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O. Introduction 

The systematic study of elliptic surfaces was begun by Kodaira [K 1]. He listed 
all the possible singular fibers, introduced their local (monodromy) invariants, 
and calculated the possible values of the elliptic modulus J. Finally, he present- 
ed the outline of a complete classification. 

The simplest non-trivial example of an elliptic surface is a rational elliptic 
surface. Such a surface is the blow-up of IP 2 at nine points; hence, its Neron- 
Severi group is very explicit. It thus gives the unique opportunity to "see" an 
elliptic surface from two sides: on one hand, using the general (external) 
approach, and on the other hand the specific (internal) view in the setting of 
classical geometry. This "accident" of nature does provide (at least to the 
authors) an unending source of fascination. 

In this paper we are going to restrict ourselves to elliptic surfaces with 
sections, so-called Jacobians (or in the terminology of Kodaira, basic elliptic 
surfaces). A rational elliptic surface turns out to be a Jacobian if and only if it 
has no multiple fibers. (In fancy terminology, the Tate-Shafarevich group 
vanishes). 

So, unless stated otherwise, an elliptic surface will mean a Jacobian togeth- 
er with a distinguished section, the so-called 0-section. 

A rational elliptic surface can be presented in two different ways. 
The first is intimately related to the so-called Weierstrass representation, 

and as such natural to generalize. Namely, consider the involution z ~ - z ;  it 
exhibits the surface as a double covering of a ruled surface branched over at 
least two irreducible components, one of them being a smooth rational curve 
of self-intersection - 2  corresponding to the distinguished section. If we blow 
down the exceptional divisors not meeting this component, we get a normal- 
ized situation which we are going to describe in fuller detail later. 

The second is much more ad-hoc (and interesting?). It concerns the surface 
as the blow-up of the nine basepoints of a cubic pencil. 

To every (Jacobian) elliptic fibration X there is a group of sections ~b(X) 
with the distinguished section as zero. Up to a finite group (generically 292, in 
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very special cases Z 4 or 296) (b(X) is identified with the relative automorphism 
group of the fibration. 

Due to a formula of Shioda-Tate (to be proved later) we have the basic 
inequalities 

O < r k ~ < p ( X ) - 2  (where p is the Picard number) 

where the discrepancy in the upper bound is related to the degree of re- 
ducibility of the fibers. 

In the rational case p(X)= 10 (always) and thus 

O<rkq)<8. 

Generically r k ~ =  8, while rkq)=O is the most special. 

Definition. An elliptic fibration X is called extremal if and only if p(X) 
= h 1, 1 (X) (maximal Picard number) and rkq~(x) = O. 

In other words, the extremal fibrations are the most reducible. (For an 
elaboration of this concept see [P2].) 

Proposition. Let X be a rational elliptic surface. Then the following are equiva- 
lent: 

(i) X is extremal (i.e., rkq)(X)=O) 
(ii) the relative automorphism group Aut o (X) is finite 

(iii) the number of representations as a blow-up of IP 2 is finite 
(iv) the number of rational curves C with C a <0  is finite 
(v) the number of reduced curves C with C2 <0  is finite. 

Proof. The equivalence (i)~=~(ii) is clear and the implications (v)~( iv)~( i i i )  are 
obvious. If F is a fiber then K x = - F ;  thus, E being exceptional is equivalent 
with E being a section, proving (i)~(iv). If C irreducible and C 2 <0  then K C 
+ C 2 <0;  thus, K C +  C2= - 2  and (iv)~(v). The fact (Proposition 6.1) that any 
rational elliptic surface is a blow-up of IP 2 shows (iii)~(iv). Q.E.D. 

The object of this paper is to classify all extremal rational elliptic surfaces. 
The complete list encompasses 16 cases (15 discrete and one continuous) 

and is presented in Sect. 4. 
It naturally splits up in six semi-stable cases (i.e., the fibers are all semi- 

stable (type In) ) and ten unstable cases. 
The case of semi-stable fibrations was studied by A. Beauville [Bl using a 

different approach. The extremal semi-stable fibrations are the semi-stable 
fibrations with the minimal (=4)  number of singular semi-stable fibers. 
Beauville relates those six fibrations to certain elliptic modular sufaces speci- 
fying the corresponding subgroups of finite index in SL2(~, ). 

U. Hirzebruch [HI  lists in a Diplom-Arbeit all elliptic fibrations with at 
most three singular fibers. Except for the trivial case, those correspond to 
rational or K - 3  surfaces. Our list of ten unstable extremal fibrations is a 
sublist of the rational examples in her list. 

Thus nothing is in a sense fundamentally new. The justification of our 
paper lies, we hope, in the new point of view and its systematic exploration. 
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The plan of the paper is to review the general theory of elliptic surfaces 
(Sects. 1 through 3), then to present the complete list (Sect. 4) and in the next 
section (Sect. 5) to give all the Weierstrass equations. (This incidentally proves 
that all the cases do occur.) 

The Weierstrass models have a geometric interpretation as quartics with a 
distinguished point; this ties in with the notion of maximizing quartics [P1] 
and provide s a (painless) graphical representation of all the cases. 

Finally, we discuss various relationships between the different extremal 
fibrations, exhibited by coverings of one by another. 

1. Glossary on (Jaeobian) Elliptic Fibrations 

Let C be a smooth curve (~ IP  1 in our case) and let z~: X ~  C be a (relatively) 
minimal elliptic surface over C with a distinguished section S 0. 

The complete list of possible fibers has been given by Kodaira [K1] and is, 
of course, very well known. It encompasses two infinite families (I,, I*, n >0) 
and six exceptional cases (II, III, IV, II*, III*, IV*). Associated with those are 
a host of various invariants, some of which we are going to present below in 
tabular form. 

To each (Jacobian) elliptic fibration re: X ~  C there corresponds a com- 
mutative triangle 

\ /  
C 

where ~ contracts all components of fibers not meeting S o. 
if: 2~ ~ C is called the Weierstrass fibration associated with X. The fibers of 

Jf are all irreducible, but J~ is always singular (unless c~ is the identity); its 
singularities are mild. In fact, they are all rational doublepoints and X is the 
minimal desingularization. 

