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Abstract: In this paper, we study (i)-curves with i ∈ {−1, 0, 1} in the blown-up projective space Pr

in general points. The notion of (−1)-curves was analyzed in the early days of mirror symmetry
by Kontsevich, with the motivation of counting curves on a Calabi–Yau threefold. In dimension
two, Nagata studied planar (−1)-curves in order to construct a counterexample to Hilbert’s 14th
problem. We introduce the notion of classes of (0)- and (1)-curves in Pr with s points blown up,
and we prove that their number is finite if and only if the space is a Mori Dream Space. We further
introduce a bilinear form on a space of curves and a unique symmetric Weyl-invariant class, F (which
we will refer to as the anticanonical curve class). For Mori Dream Spaces, we prove that (−1)-curves
can be defined arithmetically by the linear and quadratic invariants determined by the bilinear form.
Moreover, (0)- and (1)-Weyl lines give the extremal rays for the cone of movable curves in Pr with
r + 3 points blown up. As an application, we use the technique of movable curves to reprove that if
F2 ≤ 0 then Y is not a Mori Dream Space, and we propose to apply this technique to other spaces.

Keywords: projective geometry; birational geometry; curves; rational curves
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1. Introduction
1.1. Historical Background

The concept of (−1)-curves on a complex threefold was introduced and studied by
Clemens [1], Friedman [2] (Section 8), and Kontsevich [3] (Section 1.4) and [4] (Section 2.3)
as a smooth rational curve with normal bundle isomorphic to O(−1)⊕O(−1). The interplay
between mathematics and physics, in the early days of Gromov–Witten theory, and the role
of (−1)-curves on a 3-dimensional Calabi–Yau is largely exposed in [5]. The connection
to enumerative geometry started from the influential paper [6] via the count of rational
curves on a quintic threefold by solving Picard–Fuchs equations on its mirror pair. While
developing the theory of mirror symmetry, in [3] Kontsevich predicts that there are infinitely
many (−1)-curves on a Calabi–Yau threefold with prescribed numbers in each degree.

In this paper, we study a natural generalization of this concept to higher-dimensional
varieties and to other normal bundles; in particular, we make the following definition.

Definition 1. Fix i ∈ {−1, 0, 1}. An (i)-curve on a smooth r-dimensional variety X is a smooth
irreducible rational curve with normal bundle isomorphic to O(i)⊕(r−1).

We focus on the case of Yr
s , which is the blowup of Pr at s general points, which are

referred to as the base points. For this, we are motivated by understanding the structure of
the set of classes of (i)-curves in the Chow ring, in hopes of obtaining numerical criteria.
In the two-dimensional case, this is closely related to finite generation for the Cox ring
of Y2

s , whose study was initiated by Nagata ([7,8]) to understand the finite generation of
rings of invariants and Hilbert’s 14th problem. Nagata’s counterexample directly used the
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infinity of (−1)-curves and their classes to prove that for s = 16 (later shown for s ≥ 9)
the corresponding Cox ring (isomorphic to the relevant ring of invariants) was not finitely
generated, see [9] (Theorem 2a); his pioneering work contributed to the development of
birational geometry. Nagata’s correspondence between planar (−1)-curves and (−1)-Weyl
lines plays a key role there, and also in this work.

This theme of research continued in Mori’s work on establishing the Minimal Model
Program, and led to the identification of Mori Dream Spaces: those for which the Cox ring is
finitely generated.

Questions regarding Mori Dream Spaces were analyzed before via the theory of
divisors, more precisely via the generators of the Cox Ring. In this paper we use the notions
of rigid and movable curves in Pr, and we use it to answer similar questions for Yr

s , the
blow-up of Pr in s points. We believe that the theory of curves developed in this paper may
be applied to open problems in M0,n.

Rationality questions for varieties of arbitrary dimension are difficult. In recent work,
ref. [10] introduces a new invariant to study rationality for smooth connected algebraic va-
rieties via equivariant birational theory, emphasizing that modern techniques of rationality
arguments will involve Gromov-Witten theory. We hope that understanding (i)-curves will
prove useful in questions regarding rationality.

1.2. Main Results

This paper is organized as follows.
In Section 2, we present the main elements needed from the Chow ring A∗(Yr

s ) and
its intersection form (−,−). In Section 2.2, we give a straightforward description of the
action of the standard Cremona transformations on curve classes Ar−1(Yr

s ) in Proposition 2.
Finally, in Section 2.3 we present the Coxeter group theory that results in the basic analysis
of the Weyl group.

This leads us to define the bilinear form ⟨−,−⟩ on the curve classes Ar−1(Yr
s ) and an

anticanonical curve class F ∈ Ar−1 (meant to be dual in some sense to the anticanonical
class −KY ∈ A1), which plays a central role in the analysis. We denote the bilinear form
induced by the Coxeter group theory on A1(Yr

s ) by ⟨−,−⟩1 (known as the Dolgachev–
Mukai pairing) and we exploit both forms systematically (For more details, see [11]).

In Section 3.1, we study general properties of (i)-curves on an arbitrary smooth
variety of dimension r, before returning to focus on the Yr

s case. We introduce the concept
of (i)-Weyl lines and their classes to denote curves and classes in the Weyl orbit of the
proper transform of a line in Pr through 1 − i of the base points. We make corresponding
definitions of (i)-Weyl hyperplanes and observe numerical properties for their classes as
well; Corollary 4 of Section 3 proves that (i)-Weyl hyperplanes and (i)-divisorial classes are
equivalent in Pr; this remark extends Nagata’s correspondence for divisors from i = −1 [12]
to i = 1. Some care must be taken with respect to an assumption of irreducibility for the
curves in question; Example 2 emphasizes this in the planar case.

In Section 4, we study numerical conditions that provide a useful tool to prove the
finiteness of (i)-curves. In Section 6, we use the computation of Weyl actions on curves to
prove that the space Yr

s is a Mori Dream Space if and only if it has infinitely many classes of
(1)-curves. Moreover, there are infinitely many (−1)-curves if the number of points is at
least r + 5. We conclude with applications of the theory of rigid and movable curves. More
precisely, we identify extremal rays for the movable cone of curves by exploiting the faces
of the effective cone of divisors for Mori Dream Spaces in Section 7.

We close this section with a summary of what we believe are the most important
results of this article.

The classification of the Mori Dream Spaces among the spaces Yr
s is conveniently

expressed in terms of the bilinear forms ⟨−,−⟩1 on A1 and ⟨−,−⟩ on Ar−1 coming from
the Coxeter group approach. The existence of the bilinear form ⟨−,−⟩ on the curve classes
gives us a linear invariant ⟨c, F⟩ (which equals (c · −KY)) and a quadratic invariant ⟨c, c⟩
for curve classes c. Although the curve class cannot detect the decomposition of the normal
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bundle of a smooth rational curve, the linear invariant does detect its anticanonical degree,
and we say that a class c is a numerical (i)-class if ⟨c, F⟩ = 2 + i(r − 1), which is the value for
the class of an (i)-curve. This linear invariant is related to the virtual dimension (namely, χ
of the normal bundle) of a curve C in Yr

s , see (10).

Theorem 1. If Y = Yr
s , then the following statements are equivalent:

1. Y is a Mori Dream space.
2. The Coxeter group (and the Weyl group) is finite.
3. F2 := ⟨F, F⟩ > 0 (which is identical to ⟨KY, KY⟩1 > 0 and also (−KY · F) > 0). (This is

equivalent to r = 2, s ≤ 8; r = 3 or 4, s ≤ r + 4; or r ≥ 5, s ≤ r + 3).
4. Y has finitely many classes of (0)-curves (or equivalently, classes of (0)-Weyl lines or

(0)-numerical classes).
5. Y has finitely many classes of (1)-curves (or equivalently, classes of (1)-Weyl lines or

(1)-numerical classes).

Corollary 2 implies the equivalence of the first three statements, while Theorem 12
and Corollary 9 imply part (4) and (5).

We conjecture (Conjecture 1) that every (i)-Weyl line is an (i)-curve, and it is easy to
see that the class of an (i)-curve is a numerical (i)-class. It is natural to ask the following
question: when are these notions identical? They are not equivalent in arbitrary dimension.
We do prove Conjecture 1 in certain cases (for i = 0, 1 and for i = −1 if s ≤ r + 4).

Example 6 gives a (−1)-curve that is not a (−1)-Weyl line in Y3
8 (the first case in

dimension at least 3 when the space Y is not a Mori Dream Space). The numerical (−1)-
classes can also contain classes of curves of different genera. Indeed, the same example of
the F class in Y3

8 is the class of four (−1)-curves (four disjoint lines each through two of
the 8 points), but also the class of an elliptic curve that is a complete intersection of two
quadrics in P3. It is, however, also the class of a (−1)-curve (indeed, four disjoint ones,
none of which are (−1)-Weyl lines). It is therefore remarkable that for Mori Dream Spaces,
(−1) numerical classes represent just one curve in Yr

s , which is a (−1)-curve.
The main results of Section 4 involve characterizing the (i)-curves and (i)-Weyl lines

using the numerical invariants; we have the following when i = −1.

Theorem 2. Assume r ≥ 3. Suppose that C is a curve in Y with class c ∈ Ar−1(Y). If Y is a Mori
Dream Space or Y = Y5

9 , then the following are equivalent:

1. C is an (−1)-curve.
2. C is a (−1)-Weyl line.
3. ⟨c, c⟩ = 3 − 2r and ⟨c, F⟩ = 3 − r.
4. c = (1; 12) or c = (r, 1r+3).

To prove this result, we study the notion of numerical (−1)-classes that in dimension
at least 3 for the Mori Dream Space cases are each the class of a unique (−1)-curve. In
particular, we prove that in the Mori Dream Space cases there is a finite number of such
curves. Theorem 2 extends to irreducible (0)-curves with two exceptions: the F class if
r = 3 and s = 7 and the class 2F if r = 4 and s = 8 (Remark 4). Theorem 10 discusses
(1)-curves in even dimensional spaces Yr

r+3. Moreover, we note in particular that Y5
9 is not

an MDS and has an infinite Weyl group but has finitely many (−1)-curves, which may be
surprising. In Section 6, we prove that

If s ≥ r + 5 there are infinitely many (−1)-Weyl lines (and hence (−1)-curves) on Y.

Moreover, in Section 3.5 if Z≥0⟨−1⟩ denotes the cone generated by classes of (−1)-
curves and classes of curves that meet all (0)-divisorial classes non-negatively, then

The cone of classes of effective curves in Yr
s is a subcone of Z≥0⟨−1⟩.
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Finally, Section 7 presents applications of the theory of (i)-curves to the effective cone
of divisors EffR(Y) on Y = Yr

r+3. The geometry of Mori Dream spaces Y was previously
analyzed via the work of Mukai and techniques from the birational geometry of moduli
spaces. We recall that in Yr

r+3, the cone of effective divisors is closed, and a line bundle L on
a projective variety is pseudo-effective (effective) if and only if L · C ≥ 0 for all irreducible
curves C that move in a family covering X [13]. Theorems 15 and 16 imply the following.

