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0. Introduction

The systematic study of elliptic surfaces was begun by Kodaira [K1]. He listed
all the possible singular fibers, introduced their local (monodromy) invariants,
and calculated the possible values of the elliptic modulus J. Finally, he present-
ed the outline of a complete classification.

The simplest non-trivial example of an elliptic surface is a rational elliptic
surface. Such a surface is the blow-up of IP? at nine points; hence, its Neron-
Severi group is very explicit. It thus gives the unique opportunity to “see” an
elliptic surface from two sides: on one hand, using the general (external)
approach, and on the other hand the specific (internal) view in the setting of
classical geometry. This “accident” of nature does provide (at least to the
authors) an unending source of fascination. .

In this paper we are going to restrict ourselves to elliptic surfaces with
sections, so-called Jacobians (or in the terminology of Kodaira, basic elliptic
surfaces). A rational elliptic surface turns out to be a Jacobian if and only if it
has no multiple fibers. (In fancy terminology, the Tate-Shafarevich group
vanishes).

So, unless stated otherwise, an elliptic surface will mean a Jacobian togeth-
er with a distinguished section, the so-called O-section.

A rational elliptic surface can be presented in two different ways.

The first is intimately related to the so-called Weierstrass representation,
and as such natural to generalize. Namely, consider the involution z— —z; it
exhibits the surface as a double covering of a ruled surface branched over at
least two irreducible components, one of them being a smooth rational curve
of self-intersection —2 corresponding to the distinguished section. If we blow
down the exceptional divisors not meeting this component, we get a normal-
ized situation which we are going to describe in fuller detail later.

The second is much more ad-hoc (and interesting?). It concerns the surface
as the blow-up of the nine basepoints of a cubic pencil.

To every (Jacobian) elliptic fibration X there is a group of sections ®(X)
with the distinguished section as zero. Up to a finite group (generically Z,, in
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very special cases Z, or Z,) $(X) is identified with the relative automorphism
group of the fibration.

Due to a formula of Shioda-Tate (to be proved later) we have the basic
inequalities

0=rkd<p(X)—2 (where p is the Picard number)

where the discrepancy in the upper bound is related to the degree of re-
ducibility of the fibers.
In the rational case p(X)=10 (always) and thus

0Zrkd 8.

Generically rk® =8, while rk® =0 is the most special.

Definition. An elliptic fibration X is called extremal if and only if p(X)
=h"1(X) (maximal Picard number) and rk®(X)=0.

In other words, the extremal fibrations are the most reducible. (For an
elaboration of this concept see [P2].)

Proposition. Let X be a rational elliptic surface. Then the following are equiva-
lent:

(1) X is extremal (ie., rk®(X)=0)
(ii) the relative automorphism group Aut,(X) is finite
(iii) the number of representations as a blow-up of 1P? is finite
(iv) the number of rational curves C with C*> <0 is finite
(v) the number of reduced curves C with C* <0 is finite.

Proof. The equivalence (i)<>(ii) is clear and the implications (v)=-(iv)=-(iii) are
obvious. If F is a fiber then K= —F; thus, E being exceptional is equivalent
with E being a section, proving (i)<(iv). If C irreducible and C*<0 then KC
+ C? <0; thus, KC+ C*= —2 and (iv)=(v). The fact (Proposition 6.1) that any
rational elliptic surface is a blow-up of IP? shows (iii)=(iv). Q.E.D.

The object of this paper is to classify all extremal rational elliptic surfaces.

The complete list encompasses 16 cases (15 discrete and one continuous)
and is presented in Sect. 4.

It naturally splits up in six semi-stable cases (ie., the fibers are all semi-
stable (type I,)) and ten unstable cases.

The case of semi-stable fibrations was studied by A. Beauville [B] using a
different approach. The extremal semi-stable fibrations are the semi-stable
fibrations with the minimal (=4) number of singular semi-stable fibers.
Beauville relates those six fibrations to certain elliptic modular sufaces speci-
fying the corresponding subgroups of finite index in SL,(Z).

U. Hirzebruch [H] lists in a Diplom-Arbeit all elliptic fibrations with at
most three singular fibers. Except for the trivial case, those correspond to
rational or K—3 surfaces. Our list of ten unstable extremal fibrations is a
sublist of the rational examples in her list.

Thus nothing is in a sense fundamentally new. The justification of our
paper lies, we hope, in the new point of view and its systematic exploration.
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The plan of the paper is to review the general theory of elliptic surfaces
(Sects. 1 through 3), then to present the complete list (Sect. 4) and in the next
section (Sect. 5) to give all the Weierstrass equations. {This incidentally proves
that all the cases do occur.)

The Weierstrass models have a geometric interpretation as quartics with a
distinguished point; this ties in with the notion of maximizing quartics [P1]
and provides a (painless) graphical representation of all the cases.

Finally, we discuss various relationships between the different extremal
fibrations, exhibited by coverings of one by another.

1. Glossary on (Jacobian) Elliptic Fibrations

Let C be a smooth curve (=IP* in our case) and let n: X — C be a (relatively)
minimal elliptic surface over C with a distinguished section §,.

The complete list of possible fibers has been given by Kodaira [Kl] and is,
of course, very well known. It encompasses two infinite families (I, I}, n=0)
and six exceptional cases (I1, I11, IV, IT*, I1I*, IV¥), Associated with those are
a host of various invariants, some of which we are going to present below in
tabular form.

To each (Jacobian) elliptic fibration n: X — C there corresponds a com-

mutative triangle
X—5X

N/

where « contracts all components of fibers not meeting S,.

7: X - C is called the Weierstrass fibration associated with X. The fibers of
X are all irreducible, but X is always singular (unless « is the identity); its
singularities are mild. In fact, they are all rational doublepoints and X is the
minimal desingularization.