Jf has a natural section So(=c~(S0)) and the natural involutions z ~ - z  on 
both X and )~ commute and respect the fibrations, giving a diagram 

X - i  ~R 

X i - ~ R  

where R, /~ are ruled surfaces and /~  is the minimal model of R (not affecting 
i(So) ). The involutions i, { exhibit X, Jf as double coverings of R, /~ branched 
along four-sections B, B(B = e'(B)). We can write B = i(So) + T, and B = i(So) + T; 
T and 2P are obviously trisections and disjoint from i(So), i(So). T is smooth 
while iP in general has simple singularities (corresponding to the rational 
doublepoints of 2). 
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If we localize the picture to a point  c=c (0 )  on C with local parameter  t, we 
can present J~ in Weierstrass normal  form 

y2 =x3 +A(0 x +B(0, 

where A(t ) ,  B( t )  are regular functions at c. The three roots of the cubic in x 
make up the componen t  T and  i-(S0) corresponds to x = o o .  Let A ( t ) = 4 A  3 
+ 2 7 B  2 be the discr iminant .  The fiber over c(to) is singular iff A(to)=0.  

We can now define the funct ion J ( t ) = 4 A 3 / A .  If A(to)+-O, J( to)  simply gives 
the modulus  of the elliptic fiber over C(to). 

Define m(J( to )  ) (or simply re(to) ) to be the order of vanishing of J ( t ) - J ( t o )  

at t o . 
It is clear that  the type of s ingular  fiber on X can be read off the 

singulari ty of T (together with its posi t ion relative to the fiber o f /~  ~ C). The 
Weierstrass model  allows us to read off the same informat ion  from the orders 
of vanishing of the functions A, B and  A at the various singular  base values. 
Let us denote  those vanishing orders with a, b and  3, respectively. 

To each fiber F on X we can associate the ra t ional  doub lepo in t  X ,  on c~(F) 
or equivalently the singular  po in t  x,  on  T. In  fact, the former has as a 
resolut ion the un ion  of the components  of F no t  meet ing S o. Thus, they can be 
considered as sublattices of the Neron-Sever i  group of X and as such they 
have rank  ( = r ( f ) )  and  d iscr iminant  (=d(F)) .  [If  r ( F ) = 0  then d ( F ) = l  by 
convent ion. ]  Finally,  if e(F)  denotes the euler n u m b e r  of the fiber F as a 
reduced divisor, we can set up the following table. 

Table 1.1 

a b ~ J re(J) e r d RDP 

I o 0 0 0 4=0, 1, ~ - 0 0 1 - 
I 0 a > l  0 0 0 3a 0 0 1 - 
I o 0 b_>l 0 1 2b 0 0 1 - 
I. n> l  0 0 n oo n n n - 1  n A,_ 1 
I~ 2 3 6 ~0, 1, oo - 6 4 4 D,~ 
I~ a>3 3 6 0 3a -6  6 4 4 D 4 

I* 2 b>4 6 1 2b-6  6 4 4 D 4 

I* n> l  2 3 n+6 oo n n+6 n+4 4 D.+ 4 
II  a>= 1 1 2 0 3a - 2  2 0 1 - 
I l l  1 b>2 3 1 2b-3  3 1 2 A 1 
IV a>2 2 4 0 3a -4  4 2 3 A z 
IV* a>3 4 8 0 3a -8  8 6 3 E 6 

III* 3 b_->5 9 1 2b-9  9 7 2 E 7 
II* a>4 5 10 0 3a-10 10 8 1 E 8 

We think of this table as describing the funct ion whose input  is a, b and c5 
and  whose ou tpu t  is the type of fiber and  the values of J, re(J), e, r and d. 
(Note that  e, r and  d depend only on the type of fiber and  not  on the values of 
a, b or 6.) 
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Note  that we have a__<3 or b <  5; otherwise the singularity of )( is not a 
rational doublepoint and consequently not allowed. 

Several useful observations can be made at this point. 

Corollary 1.2. With the above notations c~ = e. 

Corollary 1.3. In all cases 0 < e - r  < 2. Moreover 

a) e - r  = O ~ t h e  f iber  F is smooth, i.e. o f  type I o. 
b) e - r = l ~ t h e  f iber  F is semistable, i.e. o f  type In, n >  l. 

2. Formulae 

The local invariants of the previous section are related by various global 
constraints. 

First we observe that the nonsingular fibers of re: X ~ C form a locally 
trivial fiber bundle, hence 

e(F) = e(X)  ( = 12~(((9x)) (2.1) 
(F singular) 

(the last equality follows from Noether 's  formula and the vanishing of K2). If S 
is any section of ~ we have $2=  -Z((~x). (This follows from the formula for the 
canonical divisor (see [K2]). 

Let N denote the Neron-Severi group of X. Define 

Z = {o-~N I o" �9 F -- 1, o -2 = - Z((gx)}. 

The set 2; consists of "numerical  sections"; it contains as a subset �9 the set of 
irreducible sections. 

Let U be the sublattice of N generated by S o and the class of a fiber F. 
Since U is unimodular, we get a splitting N = U O U •  let p : N ~ U  • be the 
projection. 

Lemma  2.2. The map p restricts to a bijection p: Z ~ U • 

Proo f  For  a s Z  note that 

p(~r) = a + [(a.  F)(Sg) - ( a .  So) ] F - ( a -  F) S o 

=~+  E(sl)-(~' So)] F-So.  

For  z~U l define 

p ' ( z ) = z - � 8 9  F + So . 

(Note that z - F = 0 = ~ z K = 0 ,  hence (z 2) is even.) We leave to the reader to 
check that P[z and p' are indeed inverse bijections. Q.E.D. 

The lattice U • is of course an additive subgroup of N; the above lemma 
allows us to transport  this group structure to Z. 
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Formally, 61@0-2=61+0-2-So +IF (where 1 is chosen so as to make the 
sum a numerical section). The genesis of this formula is clear when we restrict 
to a (generic) fiber. Then 

0-1 00-2 --So ~(0-1 --S0) -t-(62 --So) 

which is simply the definition of the group law on an elliptic curve. Geometri-  
cally the group law on N is the addition induced fiber by fiber. 

Observe that ~ is not a subgroup of ~. (The latter may often be torsion- 
free, while the former frequently has torsion.) 

We have, however, a projection q: r ~ b .  Indeed, any numerical section G 
may be decomposed as 

if=fr0-t-r,  

where 0-0 is an irreducible section and r F = 0  (i.e. r consists of components of 
fibers) ([M-P]). Then q(a)= 0-0. 

Let R be the sublattice of N generated by the components of fibers not 
meeting S 0. R is a negative definite sublattice with a natural decomposition as 
R~-@R(F), where F runs over the reducible fibers of r~. (Note that 
N (X) ~- N (X)/R.) 

Clearly R ___ U j- so that p': R --+ Z is defined. 

Lemma 2.3. O~p'(R)--+ Z ~ ~-~0 is exact. 

