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1. Introduction 

Let X be a smooth minimal complex surface such that [Kx[ has no base points 
and the associated map ~br: X ~ Z - ~ I P  p*-a is birational. In this article I will 
present a classification of such surfaces under the additional assumption that 
K 2 = 3 Z - 1 0 ,  and also discuss in some detail the case K 2 =  14, Z=8,  which 
yields an interesting example. This classification was essentially known to Castel- 
nuovo [C], which is not surprising since the main ingredient of the argument 
is an analysis of curves which are "extremal" in the sense of having the largest 
possible genus for their degree, and this genus bound itself was proved by Castel- 
n u o v o .  

If K 2__<3z- 11, then since Z__< 1 +pg, we have K2__< 3pg-8.  Beauville has 
shown [B, Theorem 5.5] that in this case qS~ is birationally a double covering 
onto a ruled surface. Moreover if K 2 = 3 Z - 1 0  and q~0 ,  then Z__<pg, so that 
K 2 <  3pg-10,  also forcing q~/~ to have degree two. Hence with our assumptions 
q = 0 and we are considering regular surfaces at the limit of Beauville's theorem: 
Z = 1 + pg and K 2 = 3 pg-- 7, with pg > 4. 

From the point of view of Beauville's theorem one might regard these surfaces 
as having minimal K 2 for their pg. Harris, in [H], has taken the opposite tack 
and considered varieties with maximum pg for their degree (which in our case 
is K 2 ) ,  which he calls "Castelnuovo varieties". He extends Castelnuovo's argu- 
ments to varieties of any dimension, and my brief treatment here for surfaces 
does not differ essentially from his. Although his article is basically correct, 
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he makes a small error in the computat ions for one special case, when the 
varieties lie inside the cone over the Veronese surface. This has also been noticed 
by Ciliberto, who gives a complete treatment in [Ci], and I will refer to [-Ci] 
in several places. 

Such a mistake would ordinarily not deserve more than a small note. How- 
ever it is exactly in this case, which for surfaces occurs when pg = 7 and K 2 = 14, 
that every such surface (inside the cone over the Veronese) has a ( -2 ) - cu rve  
on it, so that their canonical models all have at least one A1 singularity. Hence 
any first-order deformation in which the singularity smooths is obstructed; by 
a result of Burns and Wahl [BW] the general first order deformation smooths 
the singularity, so therefore the Kuranishi  family for any one such surface cannot 
be reduced. In fact, in the last section of this paper  I show that such a surface 
depends on 54 parameters,  while the dimension of H~(Ox) is 55. 

As far as I know, there is only one other example of such a phenomenon 
in the literature [Ho] .  In order to understand it properly, one needs to under- 
stand Castelnuovo's and Harris '  approach in some detail, and so I felt it worth- 
while to briefly review the entire picture, in the surface case. 

I understand that Professor F. Catanese has succeeded in developing other 
examples of surfaces inside the cone over the Veronese which are obstructed. 

I would like to thank Torsten Ekedahl, Kristian Ranestad, and especially 
Ulf Persson for several useful conversations. It is a pleasure to express my 
appreciation to the Royal  Swedish Academy of Sciences and the Institut Mittag- 
Leffler for their generous hospitality in the fall of 1986 while this research was 
being carried out. 

2. Rational Normal Scrolls 

Most of the surfaces in question lie on rational normal  scrolls of dimension 
3, so I'll briefly review the facts about  them, without any proofs. All of the 
statements can be found in either [ G H l ,  [ACGH] ,  or I-HI, where these varieties 
are discussed in detail. The reader should note that I follow the conventions 
of Har tshorne  [Ha]  for projective space bundles. 

