P be the polygon which is the convex hull of /, so that (b, ¢) is in
the interior of P. Let py, ..., pi be the vertices of P, in clockwise order around the boundary
of P. Note that each p; is in I. If (b, ¢) lies on one of the interior line segments of P joining
p1to p; (for3 <i <k—1),then J = {p;, p;} contains (b, ¢) in the interior of its strict convex
hull (the line segment), and so / is not minimal.

If (b, ¢) does not lie on any of those interior line segments, then (b, ¢) must be in the interior
of one of the triangles with vertices pi, p;, pi+1 for some i with 2 < i < k — 1 (where we
set pr+1 = p1). Hence those three vertices give a smaller set of indices than / which are in
Supp(S), and again we conclude that / is not minimal. [J

In particular,

Proposition 5.3.

(i) (A2y//,G3 = @ for every character x such that the point (b, c) lies outside the
quadrilateral in Fig. 1.
(ii) (Alz)”//x an = (Alz)f/x G; for every character x such that the point (b, ¢) does not
lie in one of the line segments in Fig. 1.
(iii) The semistable locus (Alz)‘j(‘Y always contains the open subset

X = {(aij)ijeq; aos, ax, asi, azs # 0}

for any choice of character x corresponding to a point (b, ¢) that lies in the interior of
the quadrilateral in Fig. 1.

12
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Proof.

(i) It follows from Lemma 5.1.

(i1) It follows from Lemma 5.2 and [5, Proposition 12.1]

(iii) It suffices to observe that for any such character x, if (a;;)ijeg € X, then (a;;);jep cannot
be unstable. In fact, we can always find a support set I so that (a;;)ijep ¢ V(I). This
is because either {04, 20, 31} or {04, 31, 34} must be a support set for some invariant
monomial, independent of the choice of x. O

5.3. The quotients that compactify the G,, x Z/27 quotient

As noted at the beginning of this section, one of our goals in analyzing the full G}, quotient
via the techniques described in the first two sub-sections was to compactify the moduli space
provided in Section 4 obtained by considering the G,, x Z/2Z quotient. There are a priori
hundreds of possible chambers for the choice of character that gives a quotient, and we will
focus on those chambers in Fig. | whose corresponding quotients do exactly that: compactify
the G,, x Z/27Z quotient we described in Section 4.

In order to do this, we first define index sets /;; (for ij # 04, 12, 20) by

I;; = {04,20,ij}.

Suppose that /;; is a minimal support set for a character x. It is easy to check then that the
corresponding cone cvr,l.j is exactly the cone C;; described in Section 4, and conversely: in order
to obtain the cone C;;, we must have /;; as a minimal support set.

To be explicit, indexing the rows of B by {12, 14, 22, 23, 24, 31, 32, 33, 34} we obtain that
for ij # 13, the cones 6;”. are determined by the inequalities (3) and (4) from Section 4, plus
the seven inequalities py; > O for kI # 12, ij. This exactly corresponds to the cone denoted by
C;; in that section. For I3, we have that 6113 is determined by (3) and the eight inequalities
pre = 0, for k€ # 12; this is the cone which we called Ci3 in the previous section.

Therefore in order that a given character gives a quotient which contains all the cones
corresponding to the G,, x Z/27Z quotient, all of these index sets /;; must be minimal support
sets. This forces the corresponding point (b, ¢) to lie in the intersection of all of the triangles
whose vertices are the elements of these /;;. This intersection is the shaded region of Fig. 2
below. Moreover, in order for these index sets to be minimal support sets, we must have the
point (b, c¢) corresponding to the character lying in the strict interior of one of the seven triangles
in this shaded region.

We will not analyze in detail each of these seven quotients. As the character point (b, ¢)
passes from one to the next, the corresponding toric quotient experiences a flip, blowing up
a toric cycle and blowing down in another direction. We do not find any particular reason to
prefer any one of these chambers over the others. Hence we will only analyze two adjacent
ones in detail, the red and blue chambers in the figure; this should illustrate the wall-crossing
phenomenon as the character point moves from one triangle to the other.

5.3.1. The red chamber

Fix a point (b, ¢) in the interior of the red chamber and choose integers o, o and o3
with o; > 0 such that b = ay/a;, ¢ = a3/a; and x is the character (r, s, ) +—> r®1s®2t®,
By Lemma 5.1, the following is a complete list of minimal support sets for some invariant
monomial:

Iij = {04,20,ij} I, = {04,12,ij}
13
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(0,4)& % (3:4)

(1a2) p

»(3,1)

(270)

Fig. 2. Special chambers.

where ij # 04, 12, 20. Thus,
@y = J b
1€Supp(x)

where we define Supp(x) = {/;;, Ii’j}. We denote the resulting toric variety by Xeq.