Proof Clearly p'(R)~_Kerq. Conversely, assuming that q(0-)=S o, then a = S  o 
+ZniE i+lF  where Ei6U • As a2=S 2 we must have 1---�89 2. Thus, G 
=p'(Zn~E~). Q.E.D. 

We can now conclude some useful corollaries. 

Corollary 2.4. The rank p of N (the Picard number) satisfies 

p=2 +rkR +rk~b=2 + ~ r(F)+rk~. 
F 

This formula is due to Shioda and Tate (see IS], IT]). If rk45 = 0  we have a 
refinement. 

Corollary 2.5. I f  N is torsion-free (which incidentally is always the case) and �9 is 
finite then 

disc (R) : 1-[ d (F) = )bl 2 disc (N). 
F 

Proof Since U is unimodular, disc(N)=disc(U• The result now 
follows from the exact sequence of Lemma 2.3. Q.E.D. 

The Weierstrass equation for the surface 32 which we discussed locally in 
the previous section has the following well-known global version. 

Let L- 1 be the normal bundle of the section S O in X. Then 32 is isomorphic 
to the closed subscheme of IP = IP(L- z @ L-  3 @ (9c) defined by 

y2 z = X3 + A x z2 + B z 3, 
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where A~H~ L4), BcH~ L 6) and Ix, y, z] is the global coordinate system 
on IP relative to (L- 2, L- ~, (9c). 

The discrirninant A ~H~ L z2) vanishes at singular fibers of n. Since deg L 
= -(Sg)=)~((gx) we recover (2.1) from Corollary 1.2. 

From now on, let us restrict to the case of C ~ I P  ~, and we assume that the 
fibration re: X ~ I P  a is not trivial, i.e. not a product surface. 

Then L ~  (9~1(M) for some M >  1 amd A, B and A are forms of degree 4M, 
6M and 12M, respectively. Moreover, H t ((gx) = 0. p~ = dim H 2((9x) = M - 1, and 
the canonical class K x = ( M - 2 ) F .  If M =  1, X is a rational surface. If M = 2 ,  X 
is a K -  3 surface. 

Let us focus on the rational case M =  1. Recall that X is extremal if and 
only if ~b is finite. 

Corollary 2.6. Assume X is rational and extremal. Then 

a) ~ (e(F)-r(F))=4 
F 

b) I~ d(F) is a perfect square 
F 

c) t (X)t=V'n iF) 
Proof Since X is rational, Ze(F)=12. Also, since X is extremal, X r ( F ) = p - 2  
=8 as p = 1 0 - K  2 for rational surfaces. This proves a). Now for rational 
surfaces, disc N =  1; hence; b) and c) follow from Corollary 2.5. Q.E.D. 

3. The J-map 

There is yet another ingredient to be exploited and that is the modulus 
function J :  C ~ I W  ( ~ ) ,  defined by J(c)=J(Tc-l(c)). The local data of J are 
given by the values of J and the concomitant multiplicities. The global datum 
is its degree. Those are obviously related via the Hurwitz formula. 

Let us adopt the following notation: Let i, denote the number of singular 
fibers of ~ of type I,. Similarly we define t n'*, ii, iii, iv, iv*, iii*, ii*. By i0(j), i*(j) 
we denote fibers of type i0, I~ with modulus J =j .  

Lemma 3.1. d e g J =  ~ n(i,+i*). 
n > l  

Proof Count J -a (oe)  with appropriate multiplicities (according to Table 
1.1). Q.E.D. 

Formula 3.2. I f  degree J~O, then 2 g ( C ) - 2 = - 2  ~ n(in+i*)+~(m(F)-l) ,  
n > l  F 

where g(C) is the genus of C and re(F) is the multiplicity of J at the fiber F. 

Proof This is simply a reformulation of Hurwitz formula. Q.E.D. 

Note for every j c l p l :  ~ m(F)=degJ. Therefore, by ignoring all fibers 
J(F)= j 

with J :# 0, 1, c~, we have the following inequality: 

Firmuta 3.2'. 2g(C) - 2  > deg J - J  J -  z (0)l - ] J  - 1 (1)J - J  J -  a (oo)l if degree J :t: 0. 

We now want to estimate the orders of the reduced fibers [J-l(j) l .  
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Lemm a  3.3. ] J -  1(0)[ < l d e g  J + 2 (ii + iv*) + �89 (iv + ii*) and 

IJ-i(1)l<=�89189 *) if degree J4=O. 

Proof Using Table  1.1 we obtain the estimates 

deg J >= 3 (i o (0) + i~ (0)) + ii + iv* + 2 (iv + ii*) 

deg J >= 2(i o (1) + i* (1)) + iii + iii*. 
As 

l J -  1(0) l = i o (0) + i* (0) + ii + ii* + iv + iv* 

[J- l(1)[=io(1) + i~(1) + iii + iii* 

we are done. Q.E.D. 

Observing that  I J - l ( o c ) ]  = Y', (i,+i*) we can conclude 
n_>_l 

Proposition 3.4. For an elliptic fibration rc: X ~ C with degree J :t:0 we have the 
estimate 

degJ<=6 ~, ( i ,+i*)+4(i i+iv*)+3(i i i+ii i*)+2(iv+ii*)+12g(C)-12.  
n > l  

4. The List of Rational Extremal Fibrations 

We are now going to classify the configurations of singular fibers which can 
occur on a rat ional  extremal fibration. It turns out that  the only restrictions 
are those imposed by Corol lary 2.6 and Proposi t ion 3.4. 

Theorem 4.1. Assume z~:X--+IP 1 is a rational extremal elliptic fibration, with 
cb(X) as a group of sections. 

Then the set of singular fibers of re, together with the order of ~ and the 
degree of the modulus function J :  lpi--* IP i must be in the following table: 

Singular fibers Degree of J Order of ~ Notat ion 

II, II* 0 1 X22 
III,  III* 0 2 X33 
IV, IV* 0 3 X44 
I*,I* 0 4 Xil( j ) ,  j ~  
II*I i I i 2 1 X21 i 
111"1211 3 2 X321 
IV*I3 I  i 4 3 X431 
I * I l i  i 6 2 X4i 1 
I*I4I  1 6 4 X14 i 
131212 6 4 X222 
I 9 I l l l I  1 12 3 X9111 
I s I 2 I l l  i 12 4 X82il  
I fl~ I i I 1 12 5 X~sla 
Ial 31211 12 6 XA321 
I4I 412 12 12 8 X4422 
I31313I 3 12 9 X3333 
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P r o o f  Observe that Corollaries 1.3 and 2.6(a) shows that there are at least two 
and at most four singular fibers. 