Let al . . . .  , a, be n nonnegative integers. Let 

E' = Pa ........ = ]P((9 F, (a 1) @ Oe~ (az) @... @ (9F~ (a,)); 

there is a natural  structure map  ~: IP--,IP 1 exhibiting the n-fold IP as a 
lP"- l-bundle over p1. The Picard group of P has rank 2, generated by the 
class H of the tautological bundle (9(1), and the class L of rc* (9e1(1). The linear 
system IHI has no base points and the corresponding morphism maps IP biration- 
ally onto an n-fold S = S , 1  ........ which is called a rational normal scroll; the 
fibres of ~ are mapped  onto linear spaces, so S is "hyper-ruled"  in this sense. 
If a i > l  for every i, then IHI is very ample and S - -P .  If a , = 0 ,  then N .... . . . . .  
is the cone over S . . . . . . . . . .  . In any case the degree of N .... . . . . .  is Z ai, and 
Na ........ is an irreducible nondegenerate n-fold in a projective space of dimension 
r = ~ a i + n - 1 .  
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This is the minimum degree for an n-fold in this space, and in fact almost 
all varieties of minimal degree are scrolls: 

(2.1) Theorem. Any irreducible nondegenerate n-fold of degree r - n +  l in ]pr 
is either a rational normal scroll, a cone over the Veronese surface in ]ps, or 
a quadric hypersurface of rank> 5. 

It will also be useful to note the following: 

(2.2) Proposition: A rational normal scroll is projectively normal, and S = Sa ........ 
lies on (~, ai) ( ~  a i -  1!/2 linearly independent quadrics whose equations generate 
the ideal of S. 

Note that the veronese in IP 5 (and every cone over it) has degree 4 and 
also lies on 4 ( 4 -  1)/2 = 6 linearly independent quadrics which cut it out. 

3. Extremal Curves 

The hyperplane sections of the surfaces in question turn out to have maximum 
genus for their degree, and the essential step in their classification is the detailed 
description of these curves. In this section I'll present Castenuovo's bound for 
the genus, and state the relevant facts concerning those curves achieving this 
bound. All of this material may be found in [ACGH,  Chap. III, Sect. 2] and 
I will not present any proofs. 

(3.1) Castelnuovo's Bound. Let C be a smooth curve of genus g that admits 
a birational mapping onto a nondegenerate curve of degree d in IP r. Let m= 
[ ( d -  1) / ( r -  1)] and e = ( d -  1 ) - r e ( r -  1). Then g < n(d, r), where 
re(d, r) = r e ( m-  1) ( r -  1)/2 + m e. 

A curve C as above such that g=rc(d,r) is called an extremal curve. In 
our application we will always have r > 3  and d > 2 r + l ,  so I'll present the 
known facts about extremal curves only in this case. 

(3.2) Theorem. Let C be an extremal curve, with 4: C~D~-~ 'r  the birationaI 
map of C onto a nondegenerate curve D of degree d in P', with g(C)=rc(d,r). 
Assume r> 3 and d > 2 r +  1. Then: 

(3.2.1) 4) is an isomorphism and D ~ _ P  is projectively normal. We will hencefor- 
ward identify D with C. 

(3.2.2) C lies on ( r -  1) ( r -  2)/2 linearly independent quadrics. 

(3.2.3) Let S be the intersection of the quadrics containing C. Then S~IP  r is 
a nondegenerate irreducible surface of degree r - i ,  and hence is either 
a rational normal scroll, the Veronese in ps,  or a quadric in p3 (which 
is a scroll too !). 

Armed with this, one now simply inspects the curves on the Veronese and 
the scrolls to check which of them are extremal. I'll use a minor change of 
notation here and switch to P,.b instead of IP, . . . . .  etc. The result is as follows. 
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(3.3) Theorem. Assume r>=3 and d > 2 r +  1. Let C~_P r be an extremal curve 
of  degree d, and define m and ~ as in (3.1). Then C is either 

(3.3.1) the image of a smooth plane curve of  degree d/2 under the double Veronese 
mapping of IP 2 onto the Veronese surface in ps ;  here r= 5 and d must 
be eveN, 

(3.3.2) the image in S,,  b of a smooth member of  the linear system 

I(m+ l ) H - ( r - e -  2)gl 

on IP~, b; here a + b = r - 1 ,  
or 

(3.3.3) the image S~,b of a smooth member of  the linear system t m H + L on 
F,, b; here a + b = r -  1 and e must be 0. 