Theorem 3.

1. The extremal rays of the cone of movable curves in Yr
r+3 are (0)-Weyl lines and (1)-Weyl lines.

2. (0)-Weyl lines and (1)-Weyl lines are extremal rays for the cone of movable curves in Yr
s for

arbitrary s.

As a corollary to part (2), the infinity of (0)- and (1)-Weyl lines give a different
approach, via the theory of movable curves, of the following result of Mukai (originally
proved via the theory of divisors): If F2 ≤ 0, then Yr

s is not a Mori Dream Space. We leave as
an open question to investigate if the theory of movable curves can be further applied to
prove similar properties for other spaces.

2. The Chow Ring, Cremona Transformations, and the Weyl Group

Let us consider the rational variety Y = Yr
s , defined as the blowup of Pr at s general

points p1, . . . , ps, with blowup map π : Y → Pr. Proposition 2 contains one of the main
results of this paper: the computations of the Weyl group orbits for curves directly on the Chow
ring of Y (on which the Weyl group acts naturally) without performing a sequence of flops.
Proposition 1 introduces the concept of the anticanonical curve class F, which we will use
throughout the paper.

There are two complications in using the Chow ring classes to study (i)-curves. First,
there is no numerical criterion for the rationality of a curve when r ≥ 3. (In the planar
case, there is the genus formula expressing rationality in terms of the normal bundle and
anticanonical degree, emphasized in Proposition 6; this was also exploited in [12] and in
Section 3.4 in order to define divisorial (i)-classes).

Second, even if one knows that a given class is represented by a smooth rational
curve, the normal bundle summands are difficult to compute in arbitrary dimension. In
particular, for a given degree of the normal bundle of a rational curve it is not easy to
describe simple sufficient conditions to make the normal bundle balanced. However, we
expect that for rational curves through general points, the normal bundle should be as
balanced as possible.

Example 1. For i ∈ {−1, 0, 1}, we have the following examples of (i)-curves on Y:

1. The proper transform of a line through 1 − i points is an (i)-curve, if s ≥ 1 − i.
2. The proper transform of a rational normal curve of degree r through r + 2 − i of the points is

an (i)-curve, if s ≥ r + 2 − i. (This curve exists and is unique if i = −1).

These two examples are immediate, given that the normal bundle of the line is
O(1)⊕(r−1), the normal bundle of the rational normal curve is O(r + 2)⊕(r−1), and upon
blowing up a point the normal bundle is twisted by −1.

We make the following conjecture.

Conjecture 1. An (i)-Weyl line (a curve in the orbit of a line through 1 − i points) is an (i)-curve
on Y.

We note that the conjecture is trivially true in the planar case r = 2; in this case, the
Cremona transformation is an isomorphism. We are not able to prove this in general, but
we have results in special cases, and in particular it is true for i = 0, 1 or with i = −1 and
s ≤ r + 4; see Propositions 4 and 19.
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In order to generate more examples of (i)-curves, Proposition 2 gives the Weyl group
orbit action on curves.

Weyl group actions on curves were considered for r = 3 in [14] and r = 4 in [15]. This
action was used to study closure of the diminished base locus of divisors [16].

2.1. The Chow Ring of Yr
s

Let H be the hyperplane class in Pr and Ei, 1 ≤ i ≤ s, be the exceptional divisors in Y.
The generators of the Chow ring A∗(Y) of Y are easy to describe; in codimension zero,

we have only the class of the entire variety, and in codimension r we have only the point
class. In each of the intermediate codimension j, we have the pullback (via π) of the general
linear space in Pr of codimension j (and hence of dimension r − j) and, for each i = 1, . . . , s,
the class of the general linear space of dimension r − j inside the exceptional divisor Ei.

We will only require the divisor classes (i.e., A1(Y)) and the curve classes (i.e., Ar−1(Y))
in the rest of this paper. We have already introduced notation above for the generators of
A1; we will use h to denote the class of the pullback of a general line in Pr and ei will be the
class of the general line inside Ei for each i. The following is standard.

Proposition 1. With the above notation, we have the following:

(a) The Chow group A0(Y) is one-dimensional, generated by the identity class [Y].
(b) The Chow group A1(Y) has dimension s + 1, generated by H and Ei, 1 ≤ i ≤ s.
(c) The Chow group Ar−1(Y) has dimension s + 1, generated by h and ei, 1 ≤ i ≤ s.
(d) The Chow group Ar(Y) is one-dimensional, generated by the class [p] of a point p.
(e) Multiplication in A(Y) is induced from the intersection form on Y, and we have that the

pairing (− · −) : A1 × Ar−1 → Ar is given by

(H · h) = 1; (H · ei) = 0; (Ei · h) = 0; (Ei · ej) = −δij

where we have abbreviated the multiples of the point class n[p] simply by the integer n.
(f) The canonical class of Y in A1(Y) is given by

KY = −(r + 1)H + (r − 1)
s

∑
i=1

Ei

and we define the anticanonical curve class FY ∈ Ar−1(Y) to be

FY = (r + 1)h −
s

∑
i=1

ei.

Proof. Statements (a–e) are standard facts concerning the Chow rings of blowups,
see [17] (Chapter 13). The Chern classes of the tangent bundle for a blowup is a com-
putation using the normal bundle sequence for the exceptional divisors Ei; since on Ei, we
have the exact sequence

0 −→ TEi −→ TY|Ei −→ NEi/Y −→ 0

we have that c(TY|Ei ) = (1 + α)r(1 − α), where α ∈ A1(Ei) is the class of the hyperplane in
Ei. Now, the ring homomorphism π∗ : A(Pr) → A(Y) simply inserts the hyperplane class
h into A(Y), and the tangent bundle is isomorphic away from the exceptional divisors, so
that (by symmetry) cj(TY) = π∗(cj(TPr ))− tj ∑j ei,j for some integer tj. The Euler sequence
for Pr gives that cj(TPr ) = (r+1

j )hj. If f : Ei → Y is the inclusion map, then the projection
formula gives that

f∗(cj(TY|Ei) · αr−1−j) = cj(TY) · f∗(αr−1−j)

and since αr−1−j is the class of the codimension r − 1 − j linear space in Ei, it has codi-
mension r − j in Y, and f∗(αr−1−j) = ei,r−j. Hence, the RHS of the above is equal to
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−tj(ei,j · ei,r−j) = tjei,r = tj[p]. Since cj(TY|Ei) is the αj term of (1 + α)r(1 − α), this is equal
to ((r

j)− ( r
j−1))α

j; hence, the LHS of the above is f∗([(r
j)− ( r

j−1))]α
r−1) = [(r

j)− ( r
j−1))]ei,r.

Hence, as noted in (f), tj = [(r
j)− ( r

j−1))].

If C̄ ⊂ Pr is a curve of degree d with multiplicity mi at pi for each i, and C ⊂ Y is the
proper transform in Y, then the class [C] ∈ Ar−1(Y) is [C] = dh − ∑i miei which can be
easily deduced by intersecting with the basis elements of A1(Y). Similarly for divisors, if
D is a divisor on Pr with multiplicity mi at pi for each i, then the proper transform of D in
Y has the class dH − ∑i miEi. With this notation, the intersection pairing between divisors
and curves can be written as

(dH − ∑
i

miEi · d′h − ∑
i

m′
iei) = dd′ − ∑

i
mim′

i.

2.2. The Standard Cremona Transformations

The theory in the planar case is well understood and, beyond the planar case, Weyl
orbits of curves for r = 3 were computed by [14], and by the two authors for r = 4
in [15]. The method used in these papers is more difficult as it involves tracing these curves
through a sequence of flops of lines and planes, and the difficulty increases significantly for
arbitrary dimension r. We will exploit the standard Cremona transformation of Pr (centered
at r + 1 points), which we describe below. The most important result of this section is
Proposition 2 part (a) and (c), which generalize formulas of [14,15] from dimension 3 and 4
to arbitrary dimension.

The standard Cremona transformation of Pr (inverting the coordinates, i.e., sending
[x0 : · · · : xr] to [x−1

0 : · · · : x−1
r ]) is realized geometrically by blowing up the r+ 1 coordinate

points, then the proper transforms of all coordinate lines, then the proper transforms of
all coordinate 2-planes, etc., until one blows up the proper transforms of all coordinate
(r − 2)-planes; then, one blows down the exceptional divisors starting with those over the
coordinate lines, then those over the coordinate 2-planes, etc., finally ending by contracting
the proper transforms of the coordinate hyperplanes. We will index the r + 1 coordinate
points used here by {1, . . . , r + 1}, considering them as the first r + 1 of the s points to be
blown up to obtain Yr

s .
After the first stage of performing the blowups, we arrive at an r-fold Xr

r−1, which
has divisor classes H (the pullback of the hyperplane class on Pr) and EJ for index sets
J ⊂ {1, . . . , r + 1} with 1 ≤ |J| ≤ r − 1, where EJ is obtained by blowing up the proper
transform of the span of the coordinate points indexed by J under the blow up of smaller
dimensional linear spans of J. The linear system that defines the Cremona transformation
on Xr

r−1 is given by the Cremona transformation of the hyperplane class, which is

H′ = rH −
r−1

∑
i=1

(r − i) ∑
J;|J|=i

EJ

For 2 ≤ |J| ≤ r − 1, we have that the Cremona image of EJ is given by

E′
J = EJ′

where J′ is the complement of J in {1, . . . , r + 1}. Each Ei is transformed to the coordinate
hyperplane through all other indices, and so

E′
i = H − ∑

J:|J|≤r−1,i/∈J
EJ

The subspace in the codimension-one part of the Chow ring of Xr
r−1 generated by

the divisor classes EJ with 2 ≤ |J| ≤ r − 1 (i.e., the exceptional divisors over the positive-
dimensional linear coordinate spaces of Pr) is invariant under the Cremona transformation,
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and the quotient space inherits the action. This quotient space is naturally isomorphic to
A1(Yr

r+1), and the action extends (trivially) to an action on A1(Yr
s ) for any s ≥ r + 1. The

formulas above imply that, in the Chow ring of Yr
s , we have

H′ = rH − (r − 1)
r+1

∑
j=1

Ej and E′
i = H −

r+1

∑
j=1,j ̸=i

Ej if i ≤ r + 1 (1)

while E′
i = Ei if i > r + 1.

Since the s points are general, any set of r + 1 of them can be the base points of
a corresponding Cremona transformation. For any subset I of r + 1 indices, we will
denote by ϕI the corresponding Cremona transformation, which induces an action on the
codimension-one Chow space A1(Yr

s ). The formulas given in (1) describe ϕ{1,2,...,r+1} acting
on A1(Yr

r+1).
Dually, the subspace of the curve classes in the Chow ring of Xr

r+1 spanned by the
general line class and the general line classes inside of each Ei is also invariant under the
Cremona action. This subspace is naturally isomorphic to Ar−1(Yr

r+1), and therefore we
have a Cremona action there, which extends to Ar−1(Yr

s ).
In the next proposition, we describe these actions explicitly, and leave the details of

checking the formulas to the reader.