X has a natural section S,(=«(S,)) and the natural involutions z— —z on
both X and X commute and respect the fibrations, giving a diagram

X\Q/R
/ AV

where R, R are ruled surfaces and R is the minimal model of R (not affecting
i(Sy)). The involutions i, i exhibit X, X as double coverings of R, R branched
along four-sections B, B(B=«/(B)). We can write B=i(S,)+ T, and B——l_( o)+ T;
T and T are obviously trisections and disjoint from i(S,), i(S,). T is smooth

while T in general has simple singularities (corresponding to the rational
doublepoints of X).
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If we localize the picture to a point c=c(0) on C with local parameter ¢, we
can present X in Weierstrass normal form

y2=x>+A(t) x + B(1),

where A(t), B(¢) are regular functions at ¢. The three roots of the cubic in x
make up the component T and i(S,) corresponds to x=co. Let A(f)=4A43
+27B? be the discriminant. The fiber over c(t,) is singular iff A(r,)=0.

We can now define the function J(t)=443/A. If A(t,)+0, J(t,) simply gives
the modulus of the elliptic fiber over ¢(t).

Define m(J (¢,)) (or simply m(t,)) to be the order of vanishing of J(t) —J(z,)
at t,.

It is clear that the type of singular fiber on X can be read off the
singularity of T (together with its position relative to the fiber of R— C). The
Weierstrass model allows us to read off the same information from the orders
of vanishing of the functions A, B and 4 at the various singular base values.
Let us denote those vanishing orders with a, b and J, respectively.

To each fiber F on X we can associate the rational doublepoint X, on «(F)
or equivalently the singular point x, on T In fact, the former has as a
resolution the union of the components of F not meeting S,. Thus, they can be
considered as sublattices of the Neron-Severi group of X and as such they
have rank (=r(F)) and discriminant (=d(F)). [If r(F)=0 then d(F)=1 by
convention.] Finally, if e(F) denotes the euler number of the fiber F as a
reduced divisor, we can set up the following table.

Table 1.1

a b ) J m(J) e r d RDP
I, 0 0 0 +0,1,00 - 0 0 1 -
I, az1 0 0 0 3a 0 0 1 -
I, 0 bz1 0 1 2b 0 0 1 —
I, nz1 0 0 n o0 n n n—1 n A,
I§ 2 3 6 *£0,1, 00 — 6 4 4 D,
I az3 3 6 0 3a—6 6 4 4 D,
I% 2 b=4 6 1 2b—6 6 4 4 D,
I* nz1 2 3 n+6 © n n+6 n+4 4 D, .
II a=1 1 2 0 3a-2 2 0 1 —
i 1 bz2 3 1 2b-3 3 1 2 A,
v az2 2 4 0 3a—4 4 2 3 4,
Iv* az3 4 8 0 3a-8 8 6 3 Eg
IIT* 3 bz5 9 1 2b—9 9 7 2 E,
Ir* az4 3 10 0 3a—10 10 8 1 E

@

We think of this table as describing the function whose input is a, b and §
and whose output is the type of fiber and the values of J, m(J), e, ¥ and d.
(Note that e, r and d depend only on the type of fiber and not on the values of
a, bord)
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Note that we have a<3 or b<5; otherwise the singularity of X is not a
rational doublepoint and consequently not allowed.
Several useful observations can be made at this point.

Corollary 1.2. With the above notations d=e.

Corollary 1.3. In all cases 0<e —r<2. Moreover

a) e—r=0<>the fiber F is smooth, i.e. of type I,.
b) e —r=1<>the fiber F is semistable, i.e. of type I,, n=1.

2. Formulae

The local invariants of the previous section are related by various global
constraints.

First we observe that the nonsingular fibers of n: X - C form a locally
trivial fiber bundle, hence

. -Z, )e<F>=e(X) (=123(0y)) @.1)

(the last equality follows from Noether’s formula and the vanishing of K32). If S
is any section of = we have $?= —x(0,). (This follows from the formula for the
canonical divisor (see [K2]).

Let N denote the Neron-Severi group of X. Define

Y={0eN|o-F=1,06°= —3(0y)}.

The set 2 consists of “numerical sections”; it contains as a subset @ the set of
irreducible sections.

Let U be the sublattice of N generated by S, and the class of a fiber F.
Since U is unimodular, we get a splitting N=U®U™; let p: N— U* be the
projection.

Lemma 2.2. The map p restricts to a bijection p: X — U™,
Proof. For aceX note that
p(e)=c+[(o-F)(S5)~(o-Sg)] F—(a-F)S,

=0 +[(S5)—(c-So)]1 F —S,.

For teU* define
P()=1-3(*})F+S,.

(Note that t- F=0=1K =0, hence (%) is even.) We leave to the reader to
check that p|,; and p’ are indeed inverse bijections. Q.E.D.

The lattice U* is of course an additive subgroup of N; the above lemma
allows us to transport this group structure to Z.
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Formally, ¢, ®0,=0,+0,—S,+IF (where [ is chosen so as to make the
sum a numerical section). The genesis of this formula is clear when we restrict
to a (generic) fiber. Then

0, ®0,—8,=(0,—8,)+(0,—S,)

which is simply the definition of the group law on an elliptic curve. Geometri-
cally the group law on X is the addition induced fiber by fiber.

Observe that @ is not a subgroup of X. (The latter may often be torsion-
free, while the former frequently has torsion.)

We have, however, a projection g: Z — @. Indeed, any numerical section ¢

may be decomposed as
g=04+7,

where o, is an irreducible section and rF =0 (i.e. r consists of components of
fibers) ((M-P]). Then g(o)=0,.

