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Abstract

In this paper we construct a moduli space for marked rational elliptic surfaces of index two as a
on-complete toric variety of dimension nine. We also construct compactifications of this moduli space,
hich are obtained as quotients of A12 by an action of G3

m .
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This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

We say a smooth and projective rational surface Y is a rational elliptic surface (RES) if Y
dmits a relatively minimal fibration E : Y → P1 whose generic fiber is a smooth curve of
enus one. We do not necessarily assume the existence of a global section. If Y is a rational
lliptic surface, then there exists some m ≥ 1, called the index of the fibration, so that E is

given by the anti-pluricanonical system | − mKY |. Moreover, m = 1 if and only if E admits a
global section and whenever m > 1 there exists exactly one multiple fiber in Y , which is of

ultiplicity m (see e.g. [6, Chapter V, §6]). In this paper we are interested in the case m = 2.
Rational elliptic surfaces of index m can be realized as a nine-fold blow-up of P2, where

he nine points are base points of a Halphen pencil (of index m) [6, Theorem 5.6.1] — these
re pencils of plane curves of degree 3m having nine (possibly infinitely near) base points of
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multiplicity m. The multiple fiber corresponds to the (unique) cubic curve through the nine
oints. Any RES of index m comes with a rational m-section θ , which can be taken to be the

exceptional curve of the last of the nine blowups. It is not uniquely determined by E . If Y
s a RES of index m with a given rational m-section θ , we may contract all components of
bers that do not meet θ , obtaining an elliptic surface Ȳ having only rational double points
i.e., double points of type ade). Doing this produces in a canonical way an elliptic surface

on which the m-section is relatively ample, and is the model that appears naturally in the
constructions given below. We will call the pair (Ȳ , θ) a marked RES of index m.

Counting parameters, we see that marked RESs of index one (also called Weierstrass
fibrations) depend on 8 parameters — these are parametrized by an open subset of the
Grassmannian G(2, 10) of pencils of plane cubics. However, the construction of the Jacobian
surface shows that marked RESs of index at least two depend on 9 parameters. Essentially, we
have the additional choice of the multiple fiber.

In [9] the moduli space of marked RESs of index one was constructed via geometric invariant
theory (GIT). A different compactification was later obtained in [8], where it is shown that the
moduli space is rational. More recently, modular compactifications via stable slc pairs have
also been constructed in [1–3]. In this article we address the problem of constructing a moduli
space for marked RESs of index two.

When the choice of a marked bisection is not part of the classification problem, then a
possible approach to constructing the corresponding moduli space has been considered in [10].
The addition of the additional data of the chosen bisection – the marking – seems to rigidify
things so that all the RES’s of index two are semi-stable. This is not the case for the unmarked
analysis [10] nor was the case for the RES’s of index one (the Weierstrass fibrations considered
in [9]).

First, in Section 2, we describe each marked RES of index two as a double cover of P1
×P1,

and reduce the moduli problem to that of the branch curve. Next in Section 3 we normalize the
branch curve and prove that the moduli space corresponds to a quotient of A10 by Gm ×Z/2Z,
which is realized as an explicit toric variety in Section 4. This leads to a non-compact quotient
space though.

We then relax the normalization of the equation for the branch curve and prove in Section 5
that the moduli space also corresponds to a specific quotient of A12 by G3

m . This leads to
a multitude of toric GIT quotients, and we identify those that compactify the quotient space
obtained with the first approach. The description is completely explicit, defined by a fan with
prescribed cones. In Section 6 we also identify the unstable loci and show that all branch curves
that give rise to RESs of index two are stable points for the action. Our main result may be
presented as follows.

Theorem 1.1. A moduli space for marked RES’s of index two exists as a non-complete toric
variety of dimension 9, obtained as a quotient of a single affine toric variety by an action
of Gm . Compactifications of this moduli space exist as complete toric varieties, obtained as
quotients of A12 by an action of G3

m .

2. RES of index two as double covers of P1 × P1

Consider P1
× P1, and let h (resp. f ) denote the class of a section (resp. of a fiber). Let F

be the non-minimal rational surface obtained from P1
× P1 by blowing-up a point p and then

blowing-up an infinitely near point (of order 1) at the intersection of the exceptional curve and
¯
the proper transform f of the fiber through p.
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Let e2 (resp. e1) denote the class of the second exceptional divisor (resp. the proper
ransform of the first); note that f̄ ∼ f − 2e2 − e1. Choose a reduced member C ∈

4h + 3 f − 4e2 − 2e1| = |4h + 3 f̄ + 2e2 + e1| with only ade singularities, that does not have
either f̄ or e1 as a component. We will show (Theorem 2.3) there is a 1 − 1 correspondence

etween isomorphism classes of marked RESs of index two and isomorphism classes of such
urves C .

The condition that C does not contain e1 as a component means that the singularity of C
t p is a double point. In fact C corresponds to a curve on P1

× P1 of bidegree (4, 3) with a
tacnode tangent to the fiber through p. In particular, when C is irreducible, then by the genus
formula, asking for C to have only ade singularities is redundant.

Starting from F and C as above, let π : Y ′
→ F be the double cover map with branch locus

∆ equal to C+ f̄ +e1 ∼ 2(2h+2 f̄ +e2+e1) ∼ 2(2h+2 f −3e2−e1). Since (C · f̄ ) = (C ·e1) = 0
the branch locus is smooth along f̄ and e1.

The pencil | f | lifts to an elliptic fibration on Y ′, since ( f · ∆) = 4. The elliptic fiber lying
over the fiber through p is π∗( f̄ + e1 + 2e2).

Now, because KF = −2h − 2 f + 2e2 + e1, it follows that

KY ′ = π∗KF + ∆′
= π∗(KF + ∆/2) = π∗(−e2)

where ∆′ is the ramification locus of π . Thus, by adjunction, the curve E := π∗(e2) is a curve
f genus one.