Proposition 2. Fix any (r + 1)-subset I ⊂ {1, 2, . . . , s}.

(a) The action of ϕI on Ar−1(Yr
s ) is given by sending dh − ∑i miei to d′h − ∑i m′

iei, where

d′ = rd − (r − 1)∑
i∈I

mi = d + (r − 1)tr−1

m′
i = d − ∑

j∈I,j ̸=i
mj = mi + tr−1 for i ∈ I

m′
i = mi for i /∈ I

for tr−1 = d − ∑i∈I mi. It has order two. In particular, ϕI(h) = rh − ∑i∈I ei, ϕI(ej) =
(r − 1)h − ∑i∈I,i ̸=j ej if j ∈ I, and ϕI(ej) = ej if j /∈ I.

(b) The action of ϕI on A1(Yr
s ) is given by sending dH − ∑i miEi to d′H − ∑i m′

iEi, where

d′ = rd − ∑
j∈I

mj = d + t1

m′
i = (r − 1)d − ∑

j∈I,j ̸=i
mj = mi + t1 for i ∈ I

m′
i = mi for i /∈ I

for t1 = (r − 1)d − ∑i∈I mi. It has order two. In particular, ϕI(H) = rH − (r − 1)∑i∈I Ei,
ϕI(Ej) = H − ∑i∈I,i ̸=j Ej if j ∈ I, and ϕI(Ej) = Ej if j /∈ I.

(c) The intersection pairing between A1(Y) and Ar−1(Y) is ϕI-invariant, i.e., for any class
D ∈ A1(Y) and C ∈ Ar−1(Y), we have

(D · C) = (ϕI(D) · ϕI(C)).

We will abbreviate ϕ = ϕI for I = {1, 2, . . . , r + 1}.

2.3. The Weyl Group

In this section, Equation (4) introduces a bilinear form on Ar−1 (and on A1) and Corollary 2
exploits the properties of these forms in the language of Mori Dream Spaces.

Note that the symmetric group on the indices of the s points acts on all these spaces,
and also preserves the intersection form pairing; moreover, if σ is the permutation taking
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the subset I to the subset J, then σϕIσ
−1 = ϕJ . The group W generated by the Cremona

transformations and the symmetric group is called the Weyl group of these Chow spaces.
The canonical class KY = −(r + 1)H + (r − 1)∑i Ei is the only symmetric ϕ-invariant

class (up to scalars) in A1 (and it is therefore invariant under all ϕI). Dually, the anticanoni-
cal curve class F = (r + 1)h − ∑s

i=1 ei is the only symmetric ϕ-invariant class (up to scalars)
in Ar−1(Y), and again it is invariant under all ϕI .

The symmetric group is generated by the transpositions σi = (i, i + 1) for 1 ≤ i ≤ s− 1,
and so the Weyl group generated by the Cremona transformation and the symmetric group
is generated by the elements ϕ and σi. Each of these elements have order two. Moreover, it
is easy to see that σi and σj commute if and only if |i − j| > 1, and ϕ and σi commute for all
i ̸= r + 1. Finally, we have that (σiσi+1)

3 = 1 for each i, and (ϕσr+1)
3 = 1.

We therefore see that the Weyl group actions on A1 and on Ar−1 give representations
of the Coxeter group associated with the T2,r+1,s−r+1 graph:

(1)− (2)− · · · − (r)− (r + 1) −(r + 2) · · · − (s − 1)
|

(0)
(2)

where the (0) vertex corresponds to ϕ and the (i) vertex corresponds to σi for i ≥ 1.
We will describe this a bit further in the rest of this section, but this is relatively well

known; see [18–20], for example. The relevant theory from Coxeter groups can be found
in [21–23].

There are W-invariant quadratic forms on A1 and Ar−1, defined by

q1(dH − ∑
i

miEi) = (r − 1)d2 − ∑
i

m2
i and qr−1(dh − ∑ miei) = d2 − (r − 1)∑

i
m2

i ; (3)

We leave it to the reader to check that these are ϕ-invariant (they are clearly symmetric).
These give rise to associated bilinear forms: for α = 1 or α = r − 1, we have

⟨x, y⟩α =
1
2
(qα(x + y)− qα(x)− qα(y)) (4)

and as usual qα(x) = ⟨x, x⟩α for all x and both values of α.
We usually abbreviate the bilinear form on the curve classes as simply ⟨−,−⟩ without

the subscript.
In the divisor case, ⟨x, y⟩1 is the Dolgachev–Mukai pairing that has ⟨H, H⟩1 = r − 1,

⟨Ei, Ei⟩1 = −1, and all other values on the given basis elements for A1 equal to zero. In
the curve case, when r = 3 this quadratic invariant was observed and used in [14]; its
formula is

⟨dh − ∑
i

miei, d′h − ∑
i

m′
iei⟩ = dd′ − (r − 1)∑

i
mim′

i.

Proposition 3. With the above notation, we have the following:

1. The action of W on Ar−1 induces an action on K⊥ = {c ∈ Ar−1 | (c · K) = 0}, which has
dimension s.

2. For c ∈ Ar−1, we have (−K · c) = ⟨F, c⟩. Hence, the orthogonal space to F (with respect to
the pairing given by the bilinear form ⟨−,−⟩) is equal to K⊥.

3. The action of W on K⊥ is isomorphic to the standard geometric representation of the Cox-
eter group.

4. The standard bilinear form on the standard geometric representation corresponds, under this
isomorphism, to (−1/2) times the restriction of the ⟨−,−⟩ pairing on Ar−1.



Mathematics 2024, 12, 3952 9 of 47

5. Since the ⟨−,−⟩ pairing on Ar−1 has signature (1, s), the standard bilinear form of the
Coxeter group is positive definite if and only if qr−1(F) > 0; this corresponds to having
(r + 1)2 > s(r − 1), i.e., if and only if

r = 2 and s ≤ 8; or r = 3, 4 and s ≤ r + 4; or r ≥ 5 and s ≤ r + 3. (5)

Since Coxeter groups are finite exactly when the standard bilinear form is positive
definite, we have the following:

Corollary 1. The Weyl group, acting on either A1 or Ar−1, is finite if and only if (r, s) satisfy (5).

The pairs (r, s) satisfying (5) exactly describe the cases when Yr
s is a Mori Dream Space

(see [24,25]). Hence:

Corollary 2. Y = Yr
s is a Mori Dream Space if and only if the Weyl group is finite.

It turns out that the action of W on the curve classes is isomorphic to the action on the
divisor classes. Hence, all of the above statements could have been reformulated with the
divisor classes as well. For example, the standard bilinear form of the Coxeter group is
positive definite if and only if q1(K) > 0.

The abstract group given by the graph (2) has one generator for each vertex, with
relations that each generator has order two, that generators commute if they are not
connected with an edge, and that the generators satisfy (ab)3 = 1 if they are connected. If
we set σ0 = ϕ acting on A1 and Ar−1, we see that this abstract group maps onto the Weyl
group generated by ϕ and the permutations of the points by sending the generator for
vertex i to σi for each i = 0, . . . , s − 1.

The general theory of such Coxeter groups now constructs, and exploits to great effect,
a faithful representation of the abstract group on a real vector space E of dimension equal
to the number of vertices, as follows. Take a basis vector wi for each vertex i as a basis for
the space E. Define a bilinear form B(−,−) by

B(wi, wj) =


1 if i = j
0 if i and j are not connected with an edge
−1/2 if if i and j are connected with an edge.

Define the action of the group element σi on E by σi(x) = x − 2B(x, wi)wi, which is a
reflection. One checks that the relations in the group hold for this action, so that the action
extends to the abstract Coxeter group. Moreover, for each i, σi preserves the bilinear form B:
B(x, y) = B(σi(x), σi(y)), and hence every element of the group does. It is a basic theorem
in the theory that this action is faithful, and gives an injective representation of the abstract
Coxeter group into GL(E), indeed into the orthogonal group of the bilinear form B.

This representation of the Coxeter group is called the standard geometric representation.
A basic part of the theory is that

the Coxeter group is finite if and only if the bilinear form B is positive definite. (6)

We now relate this representation to the action on the divisor classes A1. The ϕ-invariant
symmetric anticanonical curve class F = (r + 1)h − ∑i ei ∈ Ar−1(Y) gives a functional
on the divisor classes A1(Y) via the intersection pairing; the kernel of this functional is a
codimension-one subspace E1 ⊂ A1 on which ϕ and the symmetric group act irreducibly.
A divisor class dH − ∑i miEi is in E1 if and only if (r + 1)d = ∑i mi.

We have dim(E1) = s, and a basis for E1 is given by the divisor classes {Wi}0≤i≤s−1,
where W0 = H − ∑r+1

i=1 Ei and Wi = Ei − Ei+1 for 1 ≤ i ≤ s − 1.
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One now checks that the quadratic form q1 on A1 defined by

q1(dH − ∑
i

miEi) = (r − 1)d2 − ∑
i

m2
i

is symmetric and invariant under the action of ϕ (and hence under all the Cremona actions
ϕI). It gives rise to a (symmetric, ϕ-invariant) bilinear form B1 on A1 by setting

B1(x, y) =
−1
4

(q1(x + y)− q1(x)− q1(y))

which takes on the following values:

B1(H, H) =
1 − r

2
; B1(Ei, Ei) = 1/2; B1(H, Ei) = 0; B1(Ei, Ej) = 0 for i ̸= j

and hence has signature (s, 1) on A1.
This bilinear form is a multiple of the Dolgachev–Mukai pairing on divisor classes,

which we denote by ⟨⟨−,−⟩⟩:

B1(x, y) = −2⟨⟨x, y⟩⟩.

It has the following values on the Wi basis vectors for E1:

B1(Wi, Wi) = 1 for all i

B1(W0, Wi) =

{
0 if i ≥ 1, i ̸= r + 1
−1/2 if i = r + 1

B1(Wi, Wj) = 0 if 1 ≤ i, j ≤ s − 1, |i − j| > 1

B1(Wi, Wi+1) = −1/2 if i ≥ 1

The above computation is the crucial element in showing the following, which we
leave to the reader.

Theorem 4. The linear map Ψ sending wi ∈ E to Wi ∈ E1 is an isomorphism preserving the
actions of the Coxeter groups and the bilinear forms

Ψ(σw) = σΨ(w) for all group elements σ and all w ∈ E, and

B1(Ψ(x), Ψ(y)) = B(x, y) for all x, y ∈ E.

Next, we note that E1, defined as the set of divisor classes w such that (w · F) = 0,
is also, equivalently, the set of classes w such that B1(w, KY) = 0, since if we write
w = dH − ∑i Ei, we have

(w · F) = (dH − ∑
i

miEi · (r + 1)h − ∑
i

ei) = d(r + 1)− ∑
i

mi

and

B1(w, KY) = B1(dH − ∑
i

miEi,−(r + 1)H + (r − 1)∑
i

Ei)

= −d(r + 1)
1 − r

2
− (r − 1)∑

i
mi(1/2) =

r − 1
2

(d(r + 1)− ∑
i

mi).

