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 INTEGRATION: WHY YOU CAN AND WHY YOU CAN'T

 by Hick ΜiAanda
 Colorado State Univesutty

 At most colleges and universities, a large part of the second

 semester of calculus is devoted to the arcane subject commonly known

 as "techniques of integration". The basic problem is to find a closed

 >form expression for J"f(x)dx where f(x) is a specific function of the
 variable x. Typically, the following methods are discussed:

 - 'forward' substitutions χ = g(u)
 - 'backward' substitutions u = h(x)

 - integration by parts

 - the use of exponentials and logarithms

 - trigonometric substitutions

 - inverse hyperbolic trig functions

 - powers of sines and cosines

 - integrals with quadratics

 - partial fraction decompositions.

 There are two logical reactions to this subject:

 a) There is too much material here.

 b) There is not enough material here.

 For anyone who has taken or taught this course, (a) hardly needs

 explanation. Firstly, the mastery of all these techniques requires

 quite a bit of rote memorization of basic integrals, especially for the

 average student. Secondly, when faced with an integration problem, the

 'menu' of possible techniques to try to apply is large enough to make

 the decision process fairly complicated. Finally, with extensive tables

 and (lately) computer programs which integrate all functions encountered

 in this course, the motivation to delve into this subject with one's

 "sleeves rolled up is naturally diminished, and this is made worse by

 the amount there seem to be to know.

 Have you ever heard (b) from a student of this subject? Well,
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 now you have, and let me explain why. After a good solid course on the

 techniques of integration, including a thorough discussion of the topics

 listed above, I could well come away with the following broad classi

 fication of integrals:

 i) The integrals which I can find,

 ii) The integrals which I cannot find.

 Statement (b) is one reaction to the existence of the second class.

 Most of the integrals encountered in the course are of type (i)

 (or should be, by the end of the semester). A student, in fact, may

 never see an integral of type (ii), and may conclude that all integrals

 are of type (i), for the appropriate choice of "I"; since he (or she)

 knows in his gut that he can't possibly solve all integration problems,

 the conclusion is that he is not the appropriate choice for "I", and

 that the subject is much too complicated for mere mortals to think

 about.

 If an integral of type (ii) i£ seen in this course, it is usually
 in one of the "set up but do not evaluate the integral which computes..."

 problems on an exam; when going over the questions on the next day, the

 teacher may make a remark to the effect that "we can't find this inte

 gral..." and the subject is embarrassingly dropped. Generally, no

 attempt is made to explain why some integrals can be found and some

 can't, and we're back to reaction (b) (on a slightly different level):

 There is something missing here.

 In this article I'd like to discuss why there are integrals of

 types (i) and (ii), and try to explain the fascinating relationship be

 tween this apparently analytic subject and the much more geometric sub

 ject of algebraic plane curves.

 Let me begin by stating a theorem.

 The.on.am. Let R(t) be a rational function of the variable t, i.e.,

 R(t) is the ratio of two polynomials. Then

 J"r( t)dt
 can be found.

 (Of course, actually finding a closed-form expression for it in

 volves factoring polynomials and solving linear equations, and is a

 formidable task in itself — but I won't address these problems here.)
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 In my view, it is not unfair to say that, even given the mass of

 material devoted to integration techniques, this is the only true theo

 rem in this course; the other topics covered are really just methods to

 use as the occasion arises. This being the case, one would think that

 this would be the focal point of this course. However, it is hardly

 ever stated explicitly, and often the details of the process of partial

 fractions (which is the proof of this theorem) is given much more weight

 than the simple and obviously powerful statement itself. This is under

 standable, since carrying out the partial fraction decomposition is a

 complicated and cumbersome task, even in fairly simple situations, and

 requires some attention. However, I think it is a mistake not to rise

 above the fray and drive the point home that here is a large and common

 class of functions which are all "of type (i)" -- I can integrate them'.

 If you grant that this is the 'only' theorem of this type, then

 your mind should naturally turn to the following: can other integrals

 be brought to this form by clever substitutions, and can this theorem

 therefore achieve a wider scope of application? The well-known answer

 to this question is: Sometimes, if you get lucky.

 Example. Integrate J1 + x2 dx .
 .2

 (2 \ύ — — * J ) and
 (1 - t) )

 j.. (2 + 2t2) . . r Γ 2 + 4tZ + 2t4 ax = -ζ—r so the above integral transforms to I r—r— at,
 (2 - tdr J (1 - tT

 and the theorem applies.

 This seemed pretty lucky. What if I try + x^ dx 2 In this
 case I'm stuck fqr a clever substitution. What is going on here? In

 order to fix our attention on a certain general class of functions,

 consider the following.