Let R be the sublattice of N generated by the components of fibers not
meeting S,. R is a negative definite sublattice with a natural decomposition as
R=®R(F), where F runs over the reducible fibers of = (Note that
NX)=N(X)/R)

Clearly Rc U* so that p': R~ X is defined.

Lemma 2.3. 0—p'(R)—> 2~ -4 & -0 is exact.

Proof. Clearly p'(R)=Kerg. Conversely, assuming that g(o)=S,, then ¢=5§,
+ X n,E;+IF where E;eU*. As ¢>=S52 we must have I= —3(Zn,E)*>. Thus, ¢
=p'(EmE). Q.E.D.

We can now conclude some useful corollaries.

Corollary 2.4. The rank p of N (the Picard number) satisfies

p=24rkR+rk® =24 r(F)+rk®.
F

This formula is due to Shioda and Tate (see [S], [T]). If rk®& =0 we have a
refinement.

Corollary 2.5. If N is torsion-free (which incidentally is always the case) and @ is
Sfinite then
disc(R)=]] d(F)=1®}* disc(N).
F

Proof. Since U is unimodular, disc(N)=disc(U")=disc(X). The result now
follows from the exact sequence of Lemma 2.3. Q.E.D.

The Weierstrass equation for the surface X which we discussed locally in
the previous section has the following well-known global version.

Let I ! be the normal bundle of the section S, in X. Then X is isomorphic
to the closed subscheme of P=P(L 2@ L *®0,) defined by

yrz=x*+Axz*+Bz?,
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where AeHO(C, [*), BeH°(C, L) and [x, ), z] is the global coordinate system
on IP relative to (L72, L2, 0,).

The discriminant 4e H°(C, I'?) vanishes at singular fibers of 7. Since degL
= —(S3)=x(0y) we recover (2.1) from Corollary 1.2.

From now on, let us restrict to the case of C=IP!, and we assume that the
fibration 7: X —» P! is not trivial, i.e. not a product surface.

Then L~ @, (M) for some M =1 amd 4, B and 4 are forms of degree 4M,
6M and 12M, respectively. Moreover, H (04)=0. p,=dim H*(Ox)=M —1, and
the canonical class Ky=(M —2)F. If M=1, X is a rational surface. If M=2, X
is a K —3 surface.

Let us focus on the rational case M=1. Recall that X is extremal if and
only if @ is finite.

Corollary 2.6. Assume X is rational and extremal. Then
a) ) (e(F)—r(F)=4
F
b) []d(F) is a perfect square
F

<) |9(X)|=V/Hd(F).

Proof. Since X is rational, Xe(F)=12. Also, since X is extremal, Zr(F)=p—2
=8 as p=10—K? for rational surfaces. This proves a). Now for rational
surfaces, disc N=1; hence; b) and ¢} follow from Corollary 2.5. Q.E.D.

3. The J-map

There is yet another ingredient to be exploited and that is the modulus
function J: C - P! (=.4#,), defined by J(c)=J(z~*(c)). The local data of J are
given by the values of J and the concomitant multiplicities. The global datum
is its degree. Those are obviously related via the Hurwitz formula.

Let us adopt the following notation: Let i, denote the number of singular
fibers of 7 of type I,. Similarly we define i¥, i, iii, iv, iv*, iii*, ii*. By i,()), i¥(j)
we denote fibers of type I, I§ with modulus J=}.

Lemma 3.1. degJ = ) n(i,+i*).

nz1
Proof. Count J~!(c0) with appropriate multiplicities (according to Table
1.1). QED.

Formula 3.2. If degree J+0, then 2g(C)—2= -2 n(i,+i¥)+) (m(F)—1),
n=1 F

where g(C) is the genus of C and m(F) is the multiplicity of J at the fiber F.

Proof. This is simply a reformulation of Hurwitz formula. Q.E.D.

Note for every jelP': Y m(F)=degJ. Therefore, by ignoring all fibers
J(P)=j
with J #0, 1, oo, we have the following inequality:

Firmula 3.2'. 2g(C)—2= deg J —1J ~1(0)| —|J ~1(1)| — |J~ !(c0)| if degree J +0.

We now want to estimate the orders of the reduced fibers |J~*(j)|.
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Lemma 3.3.

JH0)| £ degJ +2(ii +iv*) + L (iv + ii*) and
WD) S LdegJ + i +iii*)  if degree J+0.
Proof. Using Table 1.1 we obtain the estimates

degJ = 3(iq (0)+i% (0)) + fi + iv* + 2(iv + if*)
degJ = 2(iq(1) + i (1)) + ifi + iii*.

[J10)| =iy (0)+i%(0) + ii +ii* +iv+iv*
[T~ (WD) =iy (1) + i (1) + idi + idi*
we are done. Q.E.D.

Observing that |[J~*(c0)|= 3. (i,+i¥) we can conclude
n=1
Proposition 3.4. For an elliptic fibration n: X — C with degree J+0 we have the
estimate
degJ <6 Y (i,+i¥)+4(ii +iv*) + 3(iii + iii*) + 2 (v +ii*) + 12g(C) — 12,

n21

4. The List of Rational Extremal Fibrations

We are now going to classify the configurations of singular fibers which can
occur on a rational extremal fibration. It turns out that the only restrictions
are those imposed by Corollary 2.6 and Proposition 3.4.

Theorem 4.1. Assume n: X »IP' is a rational extremal elliptic fibration, with
®(X) as a group of sections.