Case l .  There are two singular fibers. 
Now both fibers have to be unstable (as e ( F ) - r ( F ) = 2 ) .  Since S e ( F ) = 1 2  we 
have only the four possibilities in the table plus the possible configurations {I*, 

I* I V } ,  { 3,111} and {I*, 11}. The first two violate Corollary 2.6(b) and the third 
leads to deg J < 0 by Proposition 3.4. 

Case 2. There are three singular fibers. 
Now we see that exactly two fibers have to be semistable. By using 2.1 and 
2.6(b) we are left with the cases listed here plus the following seven others: 

{IV, 12, I6} , { I I I ,  11, I8}, {III, 13, 16} , {II, 11, I9}, 

{ I I ,  12, Is}, { I I ,  15, I5},  {I~,  I3 ,  I3}. 

All of those cases are ruled out by Proposition 3.4 together with Lemma 3.1. 

Case 3: There are four singular fibers. 
Now all fibers have to be semistabte. Thus, d e g J = s  12 and Proposition 
3.4 offers no restriction. 

Given four positive integers n l , . . . , n  4 such that S n i = 1 2  and I In i  is a 
square ( =  I~l 2) gives the final six possibilities. Q.E.D. 

By exhibiting the Weierstrass equations we will see that all the cases 
actually do occur. 

5. Weierstrass Equations for Rational Extremal Fibrations 

In this section we construct all the rational extremal fibrations by exhibiting 
their Weierstrass equations 

y2 z = x3 + A x z2 + B z3, 

where A and B are binary forms of degrees 4 and 6, respectively. The forms A 
and B are unique up to the action of GL(2,  112). (Note that the center acts non- 
trivially; for a scalar 2 we have 2(A, B)=()~4A, •6B).) 

In Table 5.1 we list the four fibrations with two singular fibers. 

Table 5.1 

Surface A B A J rr- t(0) re- 1(or) 

u=O v=O 
x22 0 uv 5 27u ~ v 1~ 0 i i  ii* 

X33 up 3 0 4 u  3 v 9 1 III  III* 

X44 0 u s v 4 27u 4 v ~ 0 IV IV* 

4r a 
Xlx(j  ) ru2v 2 su3v 3 (4r3+27s2)u6v 6 4r3 +27s2 I~ I* 

[x, y, z] 
[0, 1, o] 
[0,1,0] 
[0, o, 1] 
[0, t, o] 
[0, uv 2, 1] 
[0, - u v  2, 1] 
[0, 1,0] 
[x~ uv, o, l] 
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In the Xn( j )  case r, s O l 7  with 4r3q-27s2~=0 where {x~} are the three roots of 
X 3 - 1 - r X + s = O ;  ~ - - ~ 2 ( ~ 7 Z  2. These equations can be easily derived from [M] 
and the surfaces are unique. 

The six cases with three singular fibers require more work and are listed 
below. 

Table 5.2 

Surface A, B, A, J Ramification of J and Sections of 
singular fibers [x, y, z] 

[u, v] J re(j) fiber 
type 

X211 A =  - 3 u  4 [0, 1] 0 2 II* [0, 1, 0] 
B = 2u s v [ t ,  0] 1 2 smooth 
A = -- 10{~Ul0(lg2--V 2) [1, 1] CO 1 l t 

J=u2/(u z - v  z) [ -  1, 1] co 1 11 

X3z 1 A =  - u v  3 [0, 1] 0 3 smooth [0, 1, 0] 
B = v S ( u - v )  [1, 0] 1 1 III* [v z, O, 13 
A = - v g ( u - 3 v ) Z ( 4 u - 3 v )  [1, 1] 1 2 smooth 

J=4u3 / (u -3v )Z (4u -3v )  [3, 1] co 2 12 
[3, 4] oo 1 11 

X431 A = v3(24u-27v)  [9, 8] 0 3 smooth [0, 1, 0] 
B=v4(16u 2 - 7 2 u v + 5 4 v  2) [1, 0] 0 1 IV* [3v 2, k 4 u v  2, 1] 

A=256-27u3vS(u-v)  [9-+3]/5 ,4]  1 2 smooth 

v(24u-27v)  3 [0, 1] co 3 13 
J =  

6 4 . 2 7 u a ( u - v )  [1, 1] oo 1 11 

X41 ~ A =  - 3 v 2 ( u Z - 3 v  2) [_+]/3, 1] 0 3 smooth [0, 1, 0] 
B =uv3(2u 2 - 9 v  a) [0, 1] 1 2 smooth [uv, O, 1] 

A = - 2 7 2 v l ~  [3, _+]/2] 1 2 smooth 

4(u 2 -3v2)  3 [1, 0] co 4 I~ 
J 

27V4(U a --4V 2) [+2 ,  1] co 1 11 

Xt41 A =  - 3(u z - 3v2)(u- 2v) 2 [-t-]/5, 13 0 3 smooth 
B=u(2u  a - 9 v 2 ) ( u - 2 v )  3 [0, 1] 1 2 smooth 
A =-272v4(u--2v)6(uZ--4v 2) [3, _+]/2] 1 2 smooth 

4(u 2 -3vZ) 3 [2, 13 oo 1 I* 
J 

27 v4(u 2 --4v z) [ - 2 ,  1] co 1 I~ 

[1, 0] co 4 14 

[0, 1, O] 
[u 2 - 2 u v ,  O, 1] 

[ (u - 3 v ) (u -2v ) ,  
-L-_ 3 ] /3  v(u - 2v) z, 1] 

X22a A =  - 3 u v ( u - v )  2 [0, 1] 0 3 smooth 
B = (u --/))3([13 -~- 1) 3) [1, 0] 0 3 smooth 
3 =27(u 3 --va);(u--v) 6 [--1,  1] 1 2 smooth 
J =  -4u3v3/(u3-v3)  ~ [ - w ,  1] 1 2 smooth 

[ - w  2, 1] 1 2 smooth 

Here w3= 1, [1, 1] co 2 I~ 
wOe 1 [w, 1] oo 2 I a 

[w 2, 1] co 2 12 

[o, 1, o] 
[(v - u ) ( u +  v), o, 1] 
[(v - u)(w u + w z v), o, 1] 
[(v - u ) ( w  ~ u + w v), O, 1] 
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Proof The simplest case is X211; here J is of degree 2 and we can choose 
coordinates  [u, v] so that  J is ramified at u = 0 (with the fiber II*) and at v = 0 
(with a smooth  fiber I 0 having J =  1). In  this case, by Table 1.1, A is a multiple 
of u 4 and B a multiple of  uS v. By scaling the coordinates  with diagonal  
matrices, we may  achieve A = - 3 u  4 and B = 2 u  s v. Hence, X2I  1 is unique. 