4. The Classification of  Canonical Surfaces with K 2 = 3 Z - 1 0  

Let X be a smooth minimal complex surface such that IKxl has no base points, 
OK: X ~ Z ~ - P P * - I  is birational, and K 2 = 3 Z - 1 0 .  As was noticed in Sect. 1, 
the irregularity q = 0, so Z = 1 + pg, hence K 2 = 3 p g -  7, with pg > 4. If p, = 4, then 
KZ= 5, and Z is a quintic surface in IP 3 [Ho] ;  in what follows I'll assume 
that pg > 5. 

Let P be a general hyperplane in ~P~-1, and let C~ IKxl be the corresponding 
curve on X, so that D=O~:(C)=Xc~P. D is a nondegenerate irreducible curve 
in Np,-2 of degree K 2 = 3 p g - 7 .  Let then d = 3 p g - 7  and r = p , - 2 ;  with the 
notations of (3.1) m = [ ( d - 1 ) / ( r - 1 ) ] = 3  since pg>5, and e = l ,  so n(d,r) 
=rc(3pg-7,  p g - 2 ) = 3 p g - 6 .  The genus of C, by the adjunction formula for 
curves on X, is 1 + K 2 = 3 p g -  6 also, so that 

(4.1) the general curve C~[Kx[ is extremal, with the embedding OK. 

Note that r > 3  and d__>2r+l, so that the results (3.2) and (3.3) apply. In 
particular, we have the following, noting that the case (3.3.3) cannot occur since 
e+O: 

(4.2) Proposition. Any smooth curve of degree 3 p g -  7 in IP p'- 2 and genus 3 p g -6 ,  
with pg > 5, is either 

(4.2.1) the image of a curve of degree 7 in ]p2 under the double Veronese mapping 
of ]p2 onto the Veronese surface in ~5; here pg = 7, 

o r  

(4.2.2) the image in N,, b of a smooth member of the linear system 14 H -  (pg-  5) L I 
on Pa, b; here a + b = p g -  3. 

Since C is projectively normal, so is N. Hence the natural map from 
Symm 2 H ~ (X, Kx) to H ~ (X, 2Kx) is surjective. Its kernel is H ~ (Iz(2)), and there- 
fore this last space has dimension 

dime Symm2 H o (X, Kx) -- dime H ~ (X, 2 Kx) 

= (pg + 1) (p,)/2-- (K 2 + Z) [BPV, Chap. VII, Corollary (5.6)] 

= (r-- 1) (r-- 2)/2. 
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Therefore 

(4.3) Z is projectively normal and lies on ( r - 1 ) ( r - 2 ) / 2  linearly independent 
quadrics, where r = p g -  2. 

Let W be the intersection of all the quadrics containing N. Since W is cut 
out by (r - 1 )  (r - 2)/2 linearly independent quadrics, and these quadrics all con- 
tain N, then P c~ W is also cut out by ( r - 1 ) ( r - 2 ) / 2  linearly independent quadrics 
(P is general) containing P c~ Z = C. Therefore, by (3.2), we have 

(4.4) I f  P is a general hyperplane in ]pp~-l, then Pc~ W ~ P c ~ Z = C  is exactly 
the rational normal scroll (or the Veronese) containing C. 
Moreover, W ~_IP p*- ~ is a nondegenerate irreducible 3-fold of  degree p g -  3. 

The final statement is clear: W is nondegenerate since Z is, and irreducible 
of degree p g - 3  since its hyperplane section Z is. Since that hyperplane section 
is a surface, W must be a threefold. 

This is the minimal possible degree for such a 3-fold. Hence by (2.1) we 
have 

(4.5) Corollary. W is either 

(4.5.1) a rational normal scroll Sa, b,c; here a + b + c = p g -  3, 

(4.5.2) the cone in IP 6 over the Veronese surface in l[ '5, or 

(4.5.3) a quadric in ~4. 

Using the description of divisors in W we can now classify Z, and of course 
X. We need some notation for the cone Z over the Veronese. Z is the image 
in IP 6 of the ]Pl-bundle IP=~'((gp20(9~,2(2)) over IP 2 under the map given by 
the sections of the tautological bundle OF(I). If re: ~ l P  2 is the structure map, 
then Pic(]P) has rank 2 and is generated by the class H of (gp(1) and the class 
L of rc*(gl,2(1). The exceptional divisor over the vertex of the cone is in the 
class H - 2 L. 