Then the set of singular fibers of m, together with the order of @ and the
degree of the modulus function J: TP - IP* must be in the following table:

Singular fibers Degree of J Order of @ Notation
I IT* 0 1 X3z

I IIT* 0 2 X33
IV,IV* 0 3 X,

I% It 0 4 X,,(j), je€
II*1, 1, 2 1 Xon
HI*1, 1, 3 2 X321
IV*I, 1, 4 3 > oY
X1, 6 2 Xai
LIS 6 4 X
1,1, 6 4 X5,
I, 1,1, 12 3 Xoris
IJ, 1,1, 12 4 Xga11
IJ, 1.1, 12 5 Xssi
I, 1,1, 12 6 X
11, 1,1, 12 8 Xaara
INN N 12 9 Xanss
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Proof. Observe that Corollaries 1.3 and 2.6(a) shows that there are at least two
and at most four singular fibers.

Case 1. There are two singular fibers.
Now both fibers have to be unstable (as e(F)—r(F)=2). Since 2Ze(F)=12 we
have only the four possibilities in the table plus the possible configurations {I7,
IV}, {I%, 111} and {I%, 11}. The first two violate Corollary 2.6(b) and the third
leads to degJ <0 by Proposition 3.4.

Case 2. There are three singular fibers.
Now we see that exactly two fibers have to be semistable. By using 2.1 and
2.6(b) we are left with the cases listed here plus the following seven others:
{II/a 12516}9 {III’II’IS}’ {III, I3716}a {II7IDI9}9
{IIaIzals}a {II,IS,IS}, {1*713713}'

All of those cases are ruled out by Proposition 3.4 together with Lemma 3.1.

Case 3. There are four singular fibers.
Now all fibers have to be semistable. Thus, dng 2 e(F)=12 and Proposition
3.4 offers no restriction.

Given four positive integers n,,...,n, such that Xn,=12 and IIn; is a
square (=|®|?) gives the final six possibilities. Q.E.D.

By exhibiting the Weierstrass equations we will see that all the cases
actually do occur.

5. Weierstrass Equations for Rational Extremal Fibrations

In this section we construct all the rational extremal fibrations by exhibiting
their Weierstrass equations

y2z=x3+Axz>+Bz3,

where A and B are binary forms of degrees 4 and 6, respectively. The forms A4
and B are unique up to the action of GL(2, C). (Note that the center acts non-
trivially; for a scalar A we have A(4, B)=(1*A4, A°B).)

In Table 5.1 we list the four fibrations with two singular fibers.

Table 5.1
Surface A B 4 J =10 71 l(w) @
u=0 v=0 [x, 5, 2]
X5, - 0 uv® 27u? p*° 0 II Ir* [o,1,0]
Xas uv® 0 4u3p? 1 111 IIr* [0, 1,07
[0,0,1]
X4 0 wrvt 27ute® 0 v v# [0,1,0]
[0, uv?,1]
[0, —u»?, 1]
4 3
X0 ruo? sudo? (4r8+27sHubo® l Ix Ix (0, 1,01

4r3 42752 [x; uv,0,1]
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In the X, (j) case r, seC with 4r*+27s*>+0 where {x;} are the three roots of
x*+rx+s=0; ¢=Z,®Z,. These equations can be easily derived from [M]
and the surfaces are unique.

The six cases with three singular fibers require more work and are listed

below.

Table 5.2

Surface A4, B, 4,J Ramification of J and Sections of @

singular fibers [x,, 2]
[, v] J  m()) fiber
type

X,  A=-3u* [0, 1] 0 2 I [0, 1, 0]
B=2u%p [t,0] 1 2  smooth
A= —108u'°(u? —v?) [1,1] o 1 I,

J=u?j(u? —v?) [-1,1] o 1 I

X0, A= —uv® o, 1] 0 3 smooth [0,1,0]
B=v’(u—v) [1,0] 1 1 11r* [v%,0,1]

A= —v*(u—3v)*(du—37) (1,131 1 2 smooth
T =4u3/(u—3v)*(4u—30) [3,1] w 2 I,
[3,4] o 1 I,

X, A=v324u—270) [9, 81 0 3 smooth [0,1,0]
B=v*(16u*> —72uv+ 54v% [1,0] 0 1 1V* [3v%, +4uv?, 1]
A=256-27u®v8(u—v) [9+3)3,4] 1 2  smooth

_ p(24u—270)° [o,1] o 3 I,
T 64-27ud (u—v) 1,11 o 1 I

X, A= —3p2 2 ~30?) [+1/3,11 0 3  smooth [0,1,0]
B=up?(2u* —9?) [o, 1] 1 2 smooth [up,0,1]

A= =277 o'0(u2 —4v?) [3, +1/2] 1 2 smooth
AWt =30%) [1,0] o 4 I
T 270t —40?) [+2,1] w 1 I

X0 A= —3(? =3 (u—20) [+y/3,11 0 3 smooth [0,1,0]
B=u(2u?—-9v*)(u—20v)> [o, 1] 1 2 smooth  [u?—2uw,0,1]
A= —27%v*(u—20)%> —40%) [3, +1/2] L2 smooth [(u—3v)(u—20),

4?37 12,11 w 1 I% +31/30(u—20)%, 1]
270t (u? —417) [-21] o 1 I
[1,0] o 4 1,

X5, A= —3uvu—u)? [0,1] 0 3 smooth [0,1,0]
B=(u—v)*(u’+v? [1,0] 0 3 smooth [(v—u)(u+v),0,1]
A=27u®—v*)*(u—v)® [~1,1] 1 2 smooth [(v—w(wu+w?p),0,1]
J=—4ud o3 u? —v%)? [-w 1] 1 2  smooth [(r—wy(w?u+wu),0,1]

[—w? 1] 1 2 smooth
Here w3 =1, [1,1] w 2 I
w1 [w, 1] o 2 I,

w? 1] w 2 I,
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Proof. The simplest case is X,,,; here J is of degree 2 and we can choose
coordinates [u, v] so that J is ramified at »=0 (with the fiber II*) and at v=0
(with a smooth fiber I, having J=1). In this case, by Table 1.1, 4 is a multiple
of u* and B a multiple of u®v. By scaling the coordinates with diagonal
matrices, we may achieve 4= —3u* and B=2u%v. Hence, X,,, is unique.