In  the case of X321, J is of degree 3 and is totally ramified over J = 0  (with 
a smooth  fiber) and is simply ramified over J =  1 (with a smooth  fiber) and 
over J =  oo (with the 12 singular fiber). If  we choose coordinates  so that the J 
= 0 fiber is at u = 0, the III* fiber is over v = 0  and the smooth  J = 1 fiber is 
over u=v, then we must  have A being a multiple of  uv 3 and B a multiple of 
vS(u-v). We can use the scalar act ion to assume that  A =  - u v  3 and B=cvS(u 
-v) for some constant  c. In  order  that  J be ramified over o% c must  be _+ 1. If  
c = -  1, use the scalar i to change c to + 1, leaving A unaffected. Hence, A = 
- u v  3, B=vS(u-v);  moreover ,  X321 is unique. 

For  the surface X431, let us choose coordinates [u, v] so that  the IV* fiber 
is at v = 0 ,  the 13 fiber is at u = 0 ,  and the I x fiber is at u=v. Then by scaling 
we may  assume A=3v3(atu+aov) and B=2v4(u2+bluV+bov2); we must  
have 4A3+27BZ=4.27.vSu3(u-v).  This forces a a ~ + 2 b l = - l ,  3aZ~ao+b 2 
+ 2 b o = 0 ,  3a 1 a 2 + 2 b x b o = 0 ,  and aao+b2=0.  The last two are equivalent to a o 

2 2 =-4b1/9a  a and bo=-8b~/27aZa .  The second one then gives b 1 - 9 a 3 / 1 6  
and the first then implies a 3 = 8. By using 2 such that 26--- 1 as a scaling factor, 
we may  arrange 24 to be any cube root  of unity, so we may  assume al  =2 ,  

forcing b 1 = - 9 / 2 ,  bo= 27 / 8  and a o =  - 9 / 4 .  Finally, by scaling with 2 = 1 f 2  to 
clear the denominators ,  we get A=24uv3-27v  ~ and B=16u2v4-72uv5 
+54V 6. Here A =44.  27. u a vS(u-v) and X431 is also unique. 

The surfaces X411 and X141 are related; they have the same J-function.  
This map  J :  I P I ~ I P  1 is of degree 6 and is ramified only over J = 0 ,  1, and oo. 
Its multiplicities over 0 are (3, 3) (two smooth  fibers), over 1 are (2, 2, 2) (three 
smooth  fibers), and over oo (4, 1, 1) (one I*  fiber and two 11 fibers). If  we 
choose coordinates  [u, v] on the base curve so that  the J = 0  fibers are at u - - 0  
and u = v and the I* fiber is at v = 0, then the J function must  be of the form J 
=u3(u-v)3/v4(auZ+buv-+-vcZ) for suitable constants a, b and c. These are 
determined by the condit ion that  the J =  1 locus is a perfect square. An  easy 
calculation shows that  in fact we may  write 

J= 256u3(u -v)3/va(12u 2 -12uv  - -  I ) 2 ) .  

Hence, this J - m a p  is unique. 
A more  elegant construct ion is to realize this J - m a p  as factoring into a 

degree 2-map followed by a degree 3-map. If  s is an affine coordinate  on the 
intermediate I171, the degree 3-map can be written as J=4s3/27(s-1). It is 
totally ramified at s = 0  where J = 0  and is simply ramified at s = oo where J 
- o o ;  J = oo also at s = 1. The constants  are adjusted so that it is also ramified 
over J at s = 3 / 2 ;  J = l  also at s = - 3 .  The original degree 6-map is obtained 
by composing this with a double cover, branched at s = - 3  and at s = oo. The 
equat ion for this is (u/v)2=(s+3) or s=(u2-3v2)/v 2. This makes the degree 6 
J- funct ion J = 4(u 2 - 3 v2)3/27/)4 ( U 2  - -  4V2). 
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Table  5.3 

Surface: X9111 [~1=3  
A = - 3 u ( u 3 + 2 4 v  3) B=2(u6+36u3v3+216v6) 
A = 28. 36. v9(u 3 + 2 7 v  3) 

Singular  fibers: [u, v] [1 ,0 ]  [ - 3 ,  1] I - - 3 w ,  1] [ - 3w  2, 1] 

fibre type  19 11 11 11 

where  w 3 = 1, w 4= 1. 

Sections:  [- x, y, z] 

[ 0, 1, O] 

[ u 2, _+121/3/) ~, 13 

Surface: Xazxl 1~1=4 
A =  - 3 ( u 4 + 4 u  2 vzq-/) 4) 

A = - 36 u 2/)8 (U 2 ~_ 4/)2) 

Singular  fibers: [u,/)] 

B=2u 6 + 12u4v 2 + 15u2/) 4 - 2 / )  6 

[1 ,0 ]  [0 ,1 ]  [2, + i ]  

fibre type I s 

Sect ions:  [ x, y, z] 

[ 0, 1, O] 

[ U2+2/) 2, O, 1] 

[ U2--V 2, ~3r  2, 1] 

12 11 

Surface: X s s l l  1~1=5 
A= -3(u4-12u~v+14uZv2 +12uv3 +v 4) 
B = 2(u 6 - 18u 5 v + 75u r v z + 75 u 2/)4 _~ 18U/)5 -I- 1)6) 
A = - -28.  36. u 5/)5 (u2 - -11uv- -V 2) 

Singular  fibers: [u, v] [0, 1] [1 ,0 ]  [11+_5] /5 ,2 ]  

fibre type 15 I s 11 

Sections:  [ x, y, z] 

[ o, 1, o] 

[ u2+6uv+v 2, !121/3u2v,  1] 

[ U2--6UV+V 2, ~ 1 2 ] / 3 U / )  2, 1] 

Surface: X6321 Iqsl = 6  
A= -3(u4 +4ua v -2uv3  +v4) 
B = 2u 6 + 12u 5 v + 12u 4 v z - 14u 3 v 3 + 3u 2 v 4 - 6 u  v 5 + 2v 6 

A = - 36 u 3 v6(4u 3 + 12u 2 v - 15uv 2 + 4v 3) 

= --36 U 3 V6(2U--V)2(U+4V) 

Singular  fibers: [u, v] [1 ,0 ]  [0, 1] [1 ,2 ]  [ - 4 ,  1] 

fibre type 16 13 12 

Sections:  [ x, y, z] 

[ o, 1, o3 

[ u Z + 2 u v - 2 v  2, O, 1] 