In [Ci], the analysis of divisors on the possible threefolds W is carried out, 
and I will not reproduce the calculations here. The result is the following classifi- 
cation: 

(4.6) Theorem. Fix pg >= 4, and let X be a smooth minimal complex surface with 
K 2 = 3 Z-- 10 = 3 pg-- 7, such that OK is birational. Then Z = (OK(K) has only rational 
double points as singularities and X is the minimal resolution. Moreover: 

(4.6.1) I f  pg=4 then Z is a quintic surface in ~,3. 

(4.6.2) I f  pg = 5 then Z is the complete interaction of  a quadric and a quartic 
in IP 4. 

I f  pg > 6 then Z is either 

(4.6.3) the image in Sa, b,c of  a member of  the linear system 14H-(pg- -5)LI  
on lP,,b,c; here a + b + c = p g -  3, or 

(4.6.4) the image (in the cone Z over the Veronese in IP 5) of  a member of  the 
linear system I 3 H + L I  on ~'((9~,20)(9p2(2)); here pg= 7. 
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Remark. It is exactly at the case of the cone over the Veronese that Harris '  
error is made. He states that ~ must be a complete intersection of Z with 
a hypersurface not passing through the vertex of Z, implying that X ~ r H for 
some r. The error is made on p. 64 of his article, where certain binomial coeffi- 
cients appearing in his formula for pg seem to be shifted by one. 

Note that in the final case the surface ~ is a trisection in the variety E 
which is ruled over p2. Using [M, Proposition 8.1] a small calculation shows 
that n ,  (9~ ~ (9~2| (gF~ ( -  3)G (9~,2(- 5), and for a general Z in [3 H + LI, Corollary 
10.4 of I-M] shows that pg(Z)= 7 and K~ = 14 as required. 

As a final result of the analysis we have 

(4.7) Corollary. Assume X lies on a smooth rational normal scroll. Then there 
is a fibration f :  X ~ I P  1 on X with general fiber a non-hyperelliptic curve of 
genus 3. 

Indeed, in this case Z is in the class 14 H - - ( p g -  5) L] in the lp2-bundle lP,,b,c, 
and so Z meets the general ]p2 fiber in a smooth quartic curve. Note that 
the "general"  scroll is smooth, so the general X lying on a scroll will have 
such a fibration. 

There is one "obvious"  restriction on the scrolls on which X lies. 

(4.8) Lemma. Assume Z ~_ Fa, b, ~ as above in the class [4 H -  (pg--5)L I, and assume 
that O<_a<_b<_c. with a + b + c = p g - 3 .  Then 4c=<3pg-7.  

Proof. The surface scroll lPa, b inside P,,b,~ is in the class IH--cLI;  if 
is not to contain ]P~,b as a component,  then H.X.IP , ,b>0,  i.e., 

O < = H . ( 4 H - ( p g - 5 ) L ) . ( H - c L ) = 4 H 3 - ( 4 c + p g - 5 ) H 2 L = 3 p g - 4 c - 7 ,  since 
H 3 = p g - 3 ,  H 2 L = I ,  and HL2=L3=O. Q.E.D. 

5. Surfaces with pg = 7 and K z = 14 

In this section I'll analyze more deeply the case of pg=7. By Theorem (4.6), 
we have just two cases: either ~b~: maps X into the Veronese cone Z, or into 
a rational normal scroll. Let us first take up the case of the cone. 

Let IP=P((9~,2G(9~,2(2)) be the resolution of the cone Z, with divisor classes 
H (of (9~,(1)) and L (of n*(9~2(1)) as in the previous section. We have H 3 = 4 ,  
H Z L = 2 ,  H L 2 = I ,  and L3=0;  also the exceptional divisor E ~ P  z has class 
H - 2 L .  Recall that the surface Z is in the class 3 H + L .  

(5.1) 
(5.1.1) 
(5.1.2) 

(5.1.2) 

Proposition. 

The canonical class of  IP is -- 2 H - -  L. 

The linear system [ 3 H + L [  has no base points and the general member 
is a minimal smooth surface X with pg = 7 and K 2 = 14. 