In the case of X ,,,, J is of degree 3 and is totally ramified over J =0 (with
a smooth fiber) and is simply ramified over J=1 (with a smooth fiber) and
over J=oo (with the I, singular fiber). If we choose coordinates so that the J
=0 fiber is at u=0, the III* fiber is over v=0 and the smooth J=1 fiber is
over u=uv, then we must have A being a multiple of uv® and B a multiple of
v3(u—v). We can use the scalar action to assume that A= —uv® and B=cv’(u
—1v) for some constant ¢. In order that J be ramified over co, ¢ must be +1. If
¢= —1, use the scalar i to change ¢ to +1, leaving A unaffected. Hence, 4=
—uv®, B=v*(u—v); moreover, X ,,, is unique.

For the surface X ,,,, let us choose coordinates [u, v] so that the IV* fiber
is at v=0, the I, fiber is at u=0, and the I, fiber is at u=v. Then by scaling
we may assume A=3v>(a;u+a,v) and B=2v*’+b uv+byv?); we must
have 4A43+27B*=4-27-v%u’(u—v). This forces a3+2b,=—1, 3ala,+b}
+2by=0, 3a,a5+2b,b,=0, and a}+b}=0. The last two are equivalent to a,
= —4b%/9a? and b,= —8b3/27a%. The second one then gives b, = —94a3/16
and the first then implies a; =8. By using A such that A°=1 as a scaling factor,
we may arrange A* to be any cube root of unity, so we may assume a,=2,
forcing b, = —9/2, b,=27/8 and a,= —9/4. Finally, by scaling with Zzﬁ to
clear the denominators, we get A=24uv®—-27v* and B=16u’*v*—72uv’
+541°. Here A=4*-27-u*v%(u—v) and X ;, is also unique.

The surfaces X,,, and X, are related; they have the same J-function.
This map J: IP* > IP! is of degree 6 and is ramified only over J=0, 1, and oo.
Its multiplicities over 0 are (3, 3) (two smooth fibers), over 1 are (2,2, 2) (three
smooth fibers), and over o« (4,1,1) (one IF fiber and two I, fibers). If we
choose coordinates [u, v] on the base curve so that the J =0 fibers are at u=0
and u=v and the I% fiber is at v=0, then the J function must be of the form J
=u’(u—0v)*/v*(au? +buv+vc?) for suitable constants a, b and c. These are
determined by the condition that the J=1 locus is a perfect square. An easy
calculation shows that in fact we may write

J=256u(u—v)*/v*(12u% — 12up —v?).

Hence, this J-map is unique.

A more elegant construction is to realize this J-map as factoring into a
degree 2-map followed by a degree 3-map. If s is an affine coordinate on the
intermediate TP*, the degree 3-map can be written as J=4s3/27(s—1). It is
totally ramified at s=0 where J=0 and is simply ramified at s=occ where J
=0o0; J=o0 also at s=1. The constants are adjusted so that it is also ramified
over J at s=3/2; J=1 also at s= —3. The original degree 6-map 18 obtained
by composing this with a double cover, branched at s= —3 and at s=c0. The
equation for this is (u/v)2=(s+3) or s={(u?—3v?)/v>. This makes the degree 6
J-function J =4(u? —3v%)%/27 v* (u* — 412).
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Table 5.3

Surface: Xgy, |®|=3
A= —3u(u®+24v%)  B=2(u’+36uv>+2160%
A=28.35.02(u% +2709)

Singular fibers: [u, v] [1,0] [-3,1] [—3w,1] [-3w%1]
fibre type I, I, I, I,
where w3=1, wa 1.
Sections: [ x, v, z]
[ O 1, 0]

[ w2 +12/34% 1]

Surface: Xg,,; |®|=4
A= -3W*+4u?v®+vY)  B=2uS+12u*v? +15u%v* —20°
A= ~35u2 ¥ u?+ 407

Singular fibers: [u, v] [1,0]1 [0,17 [2, +1]
fibre type I I, I,
Sections: [ X, Vs z]
[ 0, 1 0]
[ u?+20% 0, 1]

[ u?—? i_’a]/guvz, 13

Surface: Xgs,, |®|=5
A= —3w* —12u3 v+ 140> v* + 12uv® + %)
B=2(u®—18u’ v+ 75u* b2+ 75u? v* + 18uv’® +v°)
A= 283545 p3(W? ~11up—v?)

Singular fibers: [u, v] [0,1] [1,0] [114 5]/5, 2]
fibre type I I 1,
Sections: [ X, ¥, z]
L 0, 1 0]

[ u*+6uv+o?, +1273u?v, 1]
[ w?*—6uv+v? +127/3uv?, 1]

Surface: X4y, |d}=6
A= =3w*+4u’v—-2uv® +0v%
B=2u84+12u% v+ 12u* v — 1443 03 4+ 3u v* —6uv’ + 20°
A= =33 v5(4ud + 120 v—15uv? + 40%)
= —35u3 p5QQu —v)* (u+4v)

Singular fibers: [u, v] f1,0] [o,13 [1,21 [—4,1]
fibre type I, I I, I,
Sections: [ X, A z]
[ 0, 1, 0]
[ u?42uv—2v2 0, 1]
[ u?+2uv+v?, +31/3ur?, 13
[ u?—4uv+v?,  £3Y3uvl®—2u), 1]
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Table 5.3 continued