Since the bilinear form B1 has signature (s, 1) on A1, and since E1 is now seen to
be the perpendicular space to KY (under the bilinear form B1), the signature of the form
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restricted to E1 is positive definite if and only if B1(KY, KY) < 0. We have that B1(KY, KY) =
1−r

2 ((r + 1)2 − s(r − 1)). This proves the following, by (6).

Theorem 5. The Weyl group acting on A1 and on Ar−1 is finite if and only if (r + 1)2 > s(r − 1)),
i.e., if and only if

r = 2, s ≤ 8; r = 3, s ≤ 7; r = 4, s ≤ 8; r ≥ 5, s ≤ r + 3. (7)

Corollary 3. Y = Yr
s is a Mori Dream Space if and only if the Weyl group acting on A1 is finite.

Proof. Observe that Equation (7) classifies all cases when the space Yr
s is a Mori Dream

Space. One direction follows from the work of [25]: if the Weyl group acting on A1 is not
finite, then there are infinitely many (−1)-Weyl classes that give generators for the Cox
ring of Y, so Y is not a Mori Dream Space. On the other hand, if the action of the Weyl
group on A1 is finite, then the conclusion follows from [24].

Via the intersection pairing, the curve classes Ar−1 form the dual space to A1, and
therefore the dual space to the subspace E1 (defined as the perpendicular space to the
anticanonical curve class F) is the quotient space Er−1 = Ar−1/⟨F⟩. It is not difficult to
compute that the natural action of the Coxeter group on this dual space is the given action
of the Cremona transformation and the symmetric group. Indeed, one can apply this
Coxeter group theory in either direction, and show instead that the standard geometric
representation is isomorphic to the appropriate subspace of the curve classes and derive all
the relevant statements that way.

For our purposes, we simply note that the action on the curve classes (mod F) is
isomorphic to the contragradient action of the standard geometric representation. The
corresponding quadratic invariant of the curve classes is

qr−1(dh − ∑
i

mi) = d2 − (r − 1)∑
i

m2
i .

and the finiteness of the Weyl group is equivalent to having qr−1(F) = (r + 1)2 − s(r − 1) > 0.
This quadratic invariant on the curve classes was observed in [14] for the r = 3 case. We
introduce the notation ⟨−,−⟩ to denote the bilinear form corresponding to the quadratic form
qr−1, so that qr−1(x) = ⟨x, x⟩.

We have proved that a blown-up projective space is a Mori Dream Space if and only
if the intersection product between the anticanonical curve class and anticanonical divisor is
positive. In the cases above, which are Mori Dream Spaces, this curve class intersects the
effective cone of divisors positively. Interesting geometry happens when the effective cone
of divisors is tangential to this curve class. Moreover, for Mori Dream Spaces, this curve
class describes the central ray of the cone of moving curves (i.e., the curve classes sweeping
out the ambient space). This property is analogous to the anticanonical divisor being the
central ray of the effective cone for toric varieties.

In recent preprints [26,27], we discovered that this curve class is important in the
birational geometry of these spaces and that it previously appeared in particular cases
in the work of Dolgachev, Casagrande [26], and the recent work of Xie (for spaces of
dimension 4 and 8 general points).

A key problem in this direction would be, for a smooth algebraic variety X, to define
its anticanonical curve class. We would of course want to prove that any new definition
agrees with the one we introduce here (see also [11]) using the Coxeter theory of blown-up
projective spaces.

According to Mori’s theorem, on an smooth algebraic variety X, we know little about
the part of the cone of curves NE(X) where the intersection with the canonical divisor KX is
non-negative, but in the complementary half-space, the cone is spanned by some countable
collection of curves, which are quite special: they are rational, and their ‘degree’ is bounded
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very tightly by the dimension of X. Moreover, away from the hyperplane {C|C · KX = O},
the extremal rays of the cone cannot accumulate.

It would be extremely interesting to generalize the geometric properties of the anti-
canonical curve class and its interplay with the anticanonical divisor on smooth varieties.
An analogue of Mori’s theorem for blown-up projective spaces and for general varieties X
using the anticanonical curve class definition and its consequences in birational geometry
would be a future goal.

3. Basics for Curves in Yr
s

In this section, we introduce the the main terminology for curves that we will use in
this paper and we discuss general properties. In Section 3.4, we explain that Weyl group
orbits on divisors can be expressed algebraically using the bilinear form ⟨, ⟩1 and we apply
these actions to the description of the Mori cone of curves in Section 3.5.

3.1. General Facts

Assume that C is a smooth irreducible curve of genus g in a smooth variety Y of
dimension r. The tangent bundle/normal bundle sequence for C ⊂ Y gives

deg c1(NC/Y) = 2g − 2 − (C · KY). (8)

and therefore by Riemann–Roch, we have

χ(NC/Y) = (r − 3)(1 − g)− (C · KY). (9)

In the case when deg c1(NC/Y) = i(r − 1) (as is the case with an (i)-curve), the two
equations above reduce to

(C · KY) = 2g − 2 − i(r − 1) and χ(NC/Y) = (g − 1 − i)(1 − r)

which proves the following.

Lemma 1. For a smooth curve C in Y with deg(NC/Y) = i(r − 1), the following are equivalent:

(a) The genus g of C is zero, so that C is a smooth rational curve.
(b) χ = χ(NC/Y) = (r − 1)(i + 1).
(c) (C · KY) = −2 − i(r − 1).

Without the hypothesis on the degree of the normal bundle, both (8) and (9) allow us to
easily conclude the following.

Lemma 2. Assume r ≥ 4. For a smooth curve C, any two of the above (a), (b), and (c) imply the
third. For r = 3, if (a) holds, then (b) and (c) are equivalent.

The only difficulty comes in assuming (b) and (c) with r = 3; indeed, (b) and (c)
together imply that (r − 3)g = 0, and we have no conclusion for g.

Definition 2. Fix i ∈ {−1, 0, 1} and let Y = Yr
s .

1. An (i)-curve in Y is a smooth rational irreducible curve whose normal bundle splits as a direct
sum of O(i) line bundles.

2. A numerical (i)-curve in Y is an smooth rational curve C such that (KY · C) = −2 − i(r − 1)
3. An (i)-Weyl line is a curve that is the Cremona image (under the Weyl group) of the proper

transform of a line through 1 − i of the s points.
4. An (i)-curve class is the class c of an (i)-curve.
5. A numerical (i)-class is a curve class c ∈ Ar−1 such that (KY · c) = −2 − i(r − 1).
6. An (i)-Weyl class is a class c ∈ Ar−1, which is in the orbit of the class of an (i)-Weyl line

(equivalently, a class of an (i)-Weyl line). Hence,
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(a) a (−1)-Weyl class is in the orbit of h − e1 − e2;
(b) a (0)-Weyl class is in the orbit of h − e1;
(c) a (1)-Weyl class is in the orbit of h.

Every (i)-curve class is a numerical (i)-class. The numerical (i)-curves are transformed
into one another via Cremona transformations; hence, so are the numerical (i)-classes.

Basic questions in this situation are whether all (i)-curves are (i)-Weyl lines, and
whether all numerical (i)-curves are (i)-curves. With the curve classes, we want to investi-
gate whether the numerical (i)-classes are all realized by classes of (i)-curves, and whether
the (i)-curve classes are (i)-Weyl classes.

Motivation for these definitions may be provided by the following. Suppose C is a
smooth rational curve in Y = Yr

s ; then, we define the virtual dimension of C to be

vdim(C) := (r + 1)(d + 1)− (r − 1)
s

∑
i=1

mi − 4. (10)

This comes from considering the parametrization of the map from P1 to Pr defining
the image of C in Pr, which is defined using r + 1 polynomials of degree d (having then
(r + 1)(d + 1) coefficients), and noting that a multiplicity m point imposes (r − 1)m condi-
tions. (The last −4 term comes from the three-dimensional family of automorphisms of
P1 and the homogeneity in Pr). This is just a naive dimension count, assuming that all the
multiplicity conditions are independent; the actual number of parameters is at least this.

Even if this number is non-negative, one cannot conclude that an irreducible curve ex-
ists, though; the solutions to the equations may lie at the boundary of the parameter space.

Of course, this virtual number of parameters is just χ of the normal bundle: by (9),
we have χ(NC/Y) = r − 3 − (C · KY) = r − 3 + (r + 1)d − (r − 1)∑i mi = (r + 1)(d + 1)−
(r − 1)∑s

i=1 mi − 4 as claimed.
If we assume that the number of parameters for such a curve C is non-negative (so that

in general we can hope that such a rational curve C with these multiplicities is expected to
exist) but that it is isolated and is a reduced point in the Hilbert scheme (it does not move
in a family, even infinitesimally), then we are imposing that H0 = H1 = 0 for the normal
bundle, which is equivalent to having NC/Y split as a direct sum of O(−1)s, and hence C
will be a (−1)-curve.

We then expect a finite number of smooth rational (−1)-curves representing a numeri-
cal (−1)-class.

The following classification enables us to prove Conjecture 1 for i = −1 in some special
cases of interest.

Proposition 4.

(a) If r ≥ 3 and s ≤ r + 4, then every (−1)-Weyl line is either a line through two points or the
rational normal curve of degree r through r + 3 points.

(b) If r = 2, or r ≥ 3 and s ≤ r + 4, then every (−1)-Weyl line is a (−1)-curve.

Proof. To prove (a), start with the line through two points (which we may assume to be p1
and p2). Apply the first standard Cremona transformation by choosing r + 1 base points. If
p1 and p2 are both among those base points, the line is contracted, and we do not produce
a (−1)-Weyl line. If only one of the two points are among those base points, the line is
transformed to a line through two points. If neither of the two points are among those base
points, the line is transformed to a rational normal curve through all of the r + 3 points.

Now, analyze the rational normal curve through r + 3 points. Again, choose r + 1 base
points and apply the standard Cremona transformation. If those r + 1 points are a subset of
the r + 3 points on the curve, then the curve is transformed to a line through the remaining
two points. If not, then since s ≤ r + 4, we must have s = r + 4, and the r + 1 base points
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consist of r points on the curve, and the extra point is not among the r + 3 points on the
curve. In that case, the curve is transformed to a rational normal curve again.

This proves (a), and statement (b) is clear for r = 2. For r ≥ 3, it follows by first noting
that the line starts with normal bundle equal to O(1)⊕(r−1) in Pr and the rational normal
curves starts with normal bundle equal to O(r + 2)⊕(r−1) in Pr. Since blowing up a point
twists the normal bundle by O(−1), both become (−1)-curves in Yr

s .

In general, we have five concepts here, for the case i = −1: the Cremona lines (orbits
of the lines through two points); the (−1)-curves (smooth rational curves in Y with normal
bundle splitting as a sum of O(−1)s); Weyl classes (the orbit of the line class through two
points); classes of (−1)-curves; and (−1)-classes (classes c with (c · KY) = r − 3).