 Pei{initioη. A function y = y(x) is algebraically dependent on χ

 if there is a polynomial f(x^,x^) in two variables, such that f(x,y(x))
 is identically zero.

 Examples. y - /x (f(x^,x^) - x^ - χ2)
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 y = χ4/,& (f(x1,x2) = x\ ~ XP

 y =ljl + xS (f(x2,x2) - x32 + 1 - xp

 The integrals Ii + χ" dx, + x^ dZj etc., are examples of inte
 grals which involve functions of χ which are algebraically dependent on

 x, and this is the class of functions which I want to focus on. Our

 general problem can be formulated as follows.

 Tfee General Problem ο{, Intzg/Lation ο^ AlcfzbicU.a Function!,.

 Let Rfx^, XgJ be a rational function of two variables.

 Let y = y(x) be algebraically dependent on x.

 Can fR(x> y(x))dx be found?

 The answer is again: sometimes. But it doesn't have anything to do

 with luck. Let's try to think about this systematically. If y - y(x)

 is algebraically dependent on x, then there is this polynomial fix^x^)
 such that fix, y) = 0. Now the equation fix^x^) = 0 defines a so
 called "algebraic curve" in the (χχ-plane, and (x, y(x)) always

 lies on this curve. The properties of this curve should therefore be

 important in studying y(x) . Central for us is the following property.

 Ό&ύ-ίηίϋοη. Let fix^x^) be a polynomial in two variables. The
 curve C = {(χ^,χ^)|= 0} is rationally parametrized if there
 are rational functions χ^ = x^it), χ^ = χ ^(t), such that ffx^ft), x^ft))
 is identically zero as a function of t.

 In this case the point (x^it), x^(t)) will lie on the curve C for
 all values of t. Let's look at any easy example.

 2 2
 Example. Let fix^x^) = x^ + x^ - 1, so that the curve C is the

 Ρ

 unit circle. Then C is rationally parametrized by χη(ϋ) = — ,
 1 (1 + t")

 2t
 x0(t) = —— „ . (Check this'.) This is not magic. Note that the
 ^ (1 + t )

 point Ρ = (-1,0) is on C. Let L_^ be the line through Ρ with slope t;
 an equation for is χ^ = t(x^ t 1). For any t, this line L^ will in
 tersect the circle C in two points, one of which is, of course, P. Call
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 the other point P^. A little algebra will convince you that Ρ =
 1(1 - t2) 2t \ . . . . . . , . , .
 I j ο 1, giving the explicit parametrization above.
 \(i + t") (i + t ;/

 The importance of a rational parametrization for the curve C is

 * demonstrated by the following.

 ΤVieo-tern. Let R(x^,Xg) be a rational function of two variables and
 let y = y(x) be algebraically dependent on x, with fix, y(x)) identic

 ally zero. Assume that the curve C = {(x^,Xg) \f(x-^,xg) = 0} can be
 rationally parametrized. Then y(x))dx can be found.

 Proof. Let χ^ = x^(t), Xg = be the parametrization of C.

 Note that χ = x^(t), y = Xg(t) in this case; make this substitution

 into the integral. One gets Jh(x^(t), xg(t)> which has a
 rational integrand. We can now apply the theorem.

 The above proposition seems to be constructive, too; the only

 hitch is in parametrizing the curve C. In particular, the immediate

 question is; Which curves C can be rationally parametrized, and how?

 If f(x^,Xg) = ax+ bxg + a, so that the degree of f is one and C is a
 line, then clearly C may be rationally parametrized; x^ = bt + 2
 Xg - at t Zg, where (Zj,Zg) is any point on C. In this case y(x) =

 , Xg(Xj) = - Ά χ - (ρ) is a linear function of χ and any rational expres

 sion in χ and y can be immediately reduced to a rational function of χ

 alone, so the above process is not too enlightening.

 Fortunately, there is one other large class of curves which can

 be parametrized.

 Psiopoiftcon. Any conic C (i.e., defined by f(x^,Xg) = 0 where
 f(x^,Xg) is of degree 2) can be rationally parametrized.