Surface: X,4,, |@|=8
A=—=3u*+3u2v>—3v*  B=2ub—-3u*0v?—3u?v* +20°

A= —3%u*v*(u+v)* (u—v)?
Singular fibers: [u, v] [0,11 [1,0] [L,1] [1,-1]
fibre type 1, I, I, I,

Sections: [ X, ¥, z]

[ 0, 1, 0]

[ u? +0?, 0, 1]

[ u?—24% 0, 1]

[ —2u?+0% 0, 1]

[ #?4+3uv+v? j3]/§uv(u+v), 1]

[ u?—3uv+v? i3]/§uv(u—v), 1]

Surface: Xi;34 [®|=9
A= —3u*+24yp® B=2u®+40u%v3—160°
A=28.33p3 3+ 033

Singular fibers: [u, ] [1,0] [=1,1] [=w1] [—w?1]
fibre type I I 1, I,
where w3=1, w£1.
Sections: [ X, ¥, z]
L 0, 1, 0]
[ —3u?, +4iu® +v%), 1]
[ @m—2v)? +41/3vw? —uv+0?), 1]
[ @—2wp)?, i4]/§v(wu2 —w2uv+0?), 1]
[ (w—2w?0)% i4]/§v(w2 w?—wuv+v?), 1]

where w3=1, w1.

In the case of X,,, we can choose A= —3v*(u?—3v?). Then B=uv*Q2u?
—9v%), which puts the I* fiber at v=0. For the surface X,,, we may put 4=
—3(u? —3v?)(u—2v)* and B=u(2u?—9v?)(u~2v)%, which puts the I* fiber at u
=2v. Both surfaces are unique.

Finally, the J-map for the X,,, case is also of degree 6 and ramified only
over J=0,1 and oo. Over 0 the multiplicities are (3, 3) (two smooth fibers);
over 1 they are (2, 2, 2) (three smooth fibers); and over oo they are (2, 2, 2) (one
I% fiber and two I, fibers). If we choose coordinates so that the J =0 fibers are
at u=0 and v=0 and the I% fiber is at u=v, then we must have 4 =auv(u—v)?
and B=(u—v)*>C, where C is a cubic form and a is a constant. Since the
discriminant must be a square, a calculation shows that this forces C=u?+p3
if a=—3. Hence, A= —3uv(u—v)?, B=(u—0)*w’+v% and 4=27u®—-v%?*u
—v)®. Moreover, X ,,, is unique.

This J-map can also be obtained by factoring it into a degree-3 map
followed by a degree-2 map. If s is an affine coordinate on the intermediate IP!
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then J = —4(s? —s). This double cover is branched over J=1 and J = o (where
s=1/2 and s= oo, respectively); over J =0, s=0 and s=1. The triple cover is a
Z/3 cover, defined by (u/v)® =s/s—1 branched over s=0 and s=1.

This completes the construction of the rational extremal fibrations with
three singular fibers.

Finally, we will simply present the Weierstrass equations for the six ex-
tremal elliptic fibrations with four singular fibers in Table 5.3. These were
recently studied by Beauville ([B]) in a different context. In every case the
surface exists and is unique.

We have proven the following.

Theorem 5.4. For every possible configuration of singular fibers given in Theorem
4.1, there is a unique rational extremal elliptic surface with that configuration of
singular fibers, except for the surfaces X ,(j). These surfaces each have two
singular fibers of type I, with constant J-map (=j), and fixing j, there is a
unique such surface.

6. Cubic Pencils and Plane Quartics

We are now going to set our list of examples into a geometrical setting. The
most direct way of presenting a rational elliptic surface is through pencils of
cubics curves in the projective plane.

A cubic pencil is a one-dimensional linear system of cubics, having no fixed
components. Thus, a cubic pencil has only isolated basepoints, and by Bezout’s
theorem those are always nine in number. They are not necessarily all distinct
on IP? but may be infinitely near.

By blowing up the basepoints of a cubic pencil we obtain a rational elliptic
surface. The exceptional divisors of first kind correspond exactly to the sec-
tions. This is as we have remarked before a direct consequence of the re-
presentation of the canonical divisor.

The well-known converse is also true; we will omit its proof.

Proposition 6.1. Every Jacobian rational elliptic surface is the blow up of the
basepoints of a cubic pencil.

Remark. Even if we drop the assumption of a Jacobian fibration, a rational
elliptic surface is still a blow up of IP? at nine points, though not necessarily
the basepoints of a cubic pencil.

There is, as has been explained above, another geometric interpretation of
an elliptic fibration. As this is less well-known than the cubic pencil approach,
we will go into more detail.

Letting z— —z we obtain a double covering onto IF, branched at the
minimal section and a ftrisection T. The singularities of T are all simple, and
there is a natural 1 —1 correspondence between those and the Kodaira fibers,
as explained by the list below (cf. Table 1.1). (The notation for curve singulari-
ties in the 2°¢ column is that used in [B-P-V].)
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Table 6.2

Type of fiber Singularity of T Intersection T with F
I, - tangency

" - flexed

nr a, (node) tangency to one branch
v a, (cusp) cuspidal tangency

I, nz2 a, 1 transversally

¥ nz0 d,, . transversally

I eg transversally

ur* e, transversally

v* s transversally

Observation 6.3. The fibration is irreducible iff T is nonsingular.
Proof. Immediate from Table 6.2. Q.E.D.

Lemma 64. If X is a rational elliptic fibration with at least one reducible fiber,
then X is birationally a double cover of IP? branched along a quartic and the
elliptic fibration is induced from the pencil whose basepoint P is the image of the
section. (That basepoint is referred to as the distinguished point of the quartic.)

Proof. We simply observe that if a point is blown up on IF, away from the
minimal section, then an eclementary transformation performed at the point
makes the minimal section exceptional and allows a descent onto IP?. The
fibers of IF, are then mapped onto the pencil whose basepoint is the image of
the minimal section. Q.E.D.

