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1. Introduction

Let X be a smooth minimal complex surface such that |[Ky| has no base points
and the associated map ¢g: X — X <IPP~! is birational. In this article T will
present a classification of such surfaces under the additional assumption that
K?=3y—10, and also discuss in some detail the case K?>=14, y=8, which
yields an interesting example. This classification was essentially known to Castel-
nuovo [C], which is not surprising since the main ingredient of the argument
is an analysis of curves which are “extremal” in the sense of having the largest
possible genus for their degree, and this genus bound itself was proved by Castel-
nuovo.

If K*<3x—11, then since y<1+p,, we have K*<3p,—8. Beauville has
shown [B, Theorem 5.5] that in this case ¢ is birationally a double covering
onto a ruled surface. Moreover if K*=3y—10 and ¢g=0, then y<p,, so that
K?<3p,—10, also forcing ¢, to have degree two. Hence with our assumptions
q=0 and we are considering regular surfaces at the limit of Beauvilie’s theorem:
x=1+p, and K*=3p,—7, with p, > 4.

From the point of view of Beauville’s theorem one might regard these surfaces
as having minimal K? for their p,. Harris, in [H], has taken the opposite tack
and considered varieties with maximum p, for their degree (which in our case
is K?), which he calls “Castelnuovo varieties”. He extends Castelnuovo’s argu-
ments to varieties of any dimension, and my brief treatment here for surfaces
does not differ essentially from his. Although his article is basically correct,
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he makes a small error in the computations for one special case, when the
varieties lie inside the cone over the Veronese surface. This has also been noticed
by Ciliberto, who gives a complete treatment in [Ci], and I will refer to [Ci]
in several places.

Such a mistake would ordinarily not deserve more than a small note. How-
ever it is exactly in this case, which for surfaces occurs when p,=7 and K*>=14,
that every such surface (inside the cone over the Veronese) has a (—2)-curve
on it, so that their canonical models all have at least one A, singularity. Hence
any first-order deformation in which the singularity smooths is obstructed; by
a result of Burns and Wahl [BW] the general first order deformation smooths
the singularity, so therefore the Kuranishi family for any one such surface cannot
be reduced. In fact, in the last section of this paper I show that such a surface
depends on 54 parameters, while the dimension of H(8y) is 55.

As far as I know, there is only one other example of such a phenomenon
in the literature [Ho]. In order to understand it properly, one needs to under-
stand Castelnuovo’s and Harris’ approach in some detail, and so I felt it worth-
while to briefly review the entire picture, in the surface case.

I understand that Professor F. Catanese has succeeded in developing other
examples of surfaces inside the cone over the Veronese which are obstructed.

I would like to thank Torsten Ekedahl, Kristian Ranestad, and especially
Ulf Persson for several useful conversations. It is a pleasure to express my
appreciation to the Royal Swedish Academy of Sciences and the Institut Mittag-
Leffler for their generous hospitality in the fall of 1986 while this research was
being carried out.

2. Rational Normal Scrolls

Most of the surfaces in question lic on rational normal scrolls of dimension
3, so I’ll briefly review the facts about them, without any proofs. All of the
statements can be found in either [GH], [ACGH], or [H], where these varieties
are discussed in detail. The reader should note that I follow the conventions
of Hartshorne [Ha] for projective space bundles.

Let ay, ..., a, be n nonnegative integers. Let

P=F,, . o=P0p:(a;)®0p:(a,)D... 0 Op:i(ay);

there is a natural structure map n: P—P! exhibiting the n-fold P as a
P*~*-bundle over IP!. The Picard group of IP has rank 2, generated by the
class H of the tautological bundle (1), and the class L of 7#* Gp.(1). The linear
system |H| has no base points and the corresponding morphism maps IP biration-
ally onto an n-fold S=8,, .. which is called a rational normal scroll; the
fibres of = are mapped onto linear spaces, so S is “hyper-ruled” in this sense.
If ;21 for every i, then |H| is very ample and S~ If ¢,=0, then S, .,
is the cone over S, , . In any case the degree of S, , is ) a;, and
S.,....s, is an irreducible nondegenerate n-fold in a projective space of dimension
r=y a;+n—1.
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This is the minimum degree for an n-fold in this space, and in fact almost
all varieties of minimal degree are scrolls:

(2.1) Theorem. Any irreducible nondegenerate n-fold of degree r—n+1 in P’
is either a rational normal scroll, a cone over the Veronese surface in P>, or
a quadric hypersurface of rank = 5.