 Proof. Let me present two proofs of this statement, one algebraic

 and one geometric in spirit. The first step of the algebraic proof is

 to change coordinates from (x^,Xg) to (x,y) so that f(x^Xg) becomes
 * χ2 2
 g(x,y) - — + IL— - 1, the "standard form" for a conic. This is a

 a b

 linear change of coordinates, so that if we can parametrize g(x,y) - 0
 by rational functions, we will be able to transport this parametrization
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 to f(x^,x^). The second step is to explicitly parametrize the standard
 conic g(x,y) = 0. Here is one way.

 l·.2 24-2 ο 1.2. b rat _ 2ab t
 2 2 2 ' 2 ~ 2 ? h*± at btat

 A more geometric proof is afforded by following the hint of the circle

 example. Pick any point Ρ on the conic C. Parametrize the lines

 through Ρ by their slopes: if Ρ = (xQ,yQ), let L^_ be the line y - yQ =
 t(x - Xq) through Ρ with slope t. Now intersect Lwith the conic C;
 one will get two points, one of which is P, the other is Ρ^ = (x(t),
 y(t)); it is not hard to see that x(t) and y(t) are rational parametri
 zations of the conic C.

 Q.E.D.

 Note that in the above argument, one might want to use a vertical

 line sometimes where the slope "is infinity". This leads naturally into

 some elementary concepts of projective geometry, which I do not wish to
 discuss at this time.

 As promised by our theorem, a proposition about parametrizing

 curves should give us a nice application to integrals. Here's the re

 sult for conics restated for this purpose:

 CoKottcUig. For any numbers a, b and a, the integral

 J~R(x,  1ax^ + bx + a)dx

 can be found (where R(x^,x^) is a rational expression in two variables).

 Proof. If y + bx + o, then y is algebraically dependent on
 2 2

 a:; f(x,y) = y - ax - bx - c is identically zero. Since f(x,y) has

 degree 2, the curve f(x^,x^) = 0 defines a conic, and therefore may be
 rationally parametrized. Now the theorem applies.

 Q.E.D.

 In our course on techniques of integration, a lot of time is spent

 VI 2 ax + bx + o, but

 the general result above is very rarely brought out into the open — I

 think it should be.
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 As long as we're here...

 Parametrizing conics has been fun for millenia. Let us recall

 our parametrization of the circle

 1 - t2 St
 χ· ~ η f y ο

 ι + t ι + t

 Kote that if t is a rational number, then χ and y will both be rational

 numbers also. So what? Well, write t = with u and V integers. Then,

 clearing denominators, we see that

 2 2
 υ - u 2uv

 χ ~
 2 2 ' * 2 2 '
 u + ν u + ν

 and x' + = 2 means that (ν^ - u'+ (2uv)^ = (u' + v^)^. In other
 2 2 2 2

 words, (v - u , 2uv, u + ü J is a Pythagorean triple. Moreover, it is

 an elementary theorem from number theory that all Pythagorean triples

 come this way. This very geometric approach to number theory was pio

 neered by the Greek Diophantus, and has been refined into some amazing

 results relating the geometry of solutions to equations and the number

 theory which naturally arises.

 But back to integration. Recall the following magic trick for

 integrating an expression involving sin θ and cos θ : make the substitu

 tion θ = 2arctan(t). Why does this work? A little trigonometry and

 differentiation formulas (including the dreaded half-angle formulas)

 will produce

 „ 1 - t2 . „ 2t 3„ 2dt
 cos θ = — -ζ , sin θ = 5 , αθ = ρ

 2 + t 1 + t 1 + t

 and so this substitution replaces the trigonometric integrand with a

 rational integrand, and now we use the theorem. From our vantage point,

 this amazing and ad hoc substitution, which at first glance works "be

 cause it works", is seen as exactly substituting the rational parametri

 zation of the circle which we've become quite familiar with for the

 trigonometric parametrization χ = cos Θ, y = sin Θ. Hence we have the

 following (without any magic'.):

 Cofiol&gJiy. If R(x^,x^) is a rational expression in two variables,

 /< then IR(cos9, sin0)d6 can be found.
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 Recall the hyperbolic functions sinh(x) and cosh(x), so called
 2 2

 because they give a parametrization of the hyperbola ι. - x„ = 1;
 2 2 12

 cosh (x) - sinh (x) = 1 for any χ , so (coshfx,) , sinh(χ)) always

 lies on the unit hyperbola. We now know that the unit hyperbola can

 also be rationally parametrized by

 1 + t2 2 2t
 x, = . χ ι 9 ' 9 2 1 - 1 - t

 Our main theorem now yields the following immediately.

 CojwtZaxy. If R(x^,x^) is any rational expression in two vari ·
 ables, then /ffCcosh(x) , sinh(x))dx can be found.

 2d~b
 (Using the chain rule it is easy to see that dx —χ using the

 1 - t
 above substitutions for cosh(x) and sinh(x).)