Remark. Note that if we add the subindices of the simple singularities of T, we
obtain the so-called index of T (cf. [P1] o(T). We get the estimate ¢(T)<8
with equality iff the fibration is extremal.

Furthermore, if the elementary transformation is done at P on T, two cases
occur: either the index of the resolved singularity drops by one or its drops by
two. In the first case the index of the quartic is simply o(T)—1, and if T
corresponds to a rational extremal fibration, the ensuing quartic is maximizing
([P1]).

The following lemma gives the exact picture.

Lemma 6.5. a) If P is a triple point on T, then the exceptional divisor Ep
becomes a line component of the quartic supporting the following singularities
according to the scheme below.

singularity of P singularities on E,
dn dn— 2 +al
€6 as
€q dg

eq e,
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b) If P is a double point on T, then the exceptional divisor E, becomes the
tangent to the quartic at its distinguished point.

singularity of P singularities on E,,
a, (transversal) —
a, (II) (E, flexed at distinguished point)
Ay (ngz) a,_2
a, (IV) (E, hyperflexed at distinguished point).

We will omit the straightforward proof of the above.
We can now state

Propeosition 6.6. Every extremal rational elliptic fibration, with the exception of
Xo111> Xs511 and X 4454, has a representation as a maximizing quartic with a
distinguished point.

The point is that there are only six maximizing quartics (cf. [P1], where
unfortunately two obvious examples are missing). This gives a comparatively
painless way of exhibiting the various extremal fibrations. The proof of the
proposition is simply given by exhibiting the maximizing quartics, which we do
in the following table.

Table 6.7 (the six maximizing quartics together with their distinguished points)

Ex. 1.
8 A
A) X,;(j) note that 4 together with the
other three points determine
the (I} modulus j.
B) X, (I3)
Ex. 2
B

A) X44ZZ (12)
B) Xy (D)

A) X222 (Iz)
B) X, (D
O) Xy (%
0 X, (%
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Table 6.7 continued

553

Ex. 4.

A) Xgoi (1)

Ex. 5.

A) Xap (L)
A) X,y ()
B) X, (Y
B) X,, %

Ex. 6.

prd
w UJI|

A) Xgia (o)
B) X (V9
B X, (VY

The three remaining cases have representations as quartics of index 6, with

special distinguished points.

Table 6.8

Ex. 1. The Steiner quartic (3a,) together with one of its bitangency points P.

A

This represents X 5,45.

Ex. 2. The first degenerate of the Steiner quartic (a,, a,) together with the point P whose tangent

passes through the cusp.
P

_7(‘02“ N
/2N

a,

This represents X 55, 4-
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Table 6.8 continued

Ex. 3. The second degenerate of the Steiner quartic (¢4) together with the point whose tangent
passes through the singularity.

P/ This represents Xg,,4.

Remark. The Steiner quartic together with its degenerate forms have nice
geometric ways of construction:

Consider linear systems of comics with three basepoints (not necessarily
distinct); those define Cremona transformations from IP? to IP% To each such
system we have the notion of an inscribed conic. In the case of three distinct
basepoints, the conic is tangent to the sides of the corresponding triangle. If
two basepoints coalesce, they define a line, and the conic is required to be
tangent to that one as well. Finally if all three points coincide, they also
determine a line (all the conics are flexed to each other at one point, and the
line is the common tangent) which the conic is expected to touch.

The image of the inscribed conic turns out to be a Steiner quartic with its
degenerate forms.

7. Extremal Rational Elliptic Surfaces as Pull-Backs of Each Other

In this section we will analyze the following question: Given X —IP! an
extremal rational elliptic surface, and given f: IP! -»TP*, when is the pullback
surface Y=X x, IP' »1P! also an extremal rational elliptic surface? Note that,
in general, if the pullback Y is extremal, then X must be, since ®(X) injects
into @(Y); hence there is no loss of generality in assuming X is extremal to
begin with.

The first step in the analysis is to carefully understand the relationships
between the singular fibers of X and those of the pullback Y. If the map [ is
etale at pelP?, then of course the fiber of Y over p is identical to the fiber of X
over f(p). Hence we need only study the situation when f is ramified at p, to
some order N. In this case we can choose local analytic coordinates z at p and
w at f(p) so that the map f is simply given by the base change w=2z" of order
N. Using the notation of Table 1.1, if the fiber of X over f(p) has invariants a,
b, and §, then the invariants of the fiber of Y over p will be @ =Na, b'=Nb,
and &' =N, respectively. If @' =4 and b'=6, Y has a non-rational singularity
which can be partially resolved by replacing ' by a' —4, b’ by b’ —6, and & by
& —12. Repeated application of this partial resolution eventually gives a'<3 or
b’ <5, and at this point the fiber of Y over p can be calculated using Table 1.1.
We present the results in the following table.



On Extremal Rational Elliptic Surfaces 555

Table 7.1. Base change of elliptic fibers, to order N

Fiber of X over f(p) Fiber of Y over P

Iy Iy

Iy Iny

I% Iyy if N even; Ity if Nodd

1 I, if N=0(mod6); II if N=1I (mod6)

IV if N=2(mod6); I} if N=3(mod6)
IV* if N=4(mod6); II* if N=5 (modé6)

11 I, if N=O(mod4); III if N=1 (mod4)

I¥ if N=2(mod4); III* if N=3(mod4)
v I, if N=0(mod3); IV if N=1(mod3); IV* if N=2(mod3)
v+ I, if N=0(mod3); IV* if N=1(mod3); IV if N=2(mod3)
I I, if N=0(modd4); III* if N=1 (mod4)

I if N=2(mod4); III if N=3(mod4)
* I, if N=0(modé¢); II* if N=I (mod 6)

IV* if N=2(mod6); I{ if N=3(mod6)
IV if N=4(mod6); II if N=5(mod6)

Also note that if J is the J-map for X, and J, is that for ¥, then
degree J, =(degree f)(degree Jy). (7.2)

We can now state the results when degree Jy=+0.