It will also be useful to note the following:

(2.2) Proposition: A rational normal scroll is projectively normal, and S=§,, .,
lies on (). a;) (3, a;—1)/2 linearly independent quadrics whose equations generate

the ideal of S.

Note that the veronese in IP° (and every cone over it) has degree 4 and
also lies on 4(4 —1)/2 =6 linearly independent quadrics which cut it out.

3. Extremal Curves

The hyperplane sections of the surfaces in question turn out to have maximum
genus for their degree, and the essential step in their classification is the detailed
description of these curves. In this section I'll present Castenuovo’s bound for
the genus, and state the relevant facts concerning those curves achieving this
bound. All of this material may be found in [ACGH, Chap. III, Sect.2] and
I will not present any proofs.

(3.1) Castelnuovo’s Bound. Let C be a smooth curve of genus g that admits
a birational mapping onto a nondegenerate curve of degree d in IP,. Let m=
[(d—1)/r—1)] and e=(d—1)—m(r—1). Then g<n(d,r), where
a(d,)=mm—1)(r—1)/2+me.

A curve C as above such that g=mn(d,r) is called an extremal curve. In
our application we will always have r=3 and d=2r+1, so I'll present the
known facts about extremal curves only in this case.

(3.2) Theorem. Let C be an extremal curve, with ¢: C—DcWP" the birational
map of C onto a nondegenerate curve D of degree d in ", with g(C)==n(d,r).
Assume r=3 and d=2r+1. Then:

(3.2.1) ¢ is an isomorphism and D =IP" is projectively normal. We will hencefor-
ward identify D with C.

(3.2.2) C lies on (r—1)(r—2)/2 linearly independent quadrics.

(3.2.3) Let S be the intersection of the quadrics containing C. Then S<IP" is
a nondegenerate irreducible surface of degree r—1, and hence is either
a rational normal scroll, the Veronese in P°, or a quadric in P> (which
is a scroll too!).

Armed with this, one now simply inspects the curves on the Veronese and
the scrolls to check which of them are extremal. T'll use a minor change of
notation here and switch to IP, , instead of I, , , etc. The result is as follows.
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(3.3) Theorem. Assume r=3 and d=2r+1. Let C<IP" be an extremal curve

of degree d, and define m and ¢ as in (3.1). Then C is either

(3.3.1) the image of a smooth plane curve of degree d/2 under the double Veronese
mapping of P? onto the Veronese surface in P°; here ¥=5 and d must
be even,

(3.3.2) theimagein'S, , of a smooth member of the linear system

m+1)H—(r—e—2)L|

onF, ,; hereat+b=r—1,
or

(3.3.3) the image S, ; of a smooth member of the linear system |mH+L| on
PP, ,; here a+b=r—1 and & must be 0.

4, The Classification of Canonical Surfaces with K2 =3y3~—10

Let X be a smooth minimal complex surface such that |[K x| has no base points,
¢g: X—>2X <P~ ! is birational, and K*=3y—10. As was noticed in Sect. 1,
the irregularity ¢=0, so x=1+p,, hence K*=3p,—7, with p,=>4. If p,=4, then
K?=35, and X is a quintic surface in IP* [Ho]; in what follows I'll assume
that p, > 5.

Let P be a general hyperplane in IP= 1 and let Ce|K | be the corresponding
curve on X, so that D=¢(C)=2 NP D is a nondegenerate irreducible curve
in PP~ % of degree K*=3p,—7. Let then d=3p,—7 and r=p,—2; with the
notations of (3.1) m=[(d—1)/(r—1)]=3 since p,=5, and e=1, so n(d,r)
=n(3p;—7,p,—2)=3p,—6. The genus of C, by the adjunction formula for
curves on X, is 1+ K?*=3p,—6 also, so that

(4.1) the general curve Ce|Ky| is extremal, with the embedding ¢y.