 This just about exhausts the applications of the existence of

 rational parametrizations for conies to the theory of integration. Can

 we proceed to higher degree curves? Well, there are curves which are

 not conics, but which can still be rationally parametrized:

 Example, y - zP^ satisfies f(x,y) = - oP = 0. This is para
 metrized by χ = , y = tP. Hence,

 CoKollaAy. J"R(x,xP^ )dx can be found, where R(x^,x^) is any
 rational expression in two variables.

 2 2 2 2 2
 Example. The lemniscate f(x,y) - (x + y ) - (x - y )= 0 (draw

 this!) has a rational parametrization

 2t(t + 1) 2t(4t2 - 1)
 χ — ο " , y ' p

 4t + 1 (4t + l)(2t + 1)

 To find this, one intersects the lemniscate C with a circle C^_ centered
 at (t, -t) of radius \/2t, so that £ = (0, 0) is on C.. In fact, CO C^_
 consist of 0 and one other point Ρwhich has the above coordinates.

 The above example looks like I'm just showing off -- maybe that's

 right. Finding parametrizations for plane curves is not easy, and in

 fact most curves {f(x,y) = 0} cannot be rationally parametrized! One
 2 3

 example is y - χ -1=0, which defines the algebraic function y -

 Vi + x?> which I got stuck on earlier. (If you're good with polynomials,
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 2 3
 you might try to prove that y - χ -1-0 can't be rationally para

 metrized.) One corollary of our discussion, then, is thatf^l + x^dx
 can't be expected to be found with our present techniques. In general,

 the integrals involving the square root of a cubic polynomial in x are

 classically called elliptic (they arise in computing various quantities

 associated to an ellipse, e.g., arclength, etc.) and can't be solved in

 closed form using elementary functions. Now we know why: behind the

 whole problem lies an unparametrizable curve'.

 The problem of parametrizing curves actually led to the invention

 of topology. Assume {f(x,y) - 0} is parametrized. This gives a nice

 continuous function from {t-space} to {solutions to f(x,y) = 0}, send

 ing a typical t to (x(t),y(t)). There's nothing in all of the above

 discussion which says that t can't be a complex number instead of just

 a real number; after all, we went ''backward" to rational t's for a

 number-theoretic application -- why not go "forward" to complex t's?

 Recall that {complex t-space} is a 2-sphere, if you add the point at

 (which, again, we saw earlier was not unreasonable). So the above para

 metrization can be viewed as a nice continuous function from the 2-sphere

 to complex solutions (x,y) to f(x,y) = 0. Therefore, intuitively, these

 complex solutions better look pretty much like a sphere. However, in

 lots of examples, this solutions set doesn't look anything like a sphere.
 2 3

 For example, the complex solutions to j = 1 + χ made up, topologically,

 a torus■ So there seems to be a real topological obstruction here to

 parametrizing this curve, and the attempt to understand this phenomenon

 led to the development of modern topology.

 It turns out that the general curve of degree at least 3 (i.e.,

 f(x,y) has degree * 3) cannot be rationally parametrized; however, there

 are special curves which can be, as the examples above illustrate. The

 general problem of the existence of rational parametrizations of plane

 curves ultimately led to the flowering of the field of algebraic geome

 try, and is quite complicated.

 Have we then simply substituted one field of ignorance for another?

 No, not really. I think we have isolated the essential problem, which

 is one of parametrization, not integration, and along the way elucidated

 many of the standard results of integration theory, all in terms of one

 basic idea. This kind of overview can only benefit any student of this

 subject, can put into its proper perspective the more mundane aspects
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 of the techniques of integration, and hopefully motivate both student

 and teacher with a broader picture of the field.

 One last highly beneficial side effect to this approach is that,
 on the horizon of this subject, which seems to some, at first glance,
 to be a "dead end" mathematically, we see the following topics rising
 tantalizingly out of the mist:

 - the theory of conics

 - number theory, and diophantine equations
 - topology

 - complex variables

 - higher analysis

 - algebraic geometry.

 This is a large part of modern mathematics! Do all hard problems (like
 why I can't integrate everything) lead to such unexpected, diverse
 areas? I don't know, but even one example is an occasion for celebra
 tion by a lover of mathematics.

 §> 0#
 REGIONAL MEETINGS

 Many KegionaJL meetings of, the Mathematical

 Kkioctation o& hneticja KegulaKily have ieaiom
 fa κ undetgKaduate papeti. H two ok moKe

 colleger and at leait one local ckaptzK help

 i pom ok ok paKticipate in iuch undeKgtaduate
 ieiiiom, financial help ii available up to
 $50. W/Ute to·.

 Dr. Richard Good
 Department of Mathematics
 University of Maryland
 College Park, Maryland 20742
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