[ u2+2uv+v 2, +_3]/3uv 2, 1] 

[ u 2 - 4 u v + v  z, +_3]/3uv(v-2u), 1] 

I1 
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Surface: X4422 1~1=8 
A=-3u4+3u 2 v2-3v 4 B = 2 u 6 - - 3 u  4 v 2 - 3 u  2 04+2/) 6 

A=-36u4v4(u+v)2(u-v) 2 

Singular fibers: [u,v I [0, i1 [1,01 [1,11 [1, - 1 ]  

fibre type 14 14 12 

Sections: [ x, y, z] 

[ O, 1, O] 

[ U 2 _y/)2 0, 11 

[ U2--2V 2, 0, 1] 

[ -- 2U2 q- V 2 , O, 11 

[ u2+3uv+v e, +3]/3uv(u+v), 1] 

[ uZ-3uv+v 2, +3]/3uv(u-v), 1] 

12 

Surface: X3333 1~1=9 
A=-3u*+24uv 3 B=2u6+40u3va-16v 6 
A=2s.33v3(u3+v3) 3 

Singular fibers: [u,v] [1,0] [ -1 ,1 ]  I -w,  1] [-w2,11 

fibre type 13 13 13 13 

where w3=1, w4:1. 

Sections: [ x, y, z] 
[ O, 1, O] 
[ -3u  2, ++4i(u3+v3), 1] 

[ (u-2v) z, ~ 4 ]/-3 V(U 2 -uv+v2), 1] 

[ (u-2wv) z, +4]/3v(wue-w2uv+v2), 1] 

[ (u-2w2v) 2, +_4]/3v(w2uZ-wuv+v2), 1] 

where w3=1, w4=1. 

In  the case of  X4.11 w e  can choose A = - 3 v 2 ( u Z - 3 v 2 ) .  Then B = u v 3 ( 2 u  z 
-9v2) ,  which puts the I*  fiber at v = 0 .  For  the surface X14 ~ we may  put  A = 
- 3 ( u  2 - 3 v Z ) ( u - 2 v )  z and B = u ( 2 u  a - 9 v 2 ) ( u - 2 v )  3, which puts the I~' fiber at u 
=2v .  Both  surfaces are unique. 

Finally, the J - m a p  for the X 2 2 2  c a s e  is also of degree 6 and ramified only 
over J = 0 ,  1 and oo. Over 0 the multiplicities are (3, 3) (two smooth  fibers); 
over 1 they are (2, 2, 2) (three smooth  fibers); and over oo they are (2, 2, 2) (one 
I* fiber and two I 2 fibers). If  we choose coordinates  so that  the J = 0 fibers are 
at u - 0  and v = 0  and the 17 fiber is at u=v,  then we must  have A = a u v ( u - v )  2 
and B = ( u - v ) 3 C ,  where C is a cubic form and a is a constant.  Since the 
discriminant must  be a square, a calculation shows that this forces C = u 3 + v  3 
if a = - 3 .  Hence, A = - 3 u v ( u - v )  2, B = ( u - v ) 3 ( u 3 q - v 3 )  and A = 2 7 ( u 3 - v 3 ) Z ( u  
- v )  6. Moreover ,  X22 z is unique. 

This J - m a p  can also be obta ined by factoring it into a degree-3 map  
followed by a degree-2 map. If  s is an affine coordinate  on the intermediate IP ~ 
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then J = - 4 ( s  2 -s ) .  This double cover is branched over J = 1 and J = oo (where 
s =  1/2 and s =  o% respectively); over J = 0 ,  s = 0  and s =  1. The triple cover is a 
Z/3 cover, defined by (u/v) 3 =s / s -1  branched over s = 0  and s =  1. 

This completes the construction of the rational extremal fibrations with 
three singular fibers. 

Finally, we will simply present the Weierstrass equations for the six ex- 
tremal elliptic fibrations with four singular fibers in Table 5.3. These were 
recently studied by Beauville (I-B]) in a different context. In every case the 
surface exists and is unique. 

We have proven the following. 

Theorem 5.4. For every possible configuration of singular fibers given in Theorem 
4.1, there is a unique rational extremal elliptic surface with that configuration of 
singular fibers, except for the surfaces X l l ( j  ). These surfaces each have two 
singular fibers of type I*, with constant J-map (=j ) ,  and fixing j, there is a 
unique such surface. 

6. Cubic Pencils and Plane Quartics 

We are now going to set our list of examples into a geometrical setting. The 
most direct way of presenting a rational elliptic surface is through pencils of 
cubics curves in the projective plane. 

A cubic pencil is a one-dimensional linear system of cubics, having no fixed 
components. Thus, a cubic pencil has only isolated basepoints, and by Bezout's 
theorem those are always nine in number. They are not necessarily all distinct 
on IP 2 but may be infinitely near. 

By blowing up the basepoints of a cubic pencil we obtain a rational elliptic 
surface. The exceptional divisors of first kind correspond exactly to the sec- 
tions. This is as we have remarked before a direct consequence of the re- 
presentation of the canonical divisor. 

The well-known converse is also true; we will omit its proof. 

Proposition 6.1. Every Jacobian rational elliptic surface is the blow up of the 
basepoints of a cubic pencil. 

Remark. Even if we drop the assumption of a Jacobian fibration, a rational 
elliptic surface is still a blow up of IP 2 at nine points, though not necessarily 
the basepoints of a cubic pencil. 

There is, as has been explained above, another geometric interpretation of 
an elliptic fibration. As this is less well-known than the cubic pencil approach, 
we will go into more detail. 

Letting z - - * - z  we obtain a double covering onto IF 2 branched at the 
minimal section and a trisection T. The singularities of T are all simple, and 
there is a natural 1 - 1  correspondence between those and the Kodai ra  fibers, 
as explained by the list below (cf. Table 1.1). (The notation for curve singulari- 
ties in the 2 na column is that used in I-B-P-V].) 
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Type of fiber Singularity of T Intersection T with F 

11 -- tangency 
II -- flexed 
III a 1 (node) tangency to one branch 
IV a 2 (cusp) cuspidal tangency 
I, n=>2 a,_a transversally 
I~: n >0 d,+4 transversally 
II* e s transversally 
III* e 7 transversally 
I V* e 6 transversally 

Observation 6.3. The fibration is irreducible iff T is nonsingular. 

Proof I m m e d i a t e  f rom Table  6.2. Q.E.D. 