The curves f̄ and e1 lift to (−1) curves D1 and D2 respectively in Y ′; let µ : Y ′
→ Y

enote their contraction. Then µ∗(µ∗KY ′ ) = KY ′ − D1 − D2 and KY = µ∗KY ′ , and using the
projection formula we obtain

K 2
Y = (µ∗KY ′ )2

= (KY ′ − D1 − D2) · KY ′ = π∗(−e2) · π∗(−e2) + 2 = 2e2
2 + 2 = 0

hich implies that Y is a (relatively minimal) rational elliptic surface of index two with multiple
fiber 2µ∗E . Note that the genus of E = π∗(e2) does not change under µ.

Consider finally the proper transform h̄ on F of the horizontal section through the point p;
that is, h̄ ∼ h − e1 − e2. We note that C cannot have h̄ as a component, otherwise the residual
curve C − h̄ would satisfy (C − h̄) ·e1 = −1, so that it would have to contain e1 as a component
as well, which we are forbidding. Hence h̄ is not part of the branch locus of the double cover.
We have h̄2

= −1 and (h̄ · C) = 1, so that (h̄ · ∆) = 2. These two intersection points are
distinct: one is the intersection point with C and one is the intersection point with e1. Hence

= π∗(h̄) is a bisection of the elliptic fibration. It survives in the blowdown to Y as a smooth
ational bisection with self-intersection −1.

Conversely, we can prove

roposition 2.1. Every rational elliptic surface of index two Y → P1 arises this way. In
articular, it fits in a diagram:

Y Y ′
µ←←

π 2:1
↓↓
F

ϕ
→→ P1

× P1

roof. Let Y → P1 be a RES of index two with multiple fiber 2F0, and choose a smooth
ational bisection, say θ . On (Pic of) the generic fiber Y we can consider the involution
η

3
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p ↦→ θ − p, which extends to an involution ι of Y and whose fixed locus consists of a 4-section
nd two isolated points lying on F0. The rational bisection passes through one of the two fixed
oints for ι. (In fact, by Riemann–Roch θ restricted to Yη, we have a degree two map Yη → P1

nd the involution we are considering is simply the corresponding covering involution. Then,
y Riemann–Hurwitz, on each smooth fiber the fixed locus consists of four points, hence there
xists a 4-section in Fix(ι). Note however that such 4-section must meet F0 at two points, and
hus we have two other isolated fixed points lying on F0.)

Denote by µ : Y ′
→ Y the blow-up of these two points and by ι the induced involution on

Y ′. The quotient surface F .
= Y ′/ι is a rational surface which comes with a P1-fibration to P1

nd by construction the branch locus is of the form C + δ1 + δ2, where C is a 4-section (which
s the image of the 4-section on Y ) and δi are the images of the two exceptional curves. We

ay assume that δ1 corresponds to the fixed point through which the given rational bisection
asses. In particular, δ2

i = −2. The curve e in F which corresponds to F0 is a (−1)-curve so
e can contract it; both δ1 and δ2 will then become (−1)-curves. We then contract δ1; at this
oint the curve δ2 will be such that δ2

2 = 0, and gives a fiber of the P1-fibration. The curve C
ow has a tacnode at a point p on δ2, with a vertical tangent. The bisection descends to the
orizontal section of F0 that passes through the tacnode point p. Hence we have a birational
orphism ϕ : F → FN for some N . We claim that up to reversing the roles of δ1 and δ2
e must have N = 0 and the branch curve (hence C) is as described at the beginning of this

ection. If we choose { f, h, e, δ1} as basis for Pic(F) then C ∼ 4h +3 f −4e −2δ1 and C does
ot contain δ1 or δ2 or the horizontal section through p. □

emark 2.2. More generally, if S → P1 is any elliptic surface with two multiple fibers of
ultiplicities 2m1 and m2 (m2 odd) and a multisection of degree 2m1m2 (gcd(2m1, m2) = 1),

hen one can construct another elliptic surface J m1m2 (S) → P1 whose generic fiber consists
f the set of line bundles of degree m1m2 on the generic fiber of S. This surface comes with
natural involution determined by the multisection and it has exactly one multiple fiber of
ultiplicity two. In [7], Friedman shows that J m1m2 (S) can be described as a branched double

over of the surface obtained by blowing up FN twice at a point in a fiber. The branch curve lies
n the linear system |4σ + (2k + 1) f − 4e2 − 2e1|, where σ is the negative section, f denotes
he class of a fiber, e1 and e2 are the proper transforms of the exceptional curves, and the
umbers k and N satisfy pg(S) = k − N − 1. In Proposition 2.1 we consider the particular
ase when S is rational, m1 = m2 = 1 and hence S ≃ J m1m2 (S).

The above explicit description is a “bottom up” one in some sense: one starts with the branch
urve with certain prescribed singularities and constructs the elliptic surface as a double cover.
t may be more natural, and more appropriate in making constructions in families, to have
“top-down” approach as well. With this in mind, we present the following description of how
arked RES’s of index two can be realized as double covers of P1

× P1.
Fix the pair (Ȳ , θ) as above. Denote by F0 the (reduced) fiber that is the double fiber, so

hat the fiber class is F = 2F0; F0 is also the anti-canonical class −KY . Note that since θ is
mooth and rational, and θ · KY = −1, we must have θ2

= −1. Let p = θ ∩ F0 be the point
f intersection of θ with the double fiber; since θ · F = 2, we have θ · F0 = 1, so that θ and

F0 meet transversally at p.
Since F0 does not move on Ȳ , but 2F0 = F does move in a base-point-free pencil, the

ormal bundle of F0 in Ȳ is a two-torsion class τ in the Picard group of F0. We may write τ

s a divisor, uniquely as q − p, where p is the point of intersection with θ as noted above, and
¯
is another (distinct from p) point on F0. (i.e., q is uniquely determined by the pair (Y , θ).)