Note that r=3 and d=2r+1, so that the results (3.2) and (3.3) apply. In
particular, we have the following, noting that the case (3.3.3) cannot occur since
e+0:

(4.2) Proposition. Any smooth curve of degree 3p,—7 in PPs~> and genus 3p,—6,
with p, =5, is either

(4.2.1) the image of a curve of degree 7 in P? under the double Veronese mapping
of P? onto the Veronese surface in IP>; here p,=7,
or

(4.2.2) theimageinS, ; of a smooth member of the linear system |4 H —(p,—5) L|
on B, ,; here a+-b=p,—3.

Since C is projectively normal, so is X. Hence the natural map from
Symm?2 H®(X, Ky) to H°(X, 2Ky) is surjective. Its kernel is H°(I5(2)), and there-
fore this last space has dimension

dimgSymm? H%(X, Ky)—dimcH°(X, 2Ky)
=(p,+1)(p)/2—(K*+y) [BPV, Chap. VII, Corollary (5.6)]
=(r—1)(r—2)/2.
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Therefore

(4.3) X is projectively normal and lies on (r—1)(r—2)/2 linearly independent
quadrics, where r=p, —2.

Let W be the intersection of all the quadrics containing 2. Since W is cut
out by (r—1)(r—2)/2 linearly independent quadrics, and these quadrics all con-
tain %, then P n Wis also cut out by (r— 1) (r— 2)/2 linearly independent quadrics
(P is general) containing P n X' = C. Therefore, by (3.2), we have

(4.4) If P is a general hyperplane in PP~ then PAnW2PnX=C is exactly
the rational normal scroll (or the Veronese) containing C.
Moreover, W =TPP:~ ! is a nondegenerate irreducible 3-fold of degree p.—3.

The final statement is clear: W is nondegenerate since X is, and irreducible
of degree p,—3 since its hyperplane section X is. Since that hyperplane section
is a surface, W must be a threefold.

This is the minimal possible degree for such a 3-fold. Hence by (2.1) we
have

(4.5) Corollary. W is either

(4.5.1) arational normal scroll S, ;, .; here a+b+c=p,—3,
(4.5.2) the cone in IP® over the Veronese surface in P, or
(4.5.3) a quadric in P*.

Using the description of divisors in W we can now classify X, and of course
X. We need some notation for the cone Z over the Veronese. Z is the image
in IP® of the IP'-bundle P=1P(Op.® Op:(2)) over PP? under the map given by
the sections of the tautological bundle Op(1). If 7: IP—P? is the structure map,
then Pic(lP) has rank 2 and is generated by the class H of Op(1) and the class
L of n* Op2(1). The exceptional divisor over the vertex of the cone is in the
class H—2L.

In [Ci], the analysis of divisors on the possible threefolds W is carried out,
and I will not reproduce the calculations here. The result is the following classifi-
cation:

(4.6) Theorem. Fix p, >4, and let X be a smooth minimal complex surface with
K?=3y—-10=3 p,— 7, such that ¢y is birational. Then X = ¢ (K) has only rational
double points as singularities and X is the minimal resolution. Moreover:

(4.6.1) If p,=4 then X is a quintic surface in P>,
(4.6.2) If p,=5 then X is the complete interaction of a quadric and a quartic
in P*,
If p,= 6 then X is either

(4.6.3) the image in' S, , . of a member of the linear system |4H —(p,—35) L|
onl, , . herea+b-+c=p,—3, or

(4.6.4) the image (in the cone Z over the Veronese in P°) of a member of the
linear system |3 H+L| on IP(Up>® Up2(2)); here p,=1.
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Remark. It is exactly at the case of the cone over the Veronese that Harris’
error is made. He states that ¥ must be a complete intersection of Z with
a hypersurface not passing through the vertex of Z, implying that X~r H for
some r. The error is made on p. 64 of his article, where certain binomial coeffi-
cients appearing in his formula for p, seem to be shifted by one.

Note that in the final case the surface X is a trisection in the variety B
which is ruled over IP%. Using [M, Proposition 8.1] a small calculation shows
that 7, Oy = Op, @ Op2( — 3)P Op2( —5), and for a general 2 in |3 H + L|, Corollary
10.4 of [M] shows that p,(X)="7 and K} =14 as required.