L e m m a  6.4. I f  X is a rational elliptic fibration with at least one reducible fiber, 
then X is birationally a double cover of  IP 2 branched along a quartic and the 
elliptic fibration is induced from the pencil whose basepoint P is the image of the 
section. (That  basepoin t  is referred to as the dist inguished point  of  the quartic.) 

Proof We simply observe that  if a point  is b lown up on IF 2 away f rom the 
min imal  section, then an e lementary  t rans format ion  pe r fo rmed  at the point  
makes  the min imal  section except ional  and allows a descent onto  IP 2. The  
f b e r s  of  IF z are then m a p p e d  onto  the pencil whose basepoin t  is the image of 
the min imal  section. Q.E.D. 

Remark. Note  that  if we add the subindices of the simple singularities of  T, we 
obta in  the so-called index of T (cf. [P11 a(T). We get the est imate a ( T ) < 8  
with equali ty iff the f ibrat ion is extremal.  

Fur thermore ,  if the e lementary  t rans format ion  is done at P on 7;, two cases 
occur:  either the index of the resolved singularity drops  by one or its drops  by 
two. In the first case the index of the quart ic  is s imply a ( T ) - l ,  and if T 
corresponds  to a rat ional  extremal  fibration, the ensuing quart ic  is maximiz ing  
([P1]).  

The  following l e m m a  gives the exact picture. 

Le rnma  6.5. a) I f  P is a triple point on T, then the exceptional divisor t~ v 
becomes a line component of the quartic supporting the following singularities 
according to the scheme below. 

singularity of P singularities on Ep 

dn dn- 2 -~- al 
e 6 a 5 

e 7 d 6 

e 8 e 7 
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b) I f  P is a double point on T, then the exceptional divisor E v becomes the 
tangent to the quartic at its distinguished point. 

singularity of P singularities on Ep 
a 1 (transversal) - 
a 1 (III)  (Eof lexed at distinguished point) 
a, (n>2) an_ 2 
a 2 (IV) (E v hyperflexed at distinguished point). 

We will omit the straightforward proof of the above. 
We can now state 

Proposition 6.6. Every extremal rational elliptic fibration, with the exception of 
X9111, X5511 and X3333 , has a representation as a maximizing quartic with a 
distinguished point. 

The point is that there are only six maximizing quartics (cf. [P1], where 
unfortunately two obvious examples are missing). This gives a comparatively 
painless way of exhibiting the various extremal fibrations. The proof of the 
proposition is simply given by exhibiting the maximizing quartics, which we do 
in the following table. 

Table 6.7 (the six maximizing quartics together with their distinguished points) 

A) XI~(j) note that A together with the 
other three points determine 
the (I*) modulus j. 

B) x ~  (IF) 

A) X4422 (I2) 
B) x14~ (l~) 

Ex.  3. A 

/ 

A) X222 (I 2) 
B) X,,11 (I*) 
C) Xa21 (Ill*) 
C) X3a (lll*) 
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Ex. 4.  

A) X8211 (12) 

Ex. 5. J 

I 

L 
I 
t 

A) X3~ 1 (lz) 
A) X33 (III) 
B) X211 (11") 
13) X22 (II*) 

Ex. 6. 

A) X6321 (I2) 
B) X431 (IV*) 
~3) x4# (Iv*) 

The three remaining cases have representations as quartics of index 6, with 
special distinguished points. 

Table 6.8 

Ex. 1. The Steiner quartic (3a2) together with one of its bitangency points P. 

I 
I 

? 

I This represents X3333. 

Ex. 2. The first degenerate of the Steiner quartic (a2, a4) together with the point P whose tangent 
passes through the cusp. 

P 

This represents X 5511 

G• 
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Ex. 3. The second degenerate of the Steiner quartic (a6) together with the point whose tangent 
passes through the singularity. 

This represents X9111. p / 

////~"'~ 

Remark. The Steiner quartic together with its degenerate forms have nice 
geometric ways of construction: 

Consider linear systems of conics with three basepoints (not necessarily 
distinct); those define Cremona transformations from IP 2 to IP a. To each such 
system we have the notion of an inscribed conic. In the case of three distinct 
basepoints, the conic is tangent to the sides of the corresponding triangle. If 
two basepoints coalesce, they define a line, and the conic is required to be 
tangent to that one as well. Finally if all three points coincide, they also 
determine a line (all the conics are flexed to each other at one point, and the 
line is the common tangent) which the conic is expected to touch. 

The image of the inscribed conic turns out to be a Steiner quartic with its 
degenerate forms. 

7. Extremal Rational Elliptic Surfaces as Pull-Backs of Each Other 

In this section we will analyze the following question: Given X~-~IP  1 an 
extremal rational elliptic surface, and given f :  IP ~ ~ I P  1, when is the pullback 
surface Y = X  x~l lP  1 ~ I P  1 also an extremal rational elliptic surface? Note that, 
in general, if the pullback Y is extremal, then X must be, since r  injects 
into r hence there is no loss of generality in assuming X is extremal to 
begin with. 

The first step in the analysis is to carefully understand the relationships 
between the singular fibers of X and those of the pullback Y. If the m a p f  is 
etale at peIP ~, then of course the fiber of Y over p is identical to the fiber of X 
over f(p). Hence we need only study the situation when f is ramified at p, to 
some order N. In this case we can choose local analytic coordinates z at p and 
w at f(p) so that the m a p f  is simply given by the base change w = z N of order 
N. Using the notation of Table 1.1, if the fiber of X over f(p) has invariants a, 
b, and 6, then the invariants of the fiber of Y over p will be a'=Na, b'=Nb, 
and 6'=-N6, respectively. If a'>4 and b '>6,  Y has a non-rational singularity 
which can be partially resolved by replacing a' by a' -4 ,  b' by b ' - 6 ,  and 6' by 
6'-12. Repeated application of this partial resolution eventually gives a '<  3 or 
b'<=5, and at this point the fiber of Y over p can be calculated using Table 1.1. 
We present the results in the following table. 
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Fiber of X over f(p) Fiber of Y over P 

Io Io 
IM INM 

]NM I~  INM if N even; * if N odd 

I1 10 if N~-0(mod6); II  if N-=I (mod6) 
I V  if N---2(mod6); 1" if N---3 (mod6) 
IV* if N=4(mod6) ;  II* if N---5(mod6) 

I I I  I o if N~-0(mod4); II1 if N---1 (mod4) 
I~ if N~2(rnod4);  II1" if N---3 (mod4) 

IV  I o if N-=0(mod 3); IV if N-=I (mod3); 

IV* I o if N-=0(mod3); IV* if N---l(mod3); 

III* I o if N---0(mod4); III* if N---1 (mod4) 
I* if N-=2(mod4); II1 if N---3(mod4) 

II* I o if N-=0(mod6); II* if N-=l(mod6)  
IV* if N~-2(mod6); I* if N---3 (rood6) 
IV  if N=-4(mod6); I I  if N-=5 (mod6) 

IV* if N~-2 (rood 3) 

IV if N~_2 (mod 3) 

Also note that if ,l x is the ,i-map for X, and Jr is that for Y,, then 

degree ,i r = (degree f )  (degree .Ix). (7.2) 

We can now state the results when degree Jx + O. 