We have seen that the support sets /;; above give the cones for the quotient obtained in the
previous section. The additional cones that fill out the (complete) fan are the ones defined by
the 7], support sets.

When ij # 13 the cones 61/; are determined by (4) and the following set of inequalities:

P12+ pn+ p+ pu+pst+po+pintpus<0 (10)
pu =0 kI #12,ij (11

while &,]/3 is determined only by (10) and py, > 0 for k€ # 12.

5.3.2. The blue chamber

Consider now any point (b, ¢) lying in the shaded blue chamber indicated in Fig. 2, and
consider the associated character. Again, the corresponding quotient A'?//, G2, compactifies
the quotient from Section 4.

Lemma 5.1 tells us that, for this chamber, the following is a complete list of minimal support
sets for some invariant monomial:

I; = (04,20, ij}, I}, = (04, 12, ki},
I, =1{12,13,mn}, I, = {12, 14, mn}
where ij # 04, 12,20, kI # 04,12, 13, 14,20 and mn # 04, 12, 13, 14.
14
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Note that the support sets I;; are also support sets for the red chamber, hence the same
description applies here. That is, the cones &Iij are precisely the cones C;; from Section 4.

In addition, the cones that fill out the (complete) fan are the ones defined by the remaining
support sets I;;, I, and I . We denote the resulting toric variety by Xpie.

Note that the support sets [, are also support sets for the red chamber and we see that
crossing from one chamber to the other, the cones 61{3 and &,1/4 are replaced by the cones ;7

and 6 , and vice-versa. This completely determines how the corresponding quotients change.

5.3.3. The wall-crossing

If we choose a character y which corresponds to a point (b, ¢) lying over the line segment
joining (1, 2) and (1, 3), then Lemma 5.1 tells us the following is a complete list of minimal
support sets for some invariant monomial:

I={12,13} J={12,14}  I; ={04,20,ij} I, ={04, 12, kI}

where ij # 04, 12,20 and kI # 04, 12, 13, 14, 20.

The cone o; is a common refinement (see e.g. [4, Chapter 3]) of the cone oy, and the cones
oy, > while the cone o, is a refinement of o, and o .

Since the cones o; and o, are non-simplicial the fan X, is non-simplicial and a flip describes
how the quotient A'?// X(an changes as we cross this “wall”.

Adopting the notations borrowed from [4, Section 15.3], we first observe the vectors B;;
(the columns of the matrix B introduced earlier) with ij ¢ I satisfy the relation

ZbijBU = Byy — Boa + By + Bas + Boa +2B31 +2B3 +2B33 +2B34 =0 (12)

Now, if we let J_ = {ij; bi; <0} ={04}, Jo=1{ij; bj; =0} = {14} and J; = {ij; b;; >
0} = O\{04, 12, 13, 14}, we can define the following fans

Yy ={o; 0 xCone(B;j),ij #12,13,ij ¢ J:}

The fan X, has maximal cone o, and the maximal cones of Y_ are precisely the cones
oy . In particular, we obtain a commutative diagram of surjective toric morphisms:

Xred D) XE+ D) UO',{3 Ucf,’%n - XE, - Xblue (13)

o+ P
™ e

Us,
where U, denotes the affine toric variety of the cone o.

Each morphism ¢+ : X4 — U,, is birational with exceptional locus V(o,.), where
oy, = Cone(B;;; ij € Ji) and V(o) is the toric variety of Star(o,,) (as defined in [4,
(3.2.9))]).

Similarly, the vectors B;; with ij ¢ J also satisfy the relation (12) and we can apply the
same kind of analysis as before.

For these indexes, J_ = {04}, Jo = {13}, J. = Q\{04, 12, 13, 14} and

Zﬂ: = {Uv o= Cone(Bij)s l.] 75 127 147 l.] ¢ JIF}?

so that the maximal fan of X, is now the cone or, and the maximal cones of J_ are the cones
oy . Again, we obtain a commutative diagram analogous to (13).
The analysis gives us the following statement, using Proposition 3.2.

15
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Theorem 5.4. Fix (b,c) in the red or blue chambers. Then the corresponding quotient
A2 /x an contains the quotient Proj(k[ N]) constructed in the previous section, and compactifies
that quotient. In particular the subset of these quotients corresponding to orbits of allowable
branch curves is a moduli space for marked RESs of index two.