Any such X meets E in a line l of  E, and the self-intersection of  l on 
X is --2. 
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Proof The first statement is an easy exercise in the use of the adjunction formula; 
one need only note that a general H is isomorphic to IP 2, and a general L 
is isomorphic to IF z, the minimal resolution of the quadric cone. 

Since neither IHI nor  ILl have base points, certainly 13H+LI does not; hence 
the general member X is smooth. Its canonical class Kx=(Kp+X)[x=HIx ,  
so ]Kxl has no base points and therefore X must be minimal; moreover (Kx) 2 
= ( K r + X ) Z X = H Z ( 3 H + L ) = 1 4 .  Using the exact sequence O~(gF(--3H--L ) 
--,Cp~(gx--+O we see that pg(X)=hZ((gx)=h3((ge(--3H--L)) since h2((9~) 
= h 3 ((gF) = 0 (IP is rational). By Serre duality h 3 ((9~,(- 3 H -  L)) = h ~ ((9~,(H)) 
= h~ ((9p(1)) = h~ 2, (9~,2 O (9r2(2)) = 7, proving (5.1.2). 

The degree of l = X ~ E  is measured by intersecting with L; so degree(1) 
= (3 H + L) ( H -  2 L) L = 3 H 2 L--  5 HL 2 = 1. The self-intersection of l on X is 
E z X = ( H - - 2 L ) Z ( 3 H + L ) = 3 H a - - l l H Z L + 8 H L Z = 1 2 - - 2 2 + 8 = - - 2 .  Q.E.D. 

(5.2) Corollary. I f  4)K maps X into the cone over the Veronese, then X has 
a (-2)-curve l, whose image under OK is at least an A1 singularity at the vertex 
of the cone. 

Let us now calculate the number of moduli for these surfaces. 

(5.3) Proposition. 
(5.3.1) d i m 1 3 H + L ] = 6 9 ,  

(5.3.2) d im(Aut(P))=15,  

(5.3.3) the number ofmoduli for those X's  mapping into the cone over the Veronese 
is 54. 

Proof Let ~: ]p~]p2 be the structure map for ~, exhibiting it as a ~l-bundle .  
Then 

h~ (gF(3 H + L))=h~ (IP,, (9e(3)G~* (9~,2(1)) 

= h ~ (lP 2, ~,  (9r2(3)| (9e2(1)) 

: h~ 2, Symm 3 ((ge~ Q (9F:(2))| (gr:(1)) 

= h~ (IP2,(9~,~(1)OC~,2(3)@(9~,~( 5)OCr~(7)) 

= 3 + 1 0 + 2 1 + 3 6 = 7 0 ,  
proving (5.3.1). 

Let Aute~(lP) be the automorphisms of P inducing the identity on ]p2; we 
have an exact sequence 

1 ~ Autr2 (IP) ~ Aut (IP) ~ Aut (lP 2) ---, 1, 
so 

dim (Aut (IP)) = 8 + dim (Autp~ (~)) = 7 + dim (Auh,~ ((9~,~ �9 (9p2 (2))), 

since Aut~,2(lP) is the projectivization of the automorphism group of the vector 
bundle. The endomorphisms of the bundle can be viewed as 2 x 2 matrices 

fo g2], where fo and ho have 0 and has 2. These forms 
% 

degree g2 degree are 
ho} 

in the three homogeneous variables of p2, so the number of degree of freedom 
is then 8, so that d im(Aut(P))=  7 + 8 = 15, as stated. The final statement follows 
by subtraction, after noting that no positive dimensional subgroup of Aut(~') 
can stabilize X. Q.E.D. 
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Let now turn to the surfaces which are mapped by ~b K into scrolls. There are 
only four scrolls in n? 6 of degree 4, namely 5;11z, 5;o22, 5;o13, and 5;oo4, and 
X cannot map into 5;oo4 by (4.8). Recall that the surface Z in lP, b ~ is in the 
class 4H--2L  in each case, by Lemma (4.6.3). Let us count the number of 
moduli for these surfaces. 

(5.4) P r o p o s i t i o n .  