As a final result of the analysis we have

4.7y Corollary. Assume X lies on a smooth rational normal scroll. Then there
is a fibration f: X - on X with general fiber a non-hyperelliptic curve of
genus 3.

Indeed, in this case X is in the class |4 H—(p,—5)L| in the P*>-bundle , , .,
and so ¥ meets the general P? fiber in a smooth quartic curve. Note that
the “general” scroll is smooth, so the general X lying on a scroll will have
such a fibration.

There is one “obvious” restriction on the scrolls on which X lies.

(4.8) Lemma. Assume X<, , . as above in the class |[4H —(p,— 5) L|, and assume
that 0=a<b=c. witha+b+c=p,—3. Then4c<3p,—7.

Progf. The surface scroll B, , inside I, ;. is in the class |[H—cL}; if
2 is not to contain F,, as a component, then H-X-P =0, ie,
0<H-(4H—(p,—5L)-(H—cL)=4H*—(4c+p,—5)H*L=3p,—4c—7, since
H?®=p,—3,H*L=1,and HI?=1?=0. QE.D.

5. Surfaces with p, =7 and K* =14

In this section I'll analyze more deeply the case of p,=7. By Theorem (4.6),
we have just two cases: either ¢z maps X into the Veronese cone Z, or into
a rational normal scroll. Let us first take up the case of the cone.

Let P=P(Op.F Op2(2)) be the resolution of the cone Z, with divisor classes
H {of 0p(1)) and L (of n* Opz(1)) as in the previous section. We have H>=4,
H?L=2, HI?=1, and I*?=0; also the exceptional divisor Ex~IP? has class
H—2L. Recall that the surface 2 is in the class 3H + L.

(5.1) Proposition.
(5.1.1) The canonical class of Pis —2H—L.

(5.1.2) The linear system |3H + L| has no base points and the general member
is a minimal smooth surface X with p,=7 and K*=14.

(5.1.2) Any such X meets E in a line | of E, and the self-intersection of 1 on
Xis —2.
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Proof. The first statement is an easy exercise in the use of the adjunction formula;
one need only note that a general H is isomorphic to IP?, and a general L
is isomorphic to IF,, the minimal resolution of the quadric cone.

Since neither |H| nor |L| have base points, certainly |3 H + L| does not; hence
the general member X is smooth. Its canonical class Ky=(Kp+X)|y=H|y,
so |Kx| has no base points and therefore X must be minimal; moreover (K)?
=(Kp+X)*X=H?*(3H+ L)=14. Using the exact sequence 0— Op(—3H—L)
—0p—>0x—0 we see that p,(X)=h*(Ox)=h>(Gp(—3H—L)) since h*(Gp)
=h3(Op)=0 (P is rational). By Serre duality h*(Up(—3H — L))=h°(Op(H))
=h°(Op(1)) =h°(IP?, Op. D Op(2)) =7, proving (5.1.2).

The degree of I=X NE is measured by intersecting with L; so degree(])
=(BH+L)(H—2L)L=3H*L-5HI?=1. The self-intersection of [ on X is
E*X=(H-2LP(B3H+L)=3H*—11H?L+8HI*=12—-22+8=—-2. QE.D.

(5.2) Corollary. If ¢ maps X into the cone over the Veronese, then X has
a (—2)-curve [, whose image under ¢y is at least an A, singularity at the vertex
of the cone.

Let us now calculate the number of moduli for these surfaces.
(5.3) Proposition.
(5.3.1) dim|3H+L|=69,
(5.3.2) dim{Aut(P))=15,

(5.3.3) the number of moduli for those X’s mapping into the cone over the Veronese
is 54.

Proof. Let n: P—1P? be the structure map for I, exhibiting it as a IP*-bundle.
ther h°(B Op(3H + L)=h° (B, 0p(3)®n* Opa(1))
=h°(P%, 1, Op2(3)® Op:(1))
=h°(IP?, Symm? (Op ® Op(2)) @ Op2(1))
= h°(P%,0p>(1)® Up2(3)® Op2(5) D Op2(7))
) =3+104+214+36=70,
proving (5.3.1).