4
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We note that the line bundle OȲ (θ ) has trivial H 1, which follows from the restriction
equence to θ , noting that θ2

= −1:

0 −→ OȲ −→ OȲ (θ ) −→ Oθ (−1) −→ 0;

ince the left and the right sheaves have trivial H 1, so does the middle sheaf.
Consider now the divisor class θ + F0 on Ȳ . We have the short exact sequence

0 −→ OȲ (θ ) −→ OȲ (θ + F0) −→ OF0 (p + τ ) −→ 0

hich then shows that H 1(OȲ (θ+F0)) = 0 too, since the left and right sheaves have trivial H 1.
ince the left and right sheaves have one-dimensional H 0, we conclude that h0(OȲ (θ + F0)) =

, so that |θ + F0| is a pencil on Ȳ .
This pencil has no fixed components. Indeed, the only possible fixed components are the

urves θ and F0, and if either one is fixed, the residual (which is the other one) would move
n a pencil, and neither curve does. Since θ2

= −1, θ · F0 = 1, and F2
0 = 0, we see that

θ + F0)2
= 1, so there is exactly one simple base point to the pencil |θ + F0|.

That base point must be the point q; the restriction sequence to F0 above shows that θ + F0
estricts to F0 in the sheaf OF0 (p + τ ) = OF0 (q), which has a unique section (that vanishes at
he point q). Hence every section of OȲ (θ + F0) vanishes at q.

The general member of |θ + F0| is a smooth genus one curve, passing through q. (This
ollows from adjunction since KȲ = −F0 so that (θ + F0) · (θ + F0 + KȲ ) = (θ + F0) · θ = 0.)

If we blow Ȳ up at the point q, we obtain a rational surface Ỹ , and the pencil |θ + F0| lifts
o a base-point free pencil |E | whose general member is curve of genus one; we have E2

= 0
ow.

We now have two maps from Ỹ to P1: one comes from the original elliptic fibration (given
y the linear system |F |); and the other comes from the pencil |E |. This gives a regular map
: Ỹ → P1

× P1.
The general fiber of π is obtained by intersecting two general elements of the two pencils;

nd since E · F = (θ + F0) · F = 2, we conclude π is a double cover.
Hence we have proved the following.

heorem 2.3. There is a 1−1 correspondence between isomorphism classes of marked RESs
f index two and isomorphism classes of curves C in P1

× P1 of bidegree (4, 3) with a double
oint tacnode with vertical tangent, such that C does not contain the fiber or the horizontal
ection through the tacnode, and has only ade singularities.

. Normal forms for the branch locus

The curve C is (the partial resolution of) a (4, 3) curve with a double point singularity which
s at least a tacnode at p (i.e. locally analytically we have w2

+ z4
= 0) and which is tangent to

he fiber f at p (so that when resolving the singularity we blow-up a point in the intersection
f the fiber and the first exceptional curve).

Therefore, we may choose coordinates ([x : y], [u : v]) in P1
×P1 which places the point p

t x = u = 0 and the fiber f through p is defined by u = 0. The curve C is then given by a
ihomogenous equation fC :=

∑
ai j ui x jv3−i y4− j

= 0 of degree four in [x : y] and of degree
hree in [u : v], and C has the required tacnode at p = ([0 : 1], [0 : 1]) with vertical tangent

(u = 0) if and only if
a00 = a01 = a02 = a03 = a10 = a11 = 0.

5
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Moreover, we may choose the coordinates so that the curve C meets the horizontal section
hrough p (now defined by x = 0) at the point x = v = 0; hence we may also assume that
30 = 0.

Furthermore,

Lemma 3.1. The curve C must contain the monomials u2vy4 and x4v3 with nonzero
coefficients.

Proof. We have noted above that C cannot contain either the vertical fiber or the horizontal
section through p as components. If a20 = 0, then all ai0 = 0 in fC , so that x divides fC and
the horizontal section would be a component. If a04 = 0, then all a0 j = 0 in fC , so that u
divides fC and the vertical fiber would be a component. □

There is another normalization of fC to exploit. Up to changing the coordinates [x : y],
but fixing [0 : 1], we can further assume a21 = 0. In fact, a transformation of the form
[x : y] ↦→ [αx : y] where α = −a21/4a20 makes a21 vanish.

All these reductions tell us we can organize the coefficients ai j in a matrix of the form:

v3 uv2 u2v u3

x4 a04 a14 a24 a34
x3 y 0 a13 a23 a33
x2 y2 0 a12 a22 a32
xy3 0 0 0 a31
y4 0 0 a20 0

We define Q = {20, 04, 12, 13, 14, 22, 23, 24, 31, 32, 33, 34} to be the set of (double)
indices appearing in the exponents of the terms for possible fC , as above.

At this point the set of automorphisms of P1
× P1 which preserve this normal form for fC

are of the form ([x : y], [u : v]) ↦→ ([t x : y], [su : v]) for nonzero s, t ∈ Gm . Of course in the
vector space containing such polynomials fC we also have the homothety (sending fC to r fC

for r ̸= 0) as well.
We will call such an equation fC allowable if a20 ̸= 0, a04 ̸= 0, and fC = 0 has only ade

singularities otherwise. This proves the following.

Proposition 3.2. Define the action of G3
m on A12 (with coordinates {ai j | i j ∈ Q}) by

(r, s, t) · ai j = rsi t j ai j . The isomorphism classes of possible branch curves C are in 1 − 1
correspondence with the allowable G3

m-orbits of this action.

We have yet one more normalization to propose. Since by Lemma 3.1 the coefficients a20

and a04 are nonzero, we may use elements of G3
m to make these two coefficients equal to one.