{64 

(5.4.1) dim l 4 H - - 2 L l =  65 
65 

(5.4.2) dim(aut(lPa12))= 11, 

dim (Aut (~o 22)) = 13, 
dim(Aut (1Po13)) = 14. 

o n  IPll 2 

on ~o22. 

o n  n~o13 

and 

(5.4.3) The number of moduli for those X's mapping into scrolls 

53 /f S G ] P l l  2 

is 52 / f Z c ~ o z z .  

51 /f 2=]Po13 

Proof. I'll give the calculations for the "general" scroll 1Pl12, and leave the 
other two, which are identical in form, to the reader. If re: ]P~12--*IP 1 is the 
structure map, we have 

h~ @l~2(4H-2L))=h~ CG,~(4)| gb , ( -  2)) 

= h~ (]p1, re, [(9~,1,2 (4)] | (9~l ( - 2)) = h o (p~, Symm 4 [(9 (1) | (9 (1) (9 (9 (2)] | (9 ( - 2)) 

= h~ 1, [(9(4)|174174174 

= h~ 1, (9(2)| s @(9(3)'4@(9(4)| @(9(5)'2@ (9(6)) 

= 5 h ~ ((9 (2)) + 4 h ~ ((9 (3)) + 3 h ~ ((9 (4)) + 2 h ~ ((9 (5)) + h ~ ((9 (6)) 

= 5 . 3 + 4 . 4 + 3 . 5 + 2 . 6 + 7 = 6 5 ,  

so that dim [4H-- 2 L  I = 64. 
As above we have 

dim (Aut (~112)) = dim (Aut (F 1 )) - 1 + dim (Aub, ((9 (1) (9 (9 (1) (9 (9 (2))), 

and End~,ff(9(1)@(9(1)@(9(2)) can be viewed as 3 x 3 matrices of the form 

ko st , 

0 to 

where subscript denotes the degree of the forms in the two homogeneous vari- 
ables of IPL Hence the number of parameters here is 9, so that dim(Aut(~'~12)) 
= 11; this proves (5.4.2), and (5.4.3) is obtained by subtracting. Q.E.D. 
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(5.5) Corollary. In the moduli space for surfaces with pg= 7, q =0,  and K2= 14, 
the surfaces for which ~oK is a birational morphism into the cone over the Veronese 
form an irreducible component of dimension 54. 

Proof. For  ~b/~ to be a birational morphism is an open condition, and we have 
just seen that the number  of moduli  for all other cases is strictly smaller than 
the number  for those mapping  into the cone. Q.E.D. 

In fact, by a result of P inkham [P], it is clear that  we have two components  
here; one for the cone and one for the scrolls. If  the surfaces in the scrolls 
were a degeneration of those in the cone, then the scrolls would be a degeneration 
of the cone; after taking a hyperplane section, we would conclude that the 
surface scroll $22 was degeneration of the Veronese surface. This Pinkam shows 
is not the case. 

The interest of this result is now apparent.  

(5.6) Corollary. Let X be the general surface with pg=7 and K 2= 14 such that 
ff)K maps X into the cone over the Veronese. Then the Kuranishi deformation 
space M for X is not reduced. 

Proof. The point is that X has a ( -2 ) - cu rve  on it which does not smooth 
in any nearby surface, by (5.2). However,  a theorem of Burns and Wahl [BW] 
states that  the general vector in Hl(Ox) smooths every ( -2 ) - cu rve  on X. There- 
fore, since Hl(Ox) is the Zariski tangent space to the Kuranishi  family M, we 
must have that h 1 (Ox) is strictly bigger than the number  of moduli  of X, which 
is the dimension of M. Therefore M is not smooth  at the point corresponding 
to X;  since X is general, and since M is versal, M cannot be reduced, by 
the openess ofversality.  Q.E.D. 

For  completeness, let us calculate h~(Ox) for these surfaces inside the cone 
over the Veronese explicitly. Since h~ [Ma] ,  it suffices to know h2(Ox), 
since X(Ox) = 2 K  2 - 10X(@x) = -- 52; hence hl(Ox) = 52 + h2(Ox). 