We remark that for (b, ¢) in any of the shaded regions in Fig. 2 this is still true. We presented
the analysis explicitly for the red and blue regions (and the line segment separating them) to
illustrate the wall-crossing phenomenon in the toric GIT quotients for this situation.

A natural question then is: Given (b, ¢) in the red or blue chambers, what are the curves
being parametrized by the G> quotient, but not by Proj(k[N])? To answer this question we
need to determine what are the points lying in (A!2)*\ |J D(1;;); or, equivalently, we need to
determine when is a point (a;;);jco satisfying one of the conditions below semi-stable.

(i) aps =0
(1]) ay)y = 0
(i) a;; = 0, Vij # 04, 12,20

Our analysis proves the following:

Proposition 5.5. Fix (b, ¢) in the red chamber. Then
A"\ D) = {(@;)ijeo : an = 0anday; # 0}

These conditions imply that the double cover of P' x P! branched over the fiber u = 0
and the curve C defined by the equation ) ,; a;ju'x/ = 0 is no longer a RES of index two.
The condition that ayyp = 0 implies that C splits as the horizontal section defined by x = 0
and a curve of bidegree (3, 3) which has a double point at the ¥ = x = 0 origin, with two
tangents along the two axes. Performing two elementary transformations leads to a rational
elliptic surface with a section (the section is induced from the x = 0 curve in the branch
locus) and the formerly double fiber now is seen to be a fiber of Kodaira type I5.

Similarly,

Proposition 5.6. Fix (b, ¢) in the blue chamber. Then (A'?)**\ \U D)) consists of the set of
points (a;;)ijeo satisfying one of the conditions below

(i) aps = a4 = 0 and ayp - a13 - @y # 0 for some mn # 04,12, 13, 14
(ii) apgs = a3 =0 and ayy - a4 - ayy 7 0 for some mn # 04,12, 13, 14
(iii) aro = a3 = aj4 = 0 and apy - a1 - ay 7% 0 for some kl # 04,12, 13, 14,20

None of these are valid RES of index two. In the first two, the condition that a4y = 0 implies
that the branch locus divisor contains the fiber u = 0 with multiplicity two. The double cover
then is not normal, and consist of two surfaces (each birational to a product), meeting along
the curve lying above the double fiber.

The third case is similar to the analysis of the red chamber given above; it is a degenerate
case of it in fact.

6. Unstable loci

By definition, a point (a;;)ijep € A'? is unstable for the G;, action if and only if it is not

semistable, if and only if every invariant monomial vanishes at it. In particular,

A= v
minimal 7 €Supp(S)
16
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where V(1) = A\ D(I) consists of the set of common zeros of the invariant monomials with
support set /. That is, V(I) = (aij)ijeo ; Hijel a;j =0;.

This allows us to explicitly describe the unstable locus for any character x associated to a
point (b, ¢) lying in the quadrilateral in Fig. 1.

For characters x associated to points (b, ¢) lying in the red chamber, the unstable locus is
{a04 = 0} @] {a12 = dyy) = O} U {Ll,'j = O, Vij 75 04, 12, 20}

Similarly, for characters associated to points lying in the blue chamber, one shows that the
unstable locus is

{aoa = ain = 0} U {a;n = ax = 0} U {aps = ai3 = a4 = O}U
{aps = amn =0, Ymn # 04,12, 13, 14}U

(a2 = ay = 0, Yk # 04, 12, 13, 14, 20}U

{a;s =ais = ay =0, Ykl #£ 04,12, 13, 14, 20}.

Note that, by Lemma 3.1, when a point (a;;)ijeo € A'? describes a RES of index two, then
it must be the case that ags 7% 0 and ayy # 0. Hence for both chambers the only RES of index
two that could a priori correspond to unstable points are those with branch curve C given by

a04v3x4 + alzuvzxzy2 + a20u2vy4 =0

Now, such curve contains the curve v = 0 as a component and the residual (4, 2) curve has
an additional tacnode at the point p’ given by y = v = 0 (with a vertical tangent v = 0). In
particular, this (4, 2) curve cannot be irreducible by the genus formula. In fact it consists of
two curves of bidegree (2, 1) which are tangent at the tacnode. After resolving the singularity
at p’, the construction from Section 2 yields a surface which is birational to a product of an
elliptic curve and P! and not a RES of index two.
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