The subgroup of G3
m that fixes these coefficients is equal to the set of elements of the form

(r, s, t) = (t−4, ±t2, t); these form a subgroup isomorphic to Gm × Z/2Z.
Using this further normalization, we have the following. Define Q̄ = Q \ {20, 04} =

12, 13, 14, 22, 23, 24, 31, 32, 33, 34} to be the set of remaining indices.

roposition 3.3. Define the action of Gm × Z/2Z on A10 (with coordinates {ai j | i j ∈ Q̄})
by (t ∈ Gm, ϵ ∈ {±1}) · ai j = t2i+ j−4ϵi ai j . The isomorphism classes of possible branch curves

are in 1 − 1 correspondence with the allowable G × Z/2Z-orbits of this action.
m

6
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4. The Gm × Z/2Z quotient of A10

In order to construct the quotient A10/(Gm × Z/2Z) we can first take the quotient by the
Z/2Z action; for this we identify the invariants for that action. Since the element (1, −1, 1)
acts on ai j trivially if i is even, and as multiplication by −1 if i is odd, it follows that a Laurent
monomial

∏
i j a

mi j
i j is invariant if and only if m12 + m13 + m14 + m31 + m32 + m33 + m34 is

even. Therefore, we have the following generators for the invariant Laurent monomials:

w12 = a2
12

wi j = ai j/a12 i j ∈ {13, 14, 31, 32, 33, 34}

wi j = ai j i j ∈ {22, 23, 24}

The only condition on a Laurent monomial in the wi j variables is that, as monomial in the
i j variables, it has all nonnegative exponents. Hence we see that the quotient A10/(Z/2Z) is

isomorphic to the affine toric variety Y = Spec k[N ], where N is the monoid of monomials∏
i j w

ni j
i j whose exponents {ni j } satisfy the following ten inequalities

2n12 − n13 − n14 − n31 − n32 − n33 − n34 ≥ 0 (1)

ni j ≥ 0 i j ̸= 12 (2)

That is,

k[N ] ≃ k[w22, w23, w24][w12, w12wi j , w12wi jwkl] = k[a22, a23, a24, ][ai j akl]

for i j, kl ∈ {12, 13, 14, 31, 32, 33, 34}.
Now, recall the elements (t−4, t2, t) act on ai j as multiplication by t2i+ j−4; this same

exponent applies to the induced action on wi j . Thus, regrading the ring k[N ] so that wi j has
degree 2i + j − 4, we have that

A10/(Gm × Z/2Z) ≃ (A10/(Z/2Z))/Gm ≃ Y/Gm ≃ Proj k[N ]

In particular, the basic open sets of A10/(Gm × Z/2Z) are determined by inverting the
generators of k[N ] of strictly positive degree, and then taking Spec of the degree zero part
of the corresponding fraction ring.

Given a generator f =
∏

i j∈Q̄ w
ni j
i j ∈ k[N ], a Laurent monomial

∏
i j∈Q̄ w

pi j
i j lies in the

degree zero part of the fraction ring k[N ][1/ f ] if and only if the exponents {pi j } satisfy∑
i j∈Q̄

(2i + j − 4)pi j = 0

(which allows us to solve for p13 in terms of the other exponents); in addition we must have:

2p12 + p14 + 2p22 + 3p23 + 4p24 + 2p31 + 3p32 + 4p33 + 5p34 ≥ 0 (3)

henever 2n12 = n13 + n14 + n31 + n32 + n33 + n34;

2p14 + 2p22 + 3p23 + 4p24 + 3p31 + 4p32 + 5p33 + 6p34 ≤ 0 (4)

henever n13 = 0; and

pi j ≥ 0 (5)

or i j ̸= 12, 13 whenever ni j = 0.
Therefore, if one fixes the monomial f to be inverted, we obtain conditions on the pi j ’s that

ield an affine toric variety; these toric varieties can then be glued together to give the toric

escription of Proj k[N ]. For this, it is enough to invert the generators of N of positive degree.

7
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Specifically, we work in the Z9
⊂ R9 with coordinates indexed by Q̄ \ {13} =

{12, 14, 22, 23, 24, 31, 32, 33, 34}. Given a positive degree monomial generator f , the relevant
nequalities (3), (4), (5) that apply define a cone (as the intersection of the half-spaces given by
hese conditions) that determine the monoid and thus the coordinate ring of that open subset
f the Proj. The coefficients of these inequalities (in terms of the pi j coordinates) give vectors
n the dual space that define the dual cones as their convex hull; this viewpoint realizes the
roj as being defined by the familiar fan of dual cones.

The following table gives the relevant cones for each positive degree generator of N .

generator of k[N ] inequalities that define the cone
w2 j , j = 2, 3, 4 (3), (4), pkℓ ≥ 0 for kℓ ̸= 12, 2 j

w12w13 or w2
12w13 pkℓ ≥ 0 for kℓ ̸= 12

w12wi j or w2
12wi j , i j ∈ {14, 31, 32, 33, 34} (4), pkℓ ≥ 0 for kℓ ̸= 12, i j

w12w
2
13 (3), pkℓ ≥ 0 for kℓ ̸= 12

w12w13wi j , i j ∈ {14, 31, 32, 33, 34} (3), pkℓ ≥ 0 for kℓ ̸= 12, i j
w12wi jwi ′ j ′ , i j, i ′ j ′

∈ {14, 31, 32, 33, 34} (3), (4), pkℓ ≥ 0 for kℓ ̸= 12, i j, i ′ j ′

The reader will note that some of these cones are the same; that is not a complete surprise.
In addition, some cones are subsets of others, which correspond to larger open subsets of the
Proj. Hence for the Proj construction we can focus on the minimal cones only. There are nine
of these: the three in the first row, the one in the fourth row, and the five in the sixth row (when
′ j ′

= i j) in the above table, and are described by the following:

C13 :(3) and pkℓ ≥ 0 for kℓ ̸= 12
Ci j (i j ̸= 12, 13) :(3), (4), and pkℓ ≥ 0 for kℓ ̸= 12, i j

(The rationale for the indexing will become clear in the next section.)
This Proj is not a complete variety however; the monomial w12 has degree zero and appears

in every toric coordinate ring. It gives an affine invariant of the marked RES of index two Y ,
which determines the J -invariant of the (reduced) double fiber and has the following geometric
interpretation.

Considering Y as a double cover of P1
× P1 as in Section 2, we see that, on the second

blowup F, then we have an affine coordinate η on the second exceptional curve e2 such that
the four branch points on e2 are at 0, ∞, and the two roots of the quadratic equation

η2
+ w12η + 1 = 0

This implies that the genus one curve F0 that becomes the reduced double fiber has J -invariant
equal to 4

3 (3 − w2
12)/(4 − w2

12).
The discriminant of the quadratic is seen here as giving the criterion for the double fiber

o be singular: when w12 = ±2, the double fiber must be of type In for some 1 ≤ n ≤ 9 [6,
Proposition 5.1.8].