Every Cremona line is a (−1)-curve; every Weyl class and every class of a (−1)-curve
is a (−1)-class. The class of a Cremona line is a Weyl class. Conversely, every Weyl class is
the class of a Cremona line; the sequence of transformations that exhibit the Weyl class in
the orbit of the class of the line through two points, when applied to that line, produces an
irreducible curve that is the Cremona line with that Weyl class (see Corollary 8).

Curves in Y −→ Classes in Ar−1(Y)
Cremona lines −→ Weyl classes⋂ ⋂
(−1)-curves −→ classes of (−1)-curves⋂

(−1)-classes

The classes of irreducible curves have additional constraints on them, some of which
are captured in the following.

Lemma 3. Suppose c = dh − ∑i miei is the class of an irreducible curve C not inside one of the
exceptional divisors Ei. Then, the following are true:

(a) For each i, d ≥ mi ≥ 0;
(b) If d ≥ 2, then for each i ̸= j, d ≥ mi + mj;
(c) If the multiplicities are in descending order m1 ≥ m2 ≥ . . . ≥ ms, and if for some k ≤ r we

have d < ∑k
i=1 mi, then mk+1 = · · · = ms = 0.

Proof. If such a curve C exists with this class, then the intersection with Ei must be non-
negative, so each mi ≥ 0. In addition, intersecting C with divisors in the class H − Ei shows
that d ≥ mi since |H − Ei| has no base locus. This proves (a). For (b), if d < mi + mj, then
the intersection of C with every hyperplane through pi and pj is negative, so that if C is
irreducible it must be inside every such hyperplane, and therefore inside their intersection,
which is the line joining the two points; hence, d = 1 (and c must be the class of that line).
Finally, (c) is similar: if the inequality holds, then C lies inside the linear space spanned by
those first k points, and so cannot have positive multiplicity at any other point outside that
linear space (where all other points are by the generality).

3.2. Projections

Projections offer an interesting perspective and tool to study these curves. If C is
an irreducible curve in Pr, whose proper transform in Yr

s has class c = dh − ∑s
i=1 miei ∈

Ar−1(Yr
s ), then we may consider the projection π from any one of the multiple points (say,

p1 with multiplicity m1) and obtain the curve π(C) ⊂ Pr−1, whose proper transform in
Yr−1

s−1 has class π(c) = (d − m1)h − ∑s
i=2 miei ∈ Ar−2(Yr−1

s−1 ).
We have seen above that χ(NC/Y) is determined by the class of C, and it can happen

that χ(N) is non-negative for C but negative for π(C). This is an indication that, although
the χ(N) computation suggests that a rational curve exists with that class, the projection is
not expected to exist (and hence the original curve actually will not either).
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For example, suppose c is a numerical (−1)-class so that (r + 1)d − (r − 1)∑s
i=1 mi =

3 − r; this is the condition that χ(NC/Y) = 0 if the irreducible curve C exists. In this case,
χ(Nπ(C)) = r(d − m1)− (r − 2)∑s

i=2 −3 + (r − 1), and one computes that

χ(NC)− χ(Nπ(C)) = d + m1 + 1 −
s−1

∑
i=2

ms.

Therefore, if this quantity is positive we do not expect π(C) to exist, and hence should
not expect C to exist. We would generally apply this when m1 is the largest multiplicity,
obtaining the criterion that

d + m1 ≤
s

∑
i=2

ms (11)

for C to be expected to exist. This essentially says that, for a given degree, no single
multiplicity should be too large.

It is easy to see that projections commute with the Cremona transformation.

Proposition 5. Let c = dh − ∑i miei be a class in Ar−1(Yr
s ). We have the Cremona transfor-

mation ϕ : Ar−1(Yr
s ) → Ar−1(Yr

s ) on Yr
s (based at the first r + 1 points) and also the Cremona

transformation ϕ : Ar−2(Yr−1
s−1 ) → Ar−2(Yr−1

s−1 ) (based at the first r points). If we denote by π the
projection from the first point, we have

π(ϕ(c)) = ϕ(π(c)).

Proof. Using the formulas from Proposition 2(b), we see that if we define t = d − ∑r+1
i=1 mi,

then

ϕ(c) = (d + t)h −
r+1

∑
i=1

(mi + t)ei − ∑
i>r+1

miei,

and so

π(ϕ(c)) = (d + t − (m1 + t))h −
r+1

∑
i=2

(mi + t)ei − ∑
i>r+1

miei.

Now, π(c) = (d − m1)h − ∑s
i=2 miei, so that if we define t′ = (d − m1) − ∑r+1

i=2 mi,
we have

ϕ(π(c)) = (d − m1 + t′)h −
r+1

∑
i=2

(mi + t′)ei − ∑
i>r+1

miei.

The result follows by noting that t′ = t.

We note that if I is any subset of r + 1 indices for the s points of Yr
s , and i ∈ I, then we

may denote the Cremona transformation based at the points with indices in I by ϕI . If we
denote the projection from the i-th point by πi, then the same proof as above shows that

πi(ϕI(c)) = ϕI−{i}(πi(c)).

We present the following Lemma, which will be useful later.

Lemma 4. Assume that r ≥ 3 and s ≤ r + 4. Let C be a (−1)-Weyl line in Yr
s . Since C is a

(−1)-Weyl line, there is a Cremona transformation A that takes C to a line through two points.
Factor A as a1a2 . . . ak minimally, so that each ai reduces the degree. Then, there is a base point of
ak such that projecting from that point gives a (−1)-Weyl line class in Yr−1

s−1 .

Proof. Let us argue by induction on k. If k = 1, then C is obtained from the line through
two points by applying one standard Cremona transformation based at r + 1 of the s points.
If the two points of the line are among the r + 1 points, we have a contradiction: the line
is contracted. If exactly one of the two points of the line is among the r + 1 points, then C
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is again a line through two points, and this means that k = 0 not k = 1. Hence, we may
suppose that neither of the two points of the line are among the r + 1 points. In this case, C
is the rational normal curve of degree r in Pr through r + 3 points. Hence, the projection of
C from one of those r + 3 points with multiplicity one is a rational normal curve of degree
r − 1 in Pr−1, as is well known.

Suppose now the statement is true for k, and let us show it for k + 1.
Let π be the projection from one of the base points of the first standard Cremona ak+1

in the factorization of A. If c is the class of C, then Proposition 5 shows that B(π(c)) =
π(ak+1(c)), where B is the standard Cremona transformation of Pr−1 based at the remaining
r points, and the images of the base points of ak+1 which are not the projection points. Since
B is an involution, we therefore have π(c) = B(π(ak+1(c))). Now, by induction on k, the
class ak+1(c) represents a curve D in Pr, which satisfies the Lemma, i.e., the projection from
one of the r + 1 base points of ak is a (−1)-Weyl line. Since s ≤ r + 4 ≤ 2r + 1, there is at
least one point of intersection between the r + 1 base points of ak+1 and of ak. This is the
point we choose to project from with the projection π.

In that case, by induction π(ak+1(c)) is the class of a (−1)-Weyl line. Therefore, so is
B(π(ak+1(c))). Therefore, so is Q(c).

3.3. The Planar Case

We now analyze (i)-curves in the planar case Y = Y2
s , when r = 2.

We note that in this case, A1 = Ar−1 and all three bilinear forms (− · −), ⟨−,−⟩1, and
⟨−,−⟩ = ⟨−,−⟩r−1 are equal, and the curve class F = −K.

For a plane curve class c, the common invariants can be determined from the intersec-
tion form: the arithmetic genus pa(c) = (2 + (c · c) + (c · KY))/2 and the Euler characteris-
tic χ(c) = χ(OY(c)) = ((c · c)− (c · KY))/2. With these formulas, we immediately have
the following.

Proposition 6. Let c ∈ Pic(Y) be an arbitrary curve class and fix i ∈ Z. Then, any two of the
following statements imply the others:

1. pa(c) = 0
2. χ(c) = 2 + i
3. (c · c) = i
4. (c · KY) = −2 − i.

A class satisfying the fourth condition is, by definition, a numerical (i)-class. If C is an
irreducible curve with class c, then the first condition says that C is smooth and rational,
and the third condition on the self-intersection would say that C is an (i)-curve.

However, these numerical conditions do not imply that a curve C with a class satisfying
the above conditions must be irreducible.

Example 2. Consider the planar divisor of degree 5 with two triple points and eight simple points.
It satisfies the conditions of Proposition 6 with i = −1 but it is not represented by an irreducible
curve: the proper transform of the line through the two triple points splits off from this system.

Remark 1. If i ≥ −1, and if C is any class satisfying any two of the above equivalent conditions,
with positive degree, then we have

χ(C) = h0(C)− h1(C) = 2 + i ≥ 1

(because the H2 term must vanish if C has positive degree). We conclude that any such class
is effective.

The next result is the planar case of Theorem 4, whose proof is a simple consequence
of the Max Noether inequality.
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Theorem 6. Let C be an irreducible curve in Y and fix i ∈ {−1, 0, 1}. Then, C is an (i)-curve if
and only if C is an (i)-Weyl line.

The next result shows that for planar Mori Dream Spaces the irreducibility assumption
may be relaxed.

Theorem 7. Let s ≤ 8, so that Y2
s is a del Pezzo surface, and fix i ∈ {−1, 0, 1}. Then, an effective

divisor C is linearly equivalent to an (i)-curve if and only if the conditions of Proposition 6 hold, i.e.,

(C · C) = i and (C · KY) = −2 − i. (12)

If i = −1, then C is a (−1)-curve itself.

Proof. In the del Pezzo case, −K is ample, and so the (C · K) condition says that C has
anticanonical degree equal to 1, 2, or 3. If (C · −K) = 1 (the i = −1 case), then C must be
irreducible and smooth, and then the (C · C) condition implies that C is rational, and hence
a (−1)-curve.

In case C has anticanonical degree greater than 1, we conclude in a similar way if C is
irreducible. Hence, assume C is not irreducible, with anticanonical degree 2 or 3. In that
case, C must split as C = kG + J, where G has anticanonical degree 1, (and hence as above
is a (−1)-curve), 1 ≤ k ≤ 2, and G and J are distinct. If k = 2, then J is a (−1)-curve as well,
and in that case (C · C) = 4(G2) + (J2) + 4(G · J) = 4(G · J)− 5, which cannot be equal to
0 or 1 as required.

We can therefore assume k = 1. In the case i = 0 with anticanonical degree 2, then
C = G + J with G and J distinct (−1)-curves, and the self-intersection condition implies
(G · J) = 1. In that case, C moves in a pencil whose general member is a (0)-curve.

In the case i = 1 with anticanonical degree 3, then J has anticanonical degree 2; by
the above analysis, we may assume that J moves in a pencil whose general member is a
(0)-curve. In that case, we have 1 = (C · C) = (G + J · G + J) = 2(G · J)− 1, which gives
(G · J) = 1, and then C moves in a linear system whose general member is an (1)-curve.