For  a sheaf F, we will say its cohomology dimensions are (h~ h~(F) . . . .  ) 
for brevity. Again let g=(gn,20(gp2(2), let ~?=~(g ) ,  and let n: I P ~ P  2 be the 
natural  structure map. The cohomology dimensions of @ are (1, 0, 0, 0) since 
IP is rational, and those of C~(X)=CF(3H+L ) are (70, 0, 0, 0) by the analysis 
leading to (5.3.1). Hence the exact sequence 0 ~ (gn, ~ (gn,(X) ~ (9 x (X) ~ 0 gives 
that the cohomology dimensions of (gx(X) are (69, 0, 0). Using the exact sequence 
O~Ox---,On,lx~(Ox(X)~O, we see that h2(Ox)=h2(On,lx). It  is this that we will 
compute.  

By using the sequence 0 ~ f212 (2) ~ (gn,:(1) e 3 ~ (9n,~(2) ~ 0, we see that 

(5.7) h ~ (f2~,2 (2)) = 3. 

(the map  on the right is clearly surjective on global sections.) 
Next, note that  n* O~| C~(--3) |  0~,2( - 1), and since by (5.1.1) 

~2g= On,(--2)| (gn,~(-1), we have using Serre duality that 

h 3 (7c* On,2 @ (gn,( - X)) = h ~ (CF(1)| n*f2~,:) = h ~ (n, (9n,(1) | f2~,2) 

= h ~ ([(9n,2 @ (9r~(2)] | f2~=) = h ~ (I2x~) + h ~ (f2~ (2)) = 3 
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by (5.7). Thus 

(5.8) h 3 (re* Or~ | OF( -- X)) = 3. 

Note  that  the relative tangent  bundle Or/r:~--(gF(2)| [Ha] ,  so 
that  OF/~,~ ( -  X) - C F ( -  1)| re* (ge~(- 3). Using Serre duality, h 3 (Orge2 ( -- S ) )  
= h ~ ((gF(-1)| (9u,~(2)), which is clearly zero; hence 

(5.9) h3(Or/r~(- S))=O. 

The exact sequence O--+O~e/F~(--X)--+OF(--X)--+rc*OF~(--X)--+O then 
implies, using (5.8) and (5.9), that  

(5.10) h 3 ( O F ( -  X)) = 3. 

Since 
e i 7"c, (7"c* g *  (1)) = R i re, (CF(1)| Jz* [(9F~ �9 (~F2( -- 2)] 

= RiFe, (0~,(1)| [(OF~ | 0F~(-- 2)] 

={SF2(--2)| ) if i = 0  

if i > 0 '  
we have 

hi(Tz, g ,  _ i (1)) - h (re, zc* o ~* (1)) = h i ((gr~ ( - 2)0) (gr~ G (gF~o (9F2(2)), 

so that  the cohomology dimensions of re*g*(1) are (8, 0, 0, 0). Using the exact 
sequence 0--* (9 F ~ re* g* (1)--* OF/~ ~ 0, we see that  the cohomology dimensions 
of OF~2 are (7, 0, 0, 0). 

Since 

Rire,(re , OF2)={00~,2 if i = 0  if i > 0 '  hi(re * Or2) =hi(re, re* OF~)=hi(OF2) 

which can be easily computed  from the exact sequence 0~(9F2~(gF2(I) e3 
--' OF~--+0, yielding that  the cohomology dimensions of OF~ are (8, 0, 0). Combin-  
ing the last two calculations with the exact sequence 0--+ OF/F2--+ OF--+ re* OF2--' 0 
gives that  the cohomology dimensions of OF are (15, 0, 0, 0). In particular, 

(5.11) h 2 (OF) = ha (OF) = 0. 

Finally the exact sequence 0 -+ O r ( -  X)--+ OF--+ OFlx ~ 0 can be applied, using 
(5.10) and (5.11), to give h2(OFlx)=3. As remarked above, this implies that  
hZ(Ox) = 3, so that  we have proved the following. 

(5.12) Proposition. Let X be a general surface with pg=7  and K 2 =  14 such 
that 49~ maps X birationally into the cone over the Veronese. Then H I ( O x )  has 
dimension 55. 
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