In any case the construction, along with Proposition 3.3, gives us the following; it is
essentially the first part of Theorem 1.1.

Theorem 4.1. The subset of Proj(k[N ]) corresponding to orbits of allowable branch curves
is a moduli space for marked RESs of index two.

5. The G3
m quotient of A12

Our goal in this section is to present the analysis of the G3
m quotient of A12 with the goal

f compactifying the moduli space constructed in the previous section.
8
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For this analysis we generally follow the prescriptions of Chapter 12 of [5] which we find
onvenient; the reader may also consult Chapter 14 of [4].

The GIT quotient of the (diagonalized) action of G3
m on A12 as described in Proposition 3.2

is a toric variety which depends on the choice of a G3
m-linearization Lχ of the trivial line

bundle, which is determined by a character χ of G3
m . Such a character may be written as

(r, s, t) ↦→ rα1sα2 tα3 , and depends on the three integers αi .
Briefly, the construction is as follows. Given a monomial f :=

∏
i j∈Q a

mi j
i j , the action of an

element (r, s, t) ∈ G3
m is of the form (r, s, t) · f = rβ1 sβ2 tβ3 f where the βi ’s are determined

by

A · m =

⎛⎝1 1 1 1 1 1 1 1 1 1 1 1
2 0 1 1 1 2 2 2 3 3 3 3
0 4 2 3 4 2 3 4 1 2 3 4

⎞⎠ · m =

⎛⎝β1
β2
β3

⎞⎠ (6)

here m = (m20, m04, m12, m13, m14, m22, m23, m24, m31, m32, m33, m34)t .
Such a monomial is then χ -homogeneous of degree d if βi = dαi for each i , which gives

the equation

A · m = dα; (7)

hese monomials form the ring of invariant sections of the linearized line bundle Lχ which
etermines the toric GIT quotient.

In particular, if we define Sd to be the space of monomials am
=

∏
i j∈Q a

mi j
i j , where m is

solution to (7) with mi j and d non-negative, we obtain an isomorphism of finitely generated
-algebras

k[S] .
=

⨁
d≥0

k[Sd ] ≃

⨁
d≥0

Γ (A12,L⊗d
χ )G

3
m

nd the GIT quotient A12//χG3
m determined by the character χ is the Proj of this graded ring.

Note that the rows of A determine a particular embedding G3
m ↪→ G12

m , hence A induces
map between the corresponding character groups, and we have the following short exact

equence

0 →→ M Bt
→→ Z12 A →→ Z3 →→ 0 (8)

where B is the matrix whose rows give us a basis for the kernel lattice of A, which we denote
y M , and B t denotes the transpose of B.

Concretely, we may take as B the matrix⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

B20 B04 B12 B13 B14 B22 B23 B24 B31 B32 B33 B34
−1 −1 2 0 0 0 0 0 0 0 0 0
0 0 1 −2 1 0 0 0 0 0 0 0

−1 0 2 −2 0 1 0 0 0 0 0 0
−1 0 3 −3 0 0 1 0 0 0 0 0
−1 0 4 −4 0 0 0 1 0 0 0 0
−1 1 2 −3 0 0 0 0 1 0 0 0
−1 1 3 −4 0 0 0 0 0 1 0 0
−1 1 4 −5 0 0 0 0 0 0 1 0
−1 1 5 −6 0 0 0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(9)

here, in the first row above, we have simply given names to the columns of the matrix,
orresponding to the coordinates in Z12 given by the (double) indices in the set Q. These twelve
9
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columns of B will determine the cones of the fan that exhibits the GIT quotient A12//χG3
m

s a toric variety. We note that the final ten columns correspond exactly to the conditions (3),
4), (5) that were found in our toric description of the Proj defining the quotient of A10 by the

m × Z/2Z group.

.1. Support sets and the semistable locus

Given a monomial am which lies in Sd for some d, we define D(m) to be the invariant open
et consisting of all the points of A12 where am does not vanish. Thus, by definition, we have

(A12)ss
χ =

⋃
d≥0

⋃
am∈Sd

D(m)

Since D(m) only depends on the set of indices i j for which mi j ̸= 0, it is convenient to
efine the support of a monomial am to be the subset of the set of indices Q where the variable
i j appears with a strictly positive exponent:

Supp(am) := {i j | mi j > 0}.

To any subset I ⊂ Q we can then associate an invariant open D(I ) ⊂ A12 consisting
f points with non-zero coordinates indexed precisely by I . And since D(m) = D(I ) for

I = Supp(am), and D(I ) ⊂ D(J ) if J ⊂ I , it follows that

(A12)ss
χ =

⋃
minimal I∈Supp(S)

D(I )

here Supp(S) denotes the poset formed by the set of all support sets of all invariant monomials
n k[S].

Now, if I is a support set for an invariant monomial in Sd for some d , then D(I ) is an affine
ariety with coordinate ring isomorphic to k[Z I ], where Z I is the monoid of monomials am

such that mi j ≥ 0 precisely when i j /∈ I .
Since D(I ) is invariant under the action of G3

m , we can consider the corresponding quotient
D(I )/G3

m , whose coordinate ring is the subring of k[Z I ] generated by invariant monomials. A
onomial am

∈ k[Z I ] is invariant if and only if A · m = 0, i.e. m lies in the kernel lattice
M . Thus, letting MI = {am

∈ k[Z I ] ; m ∈ M} we see that the coordinate ring of D(I )/G3
m is

[MI ], which we can easily recognize as the coordinate ring of an affine toric variety.
Concretely, let {ei j } denote the standard basis of Z12 (indexed by Q) and let {e∗

i j } denote
the dual basis. A monomial am lies in k[MI ] if and only if mi j = e∗

i j (m) ≥ 0 whenever i j /∈ I .
hat is, MI is determined by an intersection of half-spaces — a cone. The dual cone, which
e denote by σI , is the cone generated by the columns of B which are indexed by Q \ I .
The set of all cones {σI } where I runs over all the minimal support sets in Supp(S) form a

an Σχ in M∗
⊗ R ≃ R9 and the quotient (A12)ss//χG3

m is the toric variety associated to this
an.