Proposition 7. Suppose that i ∈ {−1, 0} and C is an irreducible curve in Y2
s , whose class is a

numerical (i)-class. Then, the possibilities are as follows:

1. (i = −1 case): C is either a (−1)-Weyl curve or C is a cubic with class F in Y2
8 .

2. (i = 0 case): C is either a (0)-Weyl curve, C is a cubic with class F in Y2
7 , or C is a sextic with

class 2F in Y2
8 .

Proof. Suppose that C is an irreducible curve on Y with positive degree, whose class is a
numerical (i)-class, i.e., (C · KY) = −2 − i. Write the class of C as c = (d; m1, m2, . . . , ms)
with the multiplicities in decreasing order. If d = 1, then −3 + ∑i mi = −2 − i so
∑ mi = 1 − i ≤ 2; hence, we must have an (i)-Weyl line. We may therefore assume that
d ≥ 2; if d < m1 + m2 + m3, we may perform a Cremona transformation and reduce the de-
gree. Hence, we may assume that d ≥ m1 + m2 + m3. In this case, the numerical condition
on (C ·K) gives 0 ≤ (m1 −m4) + (m2 −m5) + (m2 −m6) + (m3 −m7) + (m3 −m8) +m1 ≤
2 + i If m1 = 0, then all mi = 0 and this is impossible. If m1 = 1, then assume that mk = 1
but mk+1 = 0; then, the intersection with K gives that 3d − k = 2 + i, so that the only
solutions that respect the inequalities are (1; 1) and (3; 17) for i = 0 and (3; 18) for i = −1.
The case m1 ≥ 2 gives the unique solution (6; 28) for i = 0.

Theorem 11 of Section 6 in the planar case reproves via the theory of movable curves
that if Y is not a del Pezzo surface then it is not a Mori Dream Space, because there are
infinitely many (0)- and (1)-Weyl lines.
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3.4. The Divisor Case

Certain algebraic equations for the Weyl orbits of hyperplanes using the Dolgachev–
Mukai intersection pairing were established in [12]. In this section, Corollary 4 extends
results from (−1)-Weyl hyperplanes to (1)-Weyl hyperplanes. As we will observe in this
paper, (−1)-Weyl lines in higher dimensions cannot be characterized by the quadratic and
linear bilinear form.

Since there is no arithmetic formula to express a rationality condition for divisors
or curves in a projective space of higher dimension, in [12] the definition of divisorial
classes was formulated algebraically similarly to conditions (3) and (4) of Proposition 6. We
introduce below (0)− and (1)− Weyl hyperplanes.

Definition 3. Let i ∈ {−1, 0, 1}.

1. An (i)-Weyl hyperplane is a divisor in the Weyl orbit of a hyperplane through r − 1 − i
points.

2. A numerical (i)-divisorial class is a divisor class [D] ∈ A1 such that ⟨[D], [D]⟩1 = i and
1

r−1 ⟨[D],−KY⟩1 = 2 + i.

It is obvious that the class of an (i)-Weyl hyperplane is a numerical (i)-divisorial
class. They are equivalent for irreducible effective divisors. This is based on the Noether
inequality for divisors; for the proof of the following, see [12] (Theorem 0.4):

Proposition 8. Assume i ∈ {−1, 0, 1}. Let D be an irreducible effective divisor whose class is a
numerical (i)-divisorial class, and assume it is not a hyperplane through n − 1 or n − 2 base points.
Then, the divisor D is not Cremona-reduced, i.e., if we write [D] = dH − ∑i miEi and order the
multiplicities in decreasing order, then (r − 1)d < ∑r+1

i=1 mi.

Corollary 4. Assume i ∈ {−1, 0, 1}. Let D be an irreducible effective divisor whose class is a
numerical (i)-divisorial class. Then, D is an (i)-Weyl hyperplane.

3.5. Applications to Mori Cone of Curves

Let us introduce Z≥0 as the cone of curve classes in Ar−1(Y) that meet all numerical
(0)-divisorial classes non-negatively. Define Z≥0⟨−1⟩ to be the cone generated by Z≥0 and
all (−1)-curves in Yr

s .
Then, we have the following inclusion of the Mori cone of curves on Y.

Theorem 8. The cone of classes of effective curves in Yr
s is a subcone of Z≥0⟨−1⟩.

4. (i)-Curves in Mori Dream Spaces Yr
s , r ≥ 3

We now turn our attention to (i)-curves in Yr
s with r ≥ 3, with attention on the Mori

Dream Space cases of (7); for r ≥ 3, these cases are s ≤ r + 4 for r = 3, 4 and s ≤ r + 3 for
r ≥ 5. We note that in all these cases, Proposition 19 holds, and every (i)-Weyl line is an
(i)-curve for each i ∈ {−1, 0, 1}.

We will assume that s ≥ r + 2; for lower values of s, there is at most one Cremona
transformation, which commutes with the symmetric group, and the situation is easy
to analyze.

For s = r + 2, it is elementary to see that the only (−1)-Weyl lines are the lines through
two of the points. The only (0)-Weyl lines are the lines through one of the points and the
conics through all r + 2 points; the latter only happens for r = 2, though, since a conic must
live in a plane. The only (1)-Weyl lines are the general lines, and again conics through r + 1
points (again, only in the case r = 2).

This case, s = r + 2, is satisfactorily treated in Proposition 9, and shows that there are
no numerical (i)-classes other than the ones noted above.

We will concentrate, therefore, on the cases s ≥ r + 3. We will introduce here the
terminology that we will use throughout the section.



Mathematics 2024, 12, 3952 19 of 47

We will denote by c = (d; m1, . . . , ms)r a class in Ar−1 and we will employ exponential
notation to indicate repeated multiplicities.

Definition 4. We say that the class c ∈ Ar−1(Y) with d ≥ 2 is Cremona-reduced if the
multiplicities are arranged in decreasing order and d ≥ m1 + m2 + · · ·+ mr+1.

The inequality above is the condition that no Cremona transformation centered at
r + 1 of the points will reduce the degree of the class. (In the case of the line through two
points, the Cremona transformation contracts it).

We recall that the canonical divisor is fixed under the Weyl group action, and that the
irreducibility and effectivity of curves of degree at least 2 are preserved under the Weyl
group action. Throughout this section, we will use the following observation.

Remark 2. If c ∈ Ar−1 is the class of an effective and irreducible curve C of degree at least 2,
then we can reduce C to a Cremona-reduced effective, irreducible curve with class f ∈ Ar−1 and
(KY · c) = (KY · f ).

This focuses our attention on the Cremona-reduced classes. The following will be
useful in our analyses.

Lemma 5. Suppose j ∈ {−1, 0, 1} and that c is a Cremona-reduced numerical (j)-class with
positive degree and non-negative multiplicities. Then,

(r − 1)
s

∑
i=r+2

mi ≥ −2 − j(r − 1) + 2
r+1

∑
i=1

mi.

Proof. Write c = (d; m) with multiplicities in decreasing order. The numerical condition
is that

(r + 1)d − (r − 1)
s

∑
i=1

mi = 2 + j(r − 1)

and therefore

(r − 1)
s

∑
i=1

mi = −2 − j(r − 1) + (r + 1)d ≥ −2 − j(r − 1) + (r + 1)
r+1

∑
i=1

mi

using the Cremona reduced assumption. Subtracting (r − 1)∑r+1
i=1 mi from both sides gives

(r − 1)
s

∑
i=r+2

mi ≥ −2 − j(r − 1) + 2
r+1

∑
i=1

mi.

We remark that (1)-classes in Yr
r+3 consist of (1)-Weyl lines together with multiples of

vector F, (n + 4)/4 · F.

4.1. The Case s = r + 3

We first address the case of s = r + 3 with r ≥ 2. It is an easy computation to show that
the only (−1)-Weyl lines in Mori Dream Spaces and Y5

9 are the lines through two points
and the rational normal curves of degree r through all r + 3 points (and all permutations).
To see this, one computes from the bottom up: applying Cremona transformations to these
classes gives these classes back, no matter which r + 1 points one chooses. In particular,
on these spaces the (−1)-curves are the (s

2) lines through two points and rational normal
curves of degree r passing through r + 3 points. Similarly, the (0)-Weyl lines are just the
lines through one of the points, and the rational normal curves through all but one of
the points.
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Proposition 9. Let j ∈ {−1, 0}, r ≥ 3 and s ≤ r + 3. Let C be an irreducible curve in Yr
s . Then,

[C] ∈ Ar−1 is a numerical (j)-class if and only if C is a (j)-Weyl line.

Proof. Since the class of every (j)-Weyl line is a numerical (j)-class, it suffices to prove the
other direction.

Let c = [C] have the form dh − ∑i miei; if d = 1, we are done. We assume that d ≥ 2,
with multiplicities ordered decreasingly.

By Remark 2, we can assume that c is Cremona-reduced, and that it satisfies the
inequalities d ≥ mi ≥ 0 since C is irreducible.

Now, Lemma 5 gives that

(r − 1)(mr+2 + mr+3) ≥ 2
r+1

∑
i=1

mi + j(1 − r)− 2 = 2
r+1

∑
i=3

mi + 2m1 + 2m2 + j(1 − r)− 2

and since ∑r+1
i=3 mi ≥ (r − 1)mr+2 ≥ (r − 1)mr+3, the right-hand side of the above is at least

(r − 1)(mr+2 + mr+3) + 2m1 + 2m2 + i(1 − r)− 2. Subtracting (r − 1)(mr+2 + mr+3) from
both sides now gives

0 ≥ 2m1 + 2m2 + j(1 − r)− 2.

If j = −1, this says that 3 − r ≥ 2m1 + 2m2, which implies all multiplicities are non-
positive if r ≥ 3, a contradiction if d ≥ 2. (If r = 2, we must have 2m1 + 2m2 ≤ 1, so again
we must have all multiplicities mi = 0, which again gives a contradiction: we would then
have to have 3d = 1, and this is impossible).

If j = 0, then we have 2(m1 + m2) ≤ 2, and therefore m1 = 1 and m2 = 0. This forces
d = 1, and we have the (0)-Weyl line.

It is tempting to try to use this proposition to conclude that, in these ranges of param-
eters, all numerical (−1)-classes are (−1)-Weyl classes. However, this is false: we may
indeed be able to reduce the degree, but the result may be a class whose degree becomes
negative (or a multiplicity that becomes negative).

The example below shows that the irreducibility assumption is important: it ensures
that Cremona transforms stay with non-negative parameters.

Example 3. Consider the example of the class (13; 4, 36)4 of degree 13 in P4 with one point of
multiplicity 4 and six points of multiplicity 3. This is an effective class in P4 with seven points and
(−K · C) = 5 · 13 − 3 · (4 + 3 · 6) = −1, so C is a numerical (−1)-curve. However, it is not a
Weyl class because it is not irreducible. Applying a Cremona transformation to five of the points,
including the multiplicity 4 point, gives the class (4; 32, 1, 04)4, which cannot be the class of an
irreducible curve, by Lemma 3. Indeed, any curve C with this class must contain a line through
the two triple points, and the residual class is (3; 22, 1, 04)4, which also must contain that line; the
second residual is (2; 13, 04)4, which is the class of a net of conics in the plane spanned by the three
points of multiplicity one.