Theorem 7.3. Assume degree J,+0, and that Y is an extremal rational elliptic
surface also. Then X, Y, and the pullback mapf are on the following list:

X Y f

X351 X4,  degree 3, totally ramified over the IV* fiber, and simply
ramified over the I, and I, fibers.

X431 Xg141  degree 3, totally ramified over the IV* fiber and over
the I, fiber.

X,31  X3333  degree 3, totally ramified over the IV* fiber and over
the I, fiber.

Xo1 Xgony lcvlegree 2, ramified over the I¥ fiber and one of the I,
ibers.

X4 Xgann degree 2, ramified over the I% fiber and the 1, fiber.
X,41  X44,,  degree 2, ramified over the I¥ fiber and the I, fiber.

X,,,  Xu4,,  degree 2, ramified over the I% fiber and one of the I,
fibers.
Proof. We will take up the possibilities for the surface X one at a time.

Case 1. X=X,,,.
Here degree J,=2, so degree f=2, 3, or 6 (since degree J,=2, 3, 4, 6, or 12,
and degree f =2). If degree f=2, then by (7.2), degree J,=4, so Y=X,,;. The
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singular fiber I, of Y must be obtained by base change from one of the two I,
fibers of X; this is not possible, since degree f=2, and a base change of order 3
is necessary to produce an I, fiber from an I,, by Table 7.1. Hence degree
f#+2. If degree f=3, then Y has an I*, with M =1, which cannot be produced
by base change from the fibers of X. Finally assume degree f==6. Then degree
Jy=12 and all 4 singular fibers of Y are of type I ;. Hence by Table 7.1, f must
be totally ramified over the [I* fiber of X, and the corresponding fiber of Y is
smooth. The 4 singular fibers of Y are obtained from the two I, fibers of X;
hence over the two points of IP* giving the two I, fibers of X there are exactly
4 pre-images via the degree 6 map f. There are two cases to consider. If over
one point there is only one pre-image, then f is totally ramified over that poiat,
and hence by Hurwitz’s formula f has no other ramification points; therefore
there are 6 pre-images above the other point, and 7 pre-images altogether, not
4. Finally assume that over both points ¢, and t, there are two pre-images.
Then the ramification of f over t, must be to orders r, and 6—r; hence by
Hurwitz’s formula we have

=22 =2(0)+5+(F, — D+ =r )+, - +(E -1y,

or —221, a contradiction.
Hence X+ X,,,.

Case 2. X=X,,,.

Here degree f=2 or 4. However, if degree f=2, then degree J,=6, and Y has
an I%; fiber, which cannot be produced from the fibers of X. Hence degree f
=4, and as above f must be totally ramified over the III* fiber, producing a
smooth fiber of Y. Again we must have 4 pre-images over the two points ¢,
and t, with the I, and I, fibers, and again there must be two over each. Hence
by Hurwitz, using the same notation as in Case 1,

=22 2@ 43+, - D)+CB—r)+,—D+(3—ry)
or —2z —1. Therefore X +X,,,.

Case 3. X=X ,5,.

Here degree f=3, and f must be totally ramified over the IV* fiber. If f is also
totally ramified over the I, fiber, then there is no other ramification and Y is
X1, If fis also totally ramified over the I, fiber, then Y is X;555. Otherwise
there are two preimages of f over both the I, and I, fibers, and in each case f
is simply ramified at one pre-image and etale at the other; this gives Y=X,,.

Case 4. X=X,,,.

Here degree f=2, and f must be ramified over the I% fiber (producing an I
fiber in Y) and over one other point. That point must be under one of the I,
fibers, and Y=X,,,,.

Case 5. X=X ,4.

Again degree f=2, and [ is ramified over the I fiber, and over one of the
other two singular fibers. If it is ramified over the I, fiber, Y=Xg,,,; if over
the I, fiber, Y=X,,,,.
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Case 6. X=X,,,.
Again degree f=2, and f is ramified over the I% fiber, and over one of the two
I, fibers, producing Y=X,,,,. Q.E.D.

The situation where degree J,=0 is at once simpler and more complicated.
It is simpler because degree J,=0 in this case, hence Y has only two singular
fibers, etc. It is much more complicated because the degree of the pullback
map f is now unrestricted, and the reader can check that there are an infinite
number of possibilities for . We will be satisfied to analyze only the case
where the two singular fibers of X are at 0 and oo and f is an N'** power map
from P! ->IP!, ie., a map of degree N totally ramified over 0 and oo, (and
hence unramified elsewhere). An elementary analysis using Table 7.1 gives the
following.

Theorem 7.4. Assume degree J,=0 and f is an N"™ power map, totally ramified
over the two singular fibers of X. Then Y is either an extremal rational elliptic
surface with degree J,=0, or Y is a product surface ExIP', where the J-
invariant of E is equal to the J-invariant of a general fiber of X. Moreover,
given X and N, Y is determined by the following table.

Table 7.5

X N Y

X N=0 (mod2) ExIPY, J(E)=j
N=1 (mod?2) X0

X5, N=0 (mod6) ExIP!, J(E)=0
N=1, 5 (mod 6) X,
N=2,4(mod 6) Xia
N=3 (modé6) X,,(0)

Xas N=0 (mod4) ExIP!, J(E)=1
N=1,3(mod 4) Xas
N=2 (mod4) X

X N=0 (mod 3) ExPL, J(E)=1
N=1,2(mod 3) X
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