When Σχ is simplicial there are no strictly semi-stable points [5, Proposition 12.1] and
A12)ss//χG3

m = (A12)s/χG3
m is a geometric quotient.

.2. Support sets and the secondary fan

As the character χ varies, the GIT quotient A12//χG3
m changes, but there are only finitely
any distinct quotients up to isomorphism. These are parametrized by finitely many disjoint

10
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Fig. 1. Chambers.

chambers lying in a fan whose support is the convex cone generated by all the columns of A.
This fan, called the secondary fan, lives inside Hom(G3

m,Gm)⊗R ≃ R3, and on each chamber
the quotient A12//χG3

m does not change. Since each column of A has first coordinate equal to
one, this chamber decomposition can be represented by Fig. 1:

Given any character χ we can then identify the corresponding support sets using Lemma 5.1
below. For a finite set of points P = {gi } ⊂ R2, we define the strict convex hull of the set P
to be the set of points of the form

∑
i ri gi where

∑
i ri = 1 and each ri is strictly positive.

Lemma 5.1. Given a character χ : (r, s, t) ↦→ rα1sα2 tα3 , with α1 > 0, let b = α2/α1 and
c = α3/α1. A subset I ⊂ Q is a support set for an invariant monomial in Sd for some d if and
only if the point (b, c) lies in the strict convex hull of {(i, j) ; i j ∈ I }.

Proof. We note that all numbers involved are rational.
First suppose I = Supp(

∏
i j∈I a

mi j
i j ), where each mi j appearing here is at least one, and the

monomial is invariant. The invariance implies that we have Eq. (7), which we may then write
as ∑

i j∈I

mi j

⎛⎝1
i
j

⎞⎠ = d

⎛⎝α1
α2
α3

⎞⎠ .

Dividing all quantities by dα1 gives

∑ mi j

dα1

⎛⎝1
i

⎞⎠ =

⎛⎝1
b

⎞⎠ .
i j∈I j c
11
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If we define ri j = mi j/dα1, we have
∑

i j∈I ri j = 1, and
∑

i j∈I ri j

(
i
j

)
=

(
b
c

)
, which shows

that the point (b, c) ∈ R2 is in the strict convex hull of the points (i, j) in I as required.
Conversely, if (b, c) is in the strict convex hull, then by definition there are strictly positive

rational numbers ri j such that

∑
i j∈I

ri j

⎛⎝1
i
j

⎞⎠ =

⎛⎝1
b
c

⎞⎠
and multiplying through by α1 gives

∑
i j∈I

α1ri j

⎛⎝1
i
j

⎞⎠ =

⎛⎝α1
α2
α3

⎞⎠
Now choose d so that mi j = dα1ri j ∈ Z for all i j ∈ I . Multiplying through by d gives Eq. (7)
and so the monomial

∏
i j∈I a

mi j
i j is in Sd , and it is invariant. The strictness gives us that ri j ,

and hence mi j , is strictly positive for each i j ∈ I , and so I is indeed the support set of this
monomial. □

We also prove

Lemma 5.2. If I is a minimal support set for an invariant monomial in Sd for some d, then
|I | ≤ 3.

Proof. Suppose |I | ≥ 4. Let P be the polygon which is the convex hull of I , so that (b, c) is in
the interior of P . Let p1, . . . , pk be the vertices of P , in clockwise order around the boundary
of P . Note that each pi is in I . If (b, c) lies on one of the interior line segments of P joining
p1 to pi (for 3 ≤ i ≤ k −1), then J = {p1, pi } contains (b, c) in the interior of its strict convex
hull (the line segment), and so I is not minimal.

If (b, c) does not lie on any of those interior line segments, then (b, c) must be in the interior
of one of the triangles with vertices p1, pi , pi+1 for some i with 2 ≤ i ≤ k − 1 (where we
et pk+1 = p1). Hence those three vertices give a smaller set of indices than I which are in
upp(S), and again we conclude that I is not minimal. □

In particular,

roposition 5.3.

(i) (A12)ss//χG3
m = ∅ for every character χ such that the point (b, c) lies outside the

quadrilateral in Fig. 1.
(ii) (A12)ss//χG3

m = (A12)s/χG3
m for every character χ such that the point (b, c) does not

lie in one of the line segments in Fig. 1.
(iii) The semistable locus (A12)ss

χ always contains the open subset

X .
= {(ai j )i j∈Q ; a04, a20, a31, a34 ̸= 0}

for any choice of character χ corresponding to a point (b, c) that lies in the interior of
the quadrilateral in Fig. 1.
12
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Proof.

(i) It follows from Lemma 5.1.
(ii) It follows from Lemma 5.2 and [5, Proposition 12.1]

(iii) It suffices to observe that for any such character χ , if (ai j )i j∈Q ∈ X , then (ai j )i j∈Q cannot
be unstable. In fact, we can always find a support set I so that (ai j )i j∈Q /∈ V (I ). This
is because either {04, 20, 31} or {04, 31, 34} must be a support set for some invariant
monomial, independent of the choice of χ . □

.3. The quotients that compactify the Gm × Z/2Z quotient

As noted at the beginning of this section, one of our goals in analyzing the full G3
m quotient

ia the techniques described in the first two sub-sections was to compactify the moduli space
rovided in Section 4 obtained by considering the Gm × Z/2Z quotient. There are a priori
undreds of possible chambers for the choice of character that gives a quotient, and we will
ocus on those chambers in Fig. 1 whose corresponding quotients do exactly that: compactify
he Gm × Z/2Z quotient we described in Section 4.

In order to do this, we first define index sets Ii j (for i j ̸= 04, 12, 20) by

Ii j = {04, 20, i j}.