We note that for the example above, c := (13; 4, 36)4; then, ⟨c, c⟩ = −41, which is not
equal to 3 − 2r = −5. Hence, it is not a (−1)-Weyl line class using this criterion, either.

We can replace the assumption that the class comes from an irreducible curve by using
the quadratic invariant ⟨c, c⟩ in this case, and obtain a purely numerical condition for a
class to be a (−1)-Weyl line class.

Proposition 10. Suppose r ≥ 3 and s = r + 3. Let c ∈ Ar−1 be a class with positive degree and
non-negative multiplicities. Then, c is a (−1)-Weyl line class if and only if

⟨c, F⟩ = 3 − r and ⟨c, c⟩ = 3 − 2r.

Proof. Since the bilinear form and the class F are invariant under the Cremona transfor-
mations, one implication holds, since these are the values for a line through two points.
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Therefore, it is enough to prove that a class with the given quadratic and linear invariants
is a (−1) Weyl line. Let c = (d; m)r be such a class, and write N1 = ∑i mi and N2 = ∑i m2

i .
Our assumptions are then that (r + 1)d − (r − 1)N1 = 3 − r and d2 − (r − 1)N2 = 3 − 2r.

We first claim that d ≤ r. For a fixed degree d, the quantity N1 is then determined,
namely N1 = ((r + 1)d + (r − 3))/(r − 1). If all of the multiplicities are equal, then each
one of them would be equal to m = N1/(r + 3). The value of N2 would be minimized
if all multiplicities were equal, i.e., N2 ≥ ∑r+3

i=1 m2 = (r + 3)(N1/(r + 3))2 = N2
1 /(r + 3).

Therefore,

3 − 2r = d2 − (r − 1)N2 ≤ d2 − (r − 1)N2
1 /(r + 3)

= d2 − r − 1
r + 3

(((r + 1)d + (r − 3))/(r − 1))2

= d2 − 1
(r + 3)(r − 1)

((r + 1)2d2 + 2(r + 1)(r − 3)d + (r − 3)2)

=
1

(r + 3)(r − 1)
(((r + 3)(r − 1)− (r + 1)2)d2 − 2(r + 1)(r − 3)d − (r − 3)2)

=
−1

(r + 3)(r − 1)
(4d2 + 2(r + 1)(r − 3)d + (r − 3)2).

Now, the upper bound quantity here when d = r is −1
(r+3)(r−1) (4r2 + 2r(r + 1)(r − 3) +

(r − 3)2) = −1
(r+3)(r−1) ((r − 1)(r + 3)(2r − 3) = 3 − 2r and the quadratic function in d only

increases for d ≥ r, so that if d > r, then ⟨c, c⟩ < 3 − 2r, which is a contradiction. Hence,
we conclude that d ≤ r.

Since all the multiplicities are non-negative integers, we have mi ≤ m2
i for every

i, so that N1 ≤ N2 (with equality only if all multiplicities are 0 or 1). Since (r − 1)N1 =
(r+ 1)d+ r− 3 and (r− 1)N2 = d2 + 2r− 3, we conclude that (r+ 1)d+ r− 3 ≤ d2 + 2r− 3,
which simplifies to (d − 1)(d − r) ≥ 0. Hence, d cannot lie in the open interval (1, r), and
so the only possibilities are narrowed down to d = r and d = 1.

If d = r, then the values for ⟨c, F⟩ and ⟨c, c⟩ imply that N1 = N2 = r + 3. Hence, all
multiplicities are either 0 or 1; since the sum is the number of points r + 3, they must all be
1, and we have the class of the rational normal curve.

Similarly, if d = 1 we must have N1 = N2 = 2, and this leads to the line through
two points.

We can summarize the situation for irreducible (−1)- and (0)-curves when s = r + 3
in the following.

Theorem 9. Let i ∈ {−1, 0}, r ≥ 3, and c ∈ Ar−1(Yr
r+3) be the class of an irreducible curve. The

following are equivalent:

1. c is the class of a (i)-curve.
2. c is a (i)-Weyl line class.
3. ⟨c, c⟩ = 1 + (i − 1)(r − 1) and ⟨c, F⟩ = 2 + i(r − 1).
4. c is a numerical (i)-class.

Proof. The invariance of the bilinear form gives us that (2) implies (3), and we always have
that either (1) or (3) implies (4). Theorem 19 proves that (2) implies (1).

Since s = r + 3, Proposition 9 proves that (4) implies (2), which completes the equiva-
lencies.

We study now (1)-curves in Mori Dream Spaces with s = r + 3 and we recall the
anticanonical curve class F := (r + 1)h − ∑s

i=1 ei.

Proposition 11. Let r ≥ 3, s = r + 3, and let C be an irreducible curve in Yr
s . Then,

c = [C] ∈ Ar−1 is a numerical (1)-class if and only if C is a (1)-Weyl line or 2|(r + 1) and
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c is in the Weyl orbit of a class of the form c = mF + c′, where m ≤ (r + 1)/4 and c′ = (e; n),
where e = (r + 1)/2 − 2m, ni = 0 for i ≥ r − 1, and e = ∑i ni.

Proof. We first remark that one direction is clear. Certainly, if C is a (1)-Weyl line, we have
the numerical condition. Suppose c has the form mF + c′, as in the statement. If we write
c = (d; m), then d = (r + 1)m + ∑i ni = (r + 1)m + e and mi = m + ni for each i. Hence,

(−K · c) = (r + 1)d − (r − 1)∑
i

mi

= (r + 1)2m + (r + 1)∑
i

ni − (r − 1)((r + 3)m + ∑
i

ni)

= 4m + 2 ∑
i

ni = 4m + 2e = r + 1

as required.
To prove the other direction, we assume we have the numerical condition, and that the

class c is Cremona-reduced with decreasing multiplicities. If d = 1, then the only possibility
is the class h, so we may assume d ≥ 2, and then we must have m1 ≥ 1 as well.

We will prove in this case that c = mF + c′, as in the statement of the proposition. The
condition for a numerical (1)-class is

⟨c, F⟩ = (−K · c) = (r + 1)d − (r − 1)
r+3

∑
i=1

mi = r + 1

which can be written as

(r − 1)(d − 1 −
r+1

∑
i=1

mi) + (d − 1 − (r − 1)mr+2) + (d − 1 − (r − 1)mr+3) = 0. (13)

Since c is Cremona-reduced, we have d ≥ ∑r+1
i=1 mi, which is at least m1 + m2 + (r −

1)mr+2 since the multipliciities decrease. Therefore, in (13), the last two parenthesis are
non-negative and therefore d − 1 − ∑r+1

i=1 mi is non-positive. However, this forces t =

d − ∑r+1
i=1 mi ∈ {0, 1}, since c is Cremona-reduced.

We distinguish two cases:

Case t = 1:
Now (13) gives that all three terms are zero, and hence we must have d = 1 + (r −

1)mr+2 = 1 + (r − 1)mr+3.
We have

0 = t − 1 = d − 1 −
r−1

∑
i=1

mi − (mr + mr+1)

≤ d − 1 − (r − 1)mr+2 − (mr + mr+1) = −(mr + mr+1)

which forces mr = 0, and hence mr+2 = 0 also, so that d = 1, a contradiction.

Case t = 0:
In this case, (13) implies

(
r+1

∑
i=1

mi − (r − 1)mr+2) + (
r+1

∑
i=1

mi − (r − 1)mr+3) = r + 1

which can be reorganized as

r−1

∑
i=1

(2mi − mr+2 − mr+3) + 2mr + 2mr+1 = r + 1. (14)
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Since the mis are decreasing, all the terms in the sum are non-negative and decreasing.
Hence, the last one, 2mr−1 − mr+2 − mr+3, is the smallest. We distinguish three cases:

Case A: 2mr−1 − mr+2 − mr+3 ≥ 2. Now,

r + 1 = 2mr + 2mr+1 +
r−1

∑
i=1

(2mi − mr+2 − mr+3) ≥ 2(r − 1)

which forces r = 3, mr = mr+1 = 0 and 2mi − mr+2 − mr+3 = 2 for all i ≤ r − 1. Since
mr = 0, so are mr+2 and mr+3, and hence we have mi = 1 for all i ≤ r − 1; all other mj = 0.
Now, t = 0 gives d = 2 and we have c = (2; 12, 04)3, which is not a numerical (1)-class.

Case B: 2mr−1 − mr+2 − mr+3 = 1. In this case, the sum in (14) is at least r − 1, so that we
must have 2mr + 2mr+1 ≤ 2. This forces mr+1 = 0, and hence mr+2 = mr+3 = 0 as well.
But then our Case B assumption gives 2mr−1 = 1, an impossibility.

Case C: 2mr−1 − mr+2 − mr+3 = 0. In this case, the decreasing order implies that mr−1 =
mr+2 = mr+3, so in fact mr−1 = mr = mr+1 = mr+2 = mr+3; call this value m. We then
have mi ≥ m for every i, so we may write mi = m + ni for decreasing non-negative integers
ni, with ni = 0 for i ≥ r − 1. Now, (14) becomes

r−2

∑
i=1

ni + 2m = (r + 1)/2

forcing r to be odd.
Since t = 0, we have d = ∑r+1

i=1 mi = (r + 1)m + ∑r−2
i=1 ni. Hence, if we define the class

c′ = (e; n)r with e = ∑r−2
i=1 ni, then we have c = mF + c′, where F is the anticanonical curve

class (r + 1; 1s). This is the other case of the statement.

4.2. The Case s = r + 4

With r + 4 points, a parallel approach works up to P5, at least for the (−1)-curve case.

Proposition 12. Suppose 3 ≤ r ≤ 5 and s = r + 4. Let C be an irreducible curve in Yr
s . Then, [C]

is a numerical (−1)-class if and only if C is a (−1)-Weyl line.

Proof. It suffices to show that if c is a numerical (−1)-class of the form dh−∑i miei with de-
creasing multiplicities representing an irreducible curve with d ≥ 2, then c is not Cremona-
reduced. Assume by contradiction that c is Cremona-reduced; then, Lemma 5 applies and
we have

(r − 1)(mr+2 + mr+3 + mr+4) ≥ (r − 3) + 2
r+1

∑
i=1

mi.

Now, the left-hand side is at most 3(r − 1)mr+1 and the right-hand side is at least
(r − 3) + 2(r + 1)mr+1, so that 3(r − 1)mr+1 ≥ (r − 3) + 2(r + 1)mr+1 or (r − 5)mr+1 ≥
r − 3.

For r = 4, 5, this is an immediate contradiction, since mr+1 ≥ 0. For r = 3, we must
have −3m4 ≥ 0, and hence m4 = 0; then, the original inequality gives 0 ≥ 2(m1 + m2 +
m3 + m4), forcing all multiplicities to be equal to zero, a contradiction.