Let Autp:(IP) be the automorphisms of P inducing the identity on P?; we
have an exact sequence

1 - Autp.(IP) —» Aut(IP) » Aut(IP?) - 1,
SO

dim (Aut (P)) =8 + dim (Autp:(IP)) = 7 + dim (A utps(COp® Op2(2))),

since Autp.(IP) is the projectivization of the automorphism group of the vector
bundle. The endomorphisms of the bundle can be viewed as 2 x 2 matrices

((;’ iz), where f, and h, have degree 0 and g, has degree 2. These are forms
0,

in the three homogeneous variables of IP?, so the number of degree of freedom
is then 8, so that dim(Aut(IP))=7+8 =13, as stated. The final statement follows

by subtraction, after noting that no positive dimensional subgroup of Aut(P)
can stabilize X. Q.E.D.



90 R. Miranda

Let now turn to the surfaces which are mapped by ¢ into scrolls. There are
only four scrolls in IP® of degree 4, namely S;,,, So»2> So13, and Sy,,, and
X cannot map into Sy, by (4.8). Recall that the surface X in P, is in the
class 4H—2L in each case, by Lemma (4.6.3). Let us count the number of
moduli for these surfaces.

(5.4) Proposition.

64 onlP,,
(5.4.1) dim|[4H—-2L]|= {65 onP,,,.
65 on Py,
(5.42) dim(Aut(P,,,)=11,
dim(Aut(IPy,,))=13, and
dim (Aut(IPy,5))=14.
(5.4.3) The number of moduli for those X's mapping into scrolls
55 if ey,
is{52 if Z<Py,,.
51 if 2l

Proof. 'l give the calculations for the “general” scroll IP,,,, and leave the
other two, which are identical in form, to the reader. If n: IP,,—>IP! is the
structure map, we have
hO(Py 12, Gp,,,(4H—2L)=h (P, 15, Cp,,, (@ 7* Cp:i(—2))
=ho (P, 7, [Op,,, (D] ® Cp«(—2)=h° (P, Symm* [O(1)@ O(1) D O(2)] @ O(—2))
=h (P, [0(H®°DO(5)** D OO)**@O(N®*DO(8)]®U(—2)
=h(P", 0(2)*°®OB)** DO D O(3)®*D0(6))
=5h°(0Q2)) +4h°(O3)) + 3 h° (O(4) + 2h°(O(5)) + h°(O(6))
=5.34+4-44+3-542-6+7=065,

so that dim |4 H —2 L| = 64.
As above we have

dim(Aut(P,,,))=dim(Aut(P')) — 1 + dim (Autp. (O(1) D O(1)D O(2))),
and Endp(O(1)D O(1)BO(2)) can be viewed as 3 x 3 matrices of the form

fo 8 7
ho ko s¢ s
0 0 1

where subscript denotes the degree of the forms in the two homogeneous vari-
ables of IPL. Hence the number of parameters here is 9, so that dim(Aut(P;,,))
=11; this proves (5.4.2), and (5.4.3) is obtained by subtracting. Q.E.D.
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(5.5) Corollary. In the moduli space for surfaces with p,=7, q=0, and K?=14,
the surfaces for which ¢ is a birational morphism into the cone over the Veronese
form an irreducible component of dimension 54.

Proof. For ¢y to be a birational morphism is an open condition, and we have
just seen that the number of moduli for all other cases is strictly smaller than
the number for those mapping into the cone. Q.E.D.

In fact, by a result of Pinkham [P], it is clear that we have two components
here; one for the cone and one for the scrolls. If the surfaces in the scrolls
were a degeneration of those in the cone, then the scrolls would be a degeneration
of the cone; after taking a hyperplane section, we would conclude that the
surface scroll §,, was degeneration of the Veronese surface. This Pinkam shows
is not the case.

The interest of this result is now apparent.

(5.6) Corollary. Let X be the general surface with p,=7 and K*=14 such that
¢x maps X into the cone over the Veronese. Then the Kuranishi deformation
space M for X is not reduced.

Proof. The point is that X has a (—2)-curve on it which does not smooth
in any nearby surface, by (5.2). However, a theorem of Burns and Wahl [BW]]
states that the general vector in H!(@y) smooths every (—2)-curve on X. There-
fore, since H'(@y) is the Zariski tangent space to the Kuranishi family M, we
must have that h'(@y) is strictly bigger than the number of moduli of X, which
is the dimension of M. Therefore M is not smooth at the point corresponding
to X; since X is general, and since M is versal, M cannot be reduced, by
the openess of versality. Q.E.D.