Suppose that Ii j is a minimal support set for a character χ . It is easy to check then that the
corresponding cone σ̌Ii j is exactly the cone Ci j described in Section 4, and conversely: in order
o obtain the cone Ci j , we must have Ii j as a minimal support set.

To be explicit, indexing the rows of B by {12, 14, 22, 23, 24, 31, 32, 33, 34} we obtain that
for i j ̸= 13, the cones σ̌Ii j are determined by the inequalities (3) and (4) from Section 4, plus
the seven inequalities pkl ≥ 0 for kl ̸= 12, i j . This exactly corresponds to the cone denoted by

i j in that section. For I13, we have that σ̌I13 is determined by (3) and the eight inequalities
pkℓ ≥ 0, for kℓ ̸= 12; this is the cone which we called C13 in the previous section.

Therefore in order that a given character gives a quotient which contains all the cones
corresponding to the Gm ×Z/2Z quotient, all of these index sets Ii j must be minimal support
sets. This forces the corresponding point (b, c) to lie in the intersection of all of the triangles
whose vertices are the elements of these Ii j . This intersection is the shaded region of Fig. 2
below. Moreover, in order for these index sets to be minimal support sets, we must have the
point (b, c) corresponding to the character lying in the strict interior of one of the seven triangles
in this shaded region.

We will not analyze in detail each of these seven quotients. As the character point (b, c)
passes from one to the next, the corresponding toric quotient experiences a flip, blowing up
a toric cycle and blowing down in another direction. We do not find any particular reason to
prefer any one of these chambers over the others. Hence we will only analyze two adjacent
ones in detail, the red and blue chambers in the figure; this should illustrate the wall-crossing
phenomenon as the character point moves from one triangle to the other.

5.3.1. The red chamber
Fix a point (b, c) in the interior of the red chamber and choose integers α1, α2 and α3

with α1 > 0 such that b = α2/α1, c = α3/α1 and χ is the character (r, s, t) ↦→ rα1sα2 tα3 .
By Lemma 5.1, the following is a complete list of minimal support sets for some invariant
monomial:

′
Ii j = {04, 20, i j} Ii j = {04, 12, i j}

13
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Fig. 2. Special chambers.

here i j ̸= 04, 12, 20. Thus,

(A12)ss
χ =

⋃
I∈Supp(χ )

D(I )

here we define Supp(χ ) = {Ii j , I ′

i j }. We denote the resulting toric variety by X red.
We have seen that the support sets Ii j above give the cones for the quotient obtained in the

previous section. The additional cones that fill out the (complete) fan are the ones defined by
the I ′

i j support sets.
When i j ̸= 13 the cones σ̌I ′

i j
are determined by (4) and the following set of inequalities:

p12 + p22 + p23 + p24 + p31 + p32 + p33 + p34 ≤ 0 (10)

pkl ≥ 0 kl ̸=12, i j (11)

while σ̌I ′
13

is determined only by (10) and pkℓ ≥ 0 for kℓ ̸= 12.

5.3.2. The blue chamber
Consider now any point (b, c) lying in the shaded blue chamber indicated in Fig. 2, and

consider the associated character. Again, the corresponding quotient A12//χG3
m compactifies

the quotient from Section 4.
Lemma 5.1 tells us that, for this chamber, the following is a complete list of minimal support

sets for some invariant monomial:

Ii j = {04, 20, i j}, I ′

kl = {04, 12, kl},

I ′′

mn = {12, 13, mn}, I ′′′

mn = {12, 14, mn}
here i j ̸= 04, 12, 20, kl ̸= 04, 12, 13, 14, 20 and mn ̸= 04, 12, 13, 14.

14
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Note that the support sets Ii j are also support sets for the red chamber, hence the same
escription applies here. That is, the cones σ̌Ii j are precisely the cones Ci j from Section 4.

In addition, the cones that fill out the (complete) fan are the ones defined by the remaining
upport sets I ′

kl , I ′′
mn and I ′′′

mn . We denote the resulting toric variety by Xblue.
Note that the support sets I ′

kl are also support sets for the red chamber and we see that
rossing from one chamber to the other, the cones σ̌I ′

13
and σ̌I ′

14
are replaced by the cones σ̌I ′′

mn
nd σ̌I ′′′

mn , and vice-versa. This completely determines how the corresponding quotients change.

.3.3. The wall-crossing
If we choose a character χ which corresponds to a point (b, c) lying over the line segment

oining (1, 2) and (1, 3), then Lemma 5.1 tells us the following is a complete list of minimal
upport sets for some invariant monomial:

I = {12, 13} J = {12, 14} Ii j = {04, 20, i j} I ′

kl = {04, 12, kl}

here i j ̸= 04, 12, 20 and kl ̸= 04, 12, 13, 14, 20.
The cone σI is a common refinement (see e.g. [4, Chapter 3]) of the cone σI ′

13
and the cones

I ′′
mn ; while the cone σJ is a refinement of σI ′

14
and σI ′′′

mn .
Since the cones σI and σJ are non-simplicial the fan Σχ is non-simplicial and a flip describes

ow the quotient A12//χG3
m changes as we cross this “wall”.

Adopting the notations borrowed from [4, Section 15.3], we first observe the vectors Bi j

the columns of the matrix B introduced earlier) with i j /∈ I satisfy the relation∑
bi j Bi j = B20 − B04 + B22 + B23 + B24 + 2B31 + 2B32 + 2B33 + 2B34 = 0 (12)

Now, if we let J− = {i j ; bi j < 0} = {04}, J0 = {i j ; bi j = 0} = {14} and J+ = {i j ; bi j >

} = Q\{04, 12, 13, 14}, we can define the following fans

Σ± = {σ ; σ ⪯ Cone(Bi j ), i j ̸= 12, 13, i j /∈ J∓}

The fan Σ+ has maximal cone σI ′
13

and the maximal cones of Σ− are precisely the cones
I ′′
mn . In particular, we obtain a commutative diagram of surjective toric morphisms:

X red ⊃ XΣ+
⊃ UσI ′13

ϕ+

→→

UσI ′′mn
⊂ XΣ−

⊂ Xblue

ϕ−

←←
UσI

(13)

here Uσ denotes the affine toric variety of the cone σ .
Each morphism ϕ± : Σ± → UσI is birational with exceptional locus V (σJ±

), where
J±

= Cone(Bi j ; i j ∈ J±) and V (σJ±
) is the toric variety of Star(σJ±

) (as defined in [4,
3.2.8)]).