We cannot extend the above statement for r > 5:

Example 4. Consider P6 with s = 10 points and the class c = 3F = (21; 310)6. This is a
Cremona-reduced numerical (−1)-class, and hence is not a (−1)-Weyl line class.

Remark 3. For s = r + 4, we are in a similar situation: the only (−1)-Weyl lines are the proper
transforms of the lines through two points and the proper transform of the rational normal curve
of degree r through r + 3 of the points. There are (r+4

2 ) such lines and r + 4 RNCs. However, for
r ≥ 6 there are (−1)-curves that are not (−1)-Weyl classes.
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For dimension at most 5 and s = r + 4 points, we have the same result as for s = r + 3,
parallel to Proposition 10:

Proposition 13. Suppose r ≤ 5 and s = r + 4. Let c ∈ Ar−1 be a class with positive degree and
non-negative multiplicities. Then, c is a (−1)-Weyl line class if and only if

⟨c, F⟩ = 3 − r and ⟨c, c⟩ = 3 − 2r.

Proof. The proof parallels that of the previous Proposition 10; it suffices to prove that a
class with a given linear and quadratic invariant is a (−1)-Weyl line. We use the same
notation: let c = (d; m)r be such a class, and write N1 = ∑i mi and N2 = ∑i m2

i as above.
For a fixed degree d, the quantity N1 is again fixed to be N1 = ((r+ 1)d+(r− 3))/(r− 1).

Again, N2 would be minimized if all multiplicities were equal (to m = N1/(r + 4)), so that
N2 ≥ ∑r+4

i=1 m2 = (r + 4)(N1/(r + 4))2 = N2
1 /(r + 4). Therefore,

3 − 2r = d2 − (r − 1)N2 ≤ d2 − (r − 1)N2
1 /(r + 4)

= d2 − r − 1
r + 4

(((r + 1)d + (r − 3))/(r − 1))2

= d2 − 1
(r + 4)(r − 1)

((r + 1)2d2 + 2(r + 1)(r − 3)d + (r − 3)2)

=
1

(r + 4)(r − 1)
(((r + 4)(r − 1)− (r + 1)2)d2 − 2(r + 1)(r − 3)d − (r − 3)2)

=
−1

(r + 4)(r − 1)
((5 − r)d2 + 2(r + 1)(r − 3)d + (r − 3)2).

For r = 2, this gives −1 ≤ −1
6 (3d2 − 6d + 1) or 3d2 − 6d − 5 ≤ 0, which forces d ≤ 2

and leads to the line and the conic.
For r = 3, this gives −3 ≤ −1

14 (2d2) or d2 ≤ 21, giving d ≤ 4. Now, in this case, since
−3 = d2 − 2N2, the degree cannot be even. Hence, d = 1 or d = 3, leading again to the line
or the twisted cubic, which is the RNC.

For r = 4, the inequality is −5 ≤ −1
24 (d

2 + 10d + 1), forcing d ≤ 7. However, the
⟨c, F⟩r−1 value gives us 5d − 3N1 = −1, so that d must be 1 mod 3. If d = 7, then N1 = 12
and −1

24 (d
2 + 10d + 1) = −5, so that the inequalities are equalities, and all multiplicities are

in fact equal to 3/2, which is not possible. Hence, d = 1 or d = 4, and we have the line or
the RNC again.

Finally, when r = 5 the inequality is −7 ≤ −1
36 24d + 4, giving d ≤ 9, and ⟨c, F⟩r−1 = −2

forces d to be odd.
If d = 9, then the equations give N1 = 14 and N2 = 22. Again, for fixed N1, N2 is

minimized by having all multiplicities as equal as possible, and for r + 4 = 9 points we
have that N2 is minimized with multiplicities (25, 14) with sum equal to 14. However, for
this set of multiplicities N2 = 24, and so N2 = 22 is impossible.

If d = 7, then again N1 = 11 and N2 = 14; for this, N1, N2 is minimized with
multiplicities (22, 17), but this gives N2 = 15.

If d = 3, this implies N1 = 5 and N2 = 4, a contradiction since N2 ≥ N1 always.
If d = 5, we have the RNC, and if d = 1 we have the line.

Proposition 14. Suppose r ≤ 5 and s = r + 4. Let c be a Cremona-reduced numerical (0)-
class with non-negative multiplicities. Then, c is either the line class h − e1; r = 3, s = 7, and
c = F = (4; 17); or r = 4, s = 8, and c = 2F = (10; 28)4.

Proof. We start with Lemma 5.
For r = 5 and s = 9, this gives 4 ∑9

i=7 mi ≥ −2 + 2 ∑6
i=1 mi which we can re-write as

(m1 − m7) + (m2 − m7) + (m3 − m8) + (m4 − m8) + (m5 − m9) + (m6 − m9) ≤ 1.
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Hence, at most one of these non-negative differences is one. If all are equal to zero,
then all multiplicities are equal, say, to m; in this case, the numerical condition gives that
6d − 4 · 9m = 2, which is impossible.

Hence, exactly one of these differences is one, all the other five are zero. We cannot
have the second, fourth, or sixth equal to one, since they are at most the first, third, and fifth,
respectively. We conclude that these are zero, which implies that there exists m such that
m1 = m+ 1 and mi = m for i ≥ 2. Now, the numerical condition gives 6d− 4 · (9m+ 1) = 2,
implying that d = 6m + 1. The Cremona-reduced conditions then force m = 0, and we
have the line class h − e1.

For r = 4 and s = 8, we have 3 ∑8
i=6 mi ≥ −2 + 2 ∑5

i=1 mi which we re-write as

m1 + (m1 − m6) + 2(m2 − m6) + 2(m3 − m7) + (m4 − m7) + (m4 − m8) + 2(m5 − m8) ≤ 2.

Since m1 ≥ 1, at most one of the differences here can be positive, and all of the doubled
ones must be zero. Hence, m2 = m6, forcing all mi for i ≥ 2 to be equal, say, to m. This then
reduces to 2m1 − m ≤ 2, leading to having either m1 = m ≤ 2 or m1 = 1 and m = 0.

If all mi are equal to m, then the numerical condition gives 5d − 3 · 8m = 2, so we must
have d = 10 and m = 2, since m ≤ 2. In the other case, we have the line through one point:
h − e1.

For r = 3 and s = 7, we have 2 ∑7
5 mi ≥ −2 + 2 ∑4

1 mi, which we may rewrite as

2m1 + 2(m2 − m5) + 2(m3 − m6) + 2(m4 − m7) ≤ 2

and since m1 is positive, each of the differences above must be zero, and m1 = 1. The two
cases are then when m2 = 0 (giving the line class h − e1) or when m2 = 1 (which gives the
F class).

For r = 2 and s = 6, we have ∑6
4 mi ≥ −2 + 2 ∑3

1 mi, which also leads only to the line
class h − e1.

We note that the exceptional case c = (10; 28) in P4 has ⟨c, c⟩ = 102 − 3 · 8 · 22 = 4, and
the other exceptional case c = (4; 17) in P3 has ⟨c, c⟩ = 42 − 2 · 7 · 12 = 2, both of which are
different from the (0)-Weyl line class values (which are −2 and −1, respectively). Hence,
we have the following.

Corollary 5. Suppose r ≤ 5 and s = r + 4; a Cremona-reduced class c with non-negative
multiplicities is a (0)-Weyl line if and only if ⟨c, c⟩ = 2 − r and ⟨c, F⟩ = 2.

In the case of r + 4 points, for r ≥ 6, it is no longer the case that the two invariants
⟨c, F⟩ and ⟨c, c⟩ pick out the Weyl classes.

Example 5. Consider again the class c = 3F = (21; 310)6 of curves of degree 21 in P6 with ten
points of multiplicity 3. We have ⟨c, F⟩ = 7 · 21 − 5(10 · 3) = −3 and ⟨c, c⟩r−1 = 212 − 5 ∗ 10 ∗
9 = −9, as is the case for the line through two points, but this is not a (−1) Weyl class. In fact, the
class c is Cremona-reduced, as well.

It is also true that there are counterexamples in P3 for a larger number of points. The
class c = (7; 4, 110) has ⟨c, F⟩r−1 = 0 and ⟨c, c⟩r−1 = −3 as a (−1)-Weyl line does; however,
it is not in the Cremona orbit of h − e1 − e2.

4.3. The Proof of Theorem 2 and Conclusions

Using Propositions 10 and 13, we have the following.

Corollary 6. If r ≥ 3 and Y = Yr
s is a Mori Dream Space (i.e., r = 3, 4 and s ≤ r + 4 or r ≥ 5

and s ≤ r + 3), the only classes c ∈ Ar−1(Y) with positive degree and non-negative multiplicities
that satisfy the equations

⟨c, F⟩ = 3 − r and ⟨c, c⟩ = 3 − 2r



Mathematics 2024, 12, 3952 26 of 47

are either the proper transform of a line through two points or the rational normal curve of degree r
through r + 3 points.

Proof of Theorem 2. Assume Y is Y5
9 or is a Mori Dream Space. The first part of the

previous proof applies here as well. For (−1)-curves, the equivalence of conditions (3)
and (2) in Theorem 2 follows again from Corollary 6. If r = 2, the proof of Theorem 2
for the del Pezzo surfaces follows from Theorem 6 and Propositions 6 and 7. In higher
dimensions, r > 2, Proposition 12 proves that (4) implies (2), proving the equivalences
(1), (2), and (4).

Corollary 7. If Y is Mori Dream Space and r ≥ 3 or Y = Y5
9 , then the only (−1)-curves are the

ones described in Example 1.

Theorem 10. Theorem 9 for i = 1 holds if r is even.

Indeed, the equivalence between numerical (1)-classes and a (1)-Weyl line in even
dimensional spaces Yr

r+3 follows from Proposition 11, and this completes the cycle.

Remark 4. Theorem 2 holds for irreducible (0)-curves in Mori Dream cases or Y5
9 , with two

exceptions. The proof follows from Proposition 14; one exception is the anticanonical class F in Y3
7

that contains a (0)-curve that is not a (0)-Weyl line. The only other candidate for a (0)-curve that
is not a (0)-Weyl line in the above hypothesis is r = 4, s = 8, and 2F.

Similarly, Theorem 10 does not hold if r is not even. Indeed, consider i = 1, r = 3, and s = 6;
then, F is a (1)-curve that is not a (1)-Weyl line in Y3

6 (as in Example 6).

Next, the proposition also holds for (0)-curves and vdim(C) = r − 1, with part (3)
including the (0)-curves in F in Y3

7 and 2F in Y4
8 .

Proposition 15.

1. Any (−1)-curve has vdim(C) = 0.
2. If Y is a Mori Dream Space or Y5

9 , the only irreducible curve classes with vdim(C) = 0 are
classes of (−1)-curves and −KY2

8
.

Proof. Part (1) follows from the observation that vdim(C) = (−KY ·C)+ (r−3) (Equation (10))
is stable under the Weyl group action, since the anticanonical divisor is also stable. Part (2)