For completeness, let us calculate h!(@y) for these surfaces inside the cone
over the Veronese explicitly. Since h°(@y)=0 [Ma], it suffices to know h2(6y),
since x(Oy)=2K?*—103(0x)= —52; hence h'(Oy) =52+ h*(Oy).

For a sheaf F, we will say its cohomology dimensions are (h°(F), h'(F),...)
for brevity. Again let &= 0p® Op2(2), let P=IP(&), and let n: P—>1P? be the
natural structure map. The cohomology dimensions of @ are (1, 0, 0, 0) since
P is rational, and those of Gp(X)=0p(3H+ L) are (70, 0, 0, 0) by the analysis
leading to (5.3.1). Hence the exact sequence 0— Op— Op(X)—>0x(X)—0 gives
that the cohomology dimensions of Oy (X) are (69, 0, 0). Using the exact sequence
0— Oy — Op|x— Ox(X)—0, we see that h?(Oy)=h?*(Oplx). It is this that we will
compute.

By using the sequence 0— QL,(2) = 0p,(1)®3 — 0p,(2) - 0, we see that

(5.7) O (Qh.(2))=3.

(the map on the right is clearly surjective on global sections.)
Next, note that 7* Op.® Op(— X) = Op(— 3)@7* @p*(— 1), and since by (5.1.1)
QR = Op(—2)@7* Op.(— 1), we have using Serre duality that
h* (n* Op:® Up(— X)) = h° (Op(1) @ * Q) = h° (1, Op(1) ® )
=h’([Op-@ Op2(2)] @ Qp2) = h° () + h°(242(2) =3
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by (5.7). Thus
(5.8 B3 (n* Op® Op(— X)) =3.

Note that the relative tangent bundle Opp: = Op(2)@7* Op(—2) [Hal, so
that Oppa(—X)= Op(—1)@7* Op>(—3). Using Serre duality, h>(Opp:(—X))
=h(Op(— 1)@ n* Ups(2)), which is clearly zero; hence

(59) hs(@]p/]pz(—X))=0.

The exact sequence 00— Opp:(—X)— Op(—X)—>7n*Op:(—X)—0 then
implies, using (5.8) and (5.9), that

(5.10) 3 (@Op(—X))=3.
Since . .
Rim, (n* &*(1)) =R n, (Op()Q7* [Op> D Oppo( — 2)]
=Ri7, Op(1)®[Op:® Ops(— 2]

={@]pz(‘“2)®(0pz®@1p2@(9]y2(2) lf l:O
0 if i>0’
we have

R (r* &* (1) =h'(r, 7* E* (1)) =h (Op:(— 2)® Op: @ Op: D Op(2)),

so that the cohomology dimensions of n*£*(1) are (8, 0, 0, 0). Using the exact
sequence 0— Op— 1* *(1) > Opp.—0, we sce that the cohomology dimensions
of Opp: are (7,0, 0, 0).

Since

@]pz lf l=0

i, % —hi % )= i 2
0 fi>0’ W(n* Op2)=h'(n, 7* Op:) = h'(Op)

Ri Ty (TC* @]pz) :{
which can be easily computed from the exact sequence 0-— Op, — Op,(1)®3
— Op.—0, yiclding that the cohomology dimensions of &y are (8, 0, 0). Combin-
ing the Jast two calculations with the exact sequence 0 — Opp> = Op— ¥ Op> —0
gives that the cohomology dimensions of @ are (15, 0, 0, 0). In particular,

(5.11) h2 (@)= h3(Op) =0.

Finally the exact sequence 0 — Op(— X) - Op— Op|y — 0 can be applied, using
(5.10) and (5.11), to give h*(@ply)=3. As remarked above, this implies that
h*(@y)=3, so that we have proved the following.

(5.12) Proposition. Let X be a general surface with p,=7 and K*>=14 such
that ¢x maps X birationally into the cone over the Veronese. Then H (@) has
dimension 55.
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