Similarly, the vectors Bi j with i j /∈ J also satisfy the relation (12) and we can apply the
ame kind of analysis as before.

For these indexes, J− = {04}, J0 = {13}, J+ = Q\{04, 12, 13, 14} and

Σ± = {σ ; σ ⪯ Cone(Bi j ), i j ̸= 12, 14, i j /∈ J∓},

so that the maximal fan of Σ+ is now the cone σI ′
14

and the maximal cones of Σ− are the cones
σI ′′′

mn . Again, we obtain a commutative diagram analogous to (13).

The analysis gives us the following statement, using Proposition 3.2.

15
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Theorem 5.4. Fix (b, c) in the red or blue chambers. Then the corresponding quotient
12/χG3

m contains the quotient Proj(k[N ]) constructed in the previous section, and compactifies
hat quotient. In particular the subset of these quotients corresponding to orbits of allowable
ranch curves is a moduli space for marked RESs of index two.

We remark that for (b, c) in any of the shaded regions in Fig. 2 this is still true. We presented
he analysis explicitly for the red and blue regions (and the line segment separating them) to
llustrate the wall-crossing phenomenon in the toric GIT quotients for this situation.

A natural question then is: Given (b, c) in the red or blue chambers, what are the curves
eing parametrized by the G3

m quotient, but not by Proj(k[N ])? To answer this question we
eed to determine what are the points lying in (A12)ss

\
⋃

D(Ii j ); or, equivalently, we need to
etermine when is a point (ai j )i j∈Q satisfying one of the conditions below semi-stable.

(i) a04 = 0
(ii) a20 = 0

(iii) ai j = 0 , ∀ i j ̸= 04, 12, 20

Our analysis proves the following:

roposition 5.5. Fix (b, c) in the red chamber. Then

(A12)ss
\

⋃
D(Ii j ) = {(ai j )i j∈Q ; a20 = 0 and a12 ̸= 0}

These conditions imply that the double cover of P1
× P1 branched over the fiber u = 0

nd the curve C defined by the equation
∑

i j ai j ui x j
= 0 is no longer a RES of index two.

he condition that a20 = 0 implies that C splits as the horizontal section defined by x = 0
nd a curve of bidegree (3, 3) which has a double point at the u = x = 0 origin, with two

tangents along the two axes. Performing two elementary transformations leads to a rational
elliptic surface with a section (the section is induced from the x = 0 curve in the branch
locus) and the formerly double fiber now is seen to be a fiber of Kodaira type I3.

Similarly,

Proposition 5.6. Fix (b, c) in the blue chamber. Then (A12)ss
\
⋃

D(Ii j ) consists of the set of
oints (ai j )i j∈Q satisfying one of the conditions below

(i) a04 = a14 = 0 and a12 · a13 · amn ̸= 0 for some mn ̸= 04, 12, 13, 14
(ii) a04 = a13 = 0 and a12 · a14 · amn ̸= 0 for some mn ̸= 04, 12, 13, 14

(iii) a20 = a13 = a14 = 0 and a04 · a12 · akl ̸= 0 for some kl ̸= 04, 12, 13, 14, 20

None of these are valid RES of index two. In the first two, the condition that a40 = 0 implies
that the branch locus divisor contains the fiber u = 0 with multiplicity two. The double cover
then is not normal, and consist of two surfaces (each birational to a product), meeting along
the curve lying above the double fiber.

The third case is similar to the analysis of the red chamber given above; it is a degenerate
case of it in fact.

6. Unstable loci

By definition, a point (ai j )i j∈Q ∈ A12 is unstable for the G3
m action if and only if it is not

semistable, if and only if every invariant monomial vanishes at it. In particular,

(A12)u
χ =

⋂
V (I )
minimal I∈Supp(S)

16
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where V (I ) = A12
\D(I ) consists of the set of common zeros of the invariant monomials with

upport set I . That is, V (I ) =

{
(ai j )i j∈Q ;

∏
i j∈I ai j = 0

}
.

This allows us to explicitly describe the unstable locus for any character χ associated to a
oint (b, c) lying in the quadrilateral in Fig. 1.

For characters χ associated to points (b, c) lying in the red chamber, the unstable locus is
a04 = 0} ∪ {a12 = a20 = 0} ∪ {ai j = 0, ∀ i j ̸= 04, 12, 20}.

Similarly, for characters associated to points lying in the blue chamber, one shows that the
unstable locus is

{a04 = a12 = 0} ∪ {a12 = a20 = 0} ∪ {a04 = a13 = a14 = 0}∪

{a04 = amn = 0, ∀ mn ̸= 04, 12, 13, 14}∪

{a20 = akl = 0, ∀ kl ̸= 04, 12, 13, 14, 20}∪

{a13 = a14 = akl = 0, ∀ kl ̸= 04, 12, 13, 14, 20}.

Note that, by Lemma 3.1, when a point (ai j )i j∈Q ∈ A12 describes a RES of index two, then
it must be the case that a04 ̸= 0 and a20 ̸= 0. Hence for both chambers the only RES of index
two that could a priori correspond to unstable points are those with branch curve C given by

a04v
3x4

+ a12uv2x2 y2
+ a20u2vy4

= 0

Now, such curve contains the curve v = 0 as a component and the residual (4, 2) curve has
an additional tacnode at the point p′ given by y = v = 0 (with a vertical tangent v = 0). In
particular, this (4, 2) curve cannot be irreducible by the genus formula. In fact it consists of
two curves of bidegree (2, 1) which are tangent at the tacnode. After resolving the singularity
at p′, the construction from Section 2 yields a surface which is birational to a product of an
elliptic curve and P1 and not a RES of index two.
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