Theorem 7.3. Assume degree Jx+ O, and that Y is an extremal rational elliptic 
surface also. Then X, Y,, and the pullback map f  are on the following list: 

X Y f 

X431 X6321 degree 3, totally ramified over the IV* fiber, and simply 
ramified over the 13 and I 1 fibers. 

X~31 X91~1 degree 3, totally ramified over the IV* fiber and over 
the 13 fiber. 

X431 X3333 degree 3, totally ramified over the IV* fiber and over 
the 11 fiber. 

X411 X8211 degree 2, ramified over the I~ fiber and one of the 11 
fibers. 

X141 X8211 degree 2, ramified over the I* fiber and the 14 fiber. 

X141 X4422 degree 2, ramified over the I* fiber and the 11 fiber. 

X222 X4422 degree 2, ramified over the I* fiber and one of the I 2 
fibers. 

Proof We will take up the possibilities for the surface X one at a time. 

Case I. X=X211. 
Here degree Jx=2 ,  so degree f = 2 ,  3, or 6 (since degree , i t=2, 3, 4, 6, or 12, 
and degree f > 2 ) .  If degree f = 2 ,  then by (7.2), degree , i t=4, so Y=X43 ~. The 
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singular fiber 13 of Y must be obtained by base change from one of the two 11 
fibers of X; this is not possible, since degree f =  2, and a base change of order 3 
is necessary to produce an 13 fiber from an 11, by Table 7.1. Hence degree 
f=~2. If degree f =  3, then I z has an I *  with M > 1, which cannot be produced 
by base change from the fibers of X. Finally assume degree f = 6 .  Then degree 
Jr:= 12 and all 4 singular fibers of Y are of type I s. Hence by Table 7.1, f must 
be totally ramified over the II* fiber of X, and the corresponding fiber of Y is 
smooth. The 4 singular fibers of Y are obtained from the two I1 fibers of X; 
hence over the two points of IP ~ giving the two 11 fibers of X there are exactly 
4 pre-images via the degree 6 map f There are two cases to consider. If over 
one point there is only one pre-image, then f is totally ramified over that point, 
and hence by Hurwitz's formula f has no other ramification points; therefore 
there are 6 pre-images above the other point, and 7 pre-images altogether, not 
4. Finally assume that over both points t I and t 2 there are two pre-images. 
Then the ramification of f over t i must be to orders r i and 6 - r i ;  hence by 
Hurwitz's formula we have 

- 2 >  - 2 ( 6 ) + 5 + ( r ~ - l ) + ( 5 - r ~ ) + ( r  2 - 1 ) + ( 5 - r 2 ) ,  

or - 2 > 1, a contradiction. 
Hence X + X2~ ~. 

Case 2. X=X321.  
Here degree f - -  2 or 4. However, if degree f =  2, then degree Jy =- 6, and Y has 
an I~t fiber, which cannot be produced from the fibers of X. Hence degree f 
= 4, and as above f must be totally ramified over the III* fiber, producing a 
smooth fiber of Y. Again we must have 4 pre-images over the two points tt 
and t 2 with the I1 and 12 fibers, and again there must be two over each. Hence 
by Hurwitz, using the same notation as in Case 1, 

-2__> -2(4)  + 3 + (r~ - 1) +(3 - r t ) + ( r  2 - 1) +(3 - r2 )  

or - 2 >  - 1 .  Therefore X~X321. 

Case 3. X=X431. 
Here degree f =  3, and f must be totally ramified over the IV* fiber. I f f  is also 
totally ramified over the 13 fiber, then there is no other ramification and Y is 
Xgttl. I f f  is also totally ramified over the I t fiber, then Y is X3333. Otherwise 
there are two preimages o f f  over both the I t and 13 fibers, and in each case f 
is simply ramified at one pre-image and etale at the other; this gives Y=X632~. 

Case 4. X = X 4 t  1. 
Here degree f = 2 ,  and f must be ramified over the 1" fiber (producing an I s 
fiber in Y) and over one other point. That point must be under one of the I t 
fibers, and Y=Xs211. 

Case 5. X=X141.  
Again degree f =  2, and f is ramified over the I T fiber, and over one of the 
other two singular fibers. If it is ramified over the 14 fiber, Y=Xs2~t;  if over 
the I t fiber, Y=X4422. 
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Case 6. X~--X222. 
Again degree f =  2, and f is ramified over the I* fiber, and over one of the two 
I 2 fibers, producing Y=X4422. Q.E.D. 

The situation where degree Jx = 0 is at once simpler and more complicated. 
It is simpler because degree J r = 0  in this case, hence Y has only two singular 
fibers, etc. It is much more complicated because the degree of the pullback 
map f is now unrestricted, and the reader can check that there are an infinite 
number of possibilities for f We will be satisfied to analyze only the case 
where the two singular fibers of X are at 0 and oe and f is an N th power map 
from I P I ~ I P  1, i.e., a map of degree N totally ramified over 0 and 0% (and 
hence unramified elsewhere). An elementary analysis using Table 7.1 gives the 
following. 

Theorem 7.4. Assume degree "Ix = 0 and f is an N th power map, totally ramified 
over the two singular fibers of X. Then Y is either an extremal rational elliptic 
surface with degree J r = 0 ,  or Y is a product surface E x I P  1, where the J- 
invariant of E is equal to the J-invariant of a general fiber of X. Moreover, 
given X and N, Y is determined by the following table. 

Table 7.5 

X N Y 

Xii(j) N=-0 (rood2) E x l P  i, J(E)=j 
N = I  (rood 2) Xli( j )  

X22 N~O (mod6) E x l P  i, J (E)=0  
N~- 1, 5 (rood 6) X22 
N -= 2, 4 (rood 6) X44 
N=-3 (mod6) X~l(0 ) 

X33 N = 0  (rood4) ExlP  1, J ( E ) = I  
N = 1, 3 (rood 4) X33 
N = 2  (rood 4) Xll(1 ) 

X44 N = 0  (rood3) ExlPI~ J ( E ) = I  
N = 1, 2 (mod 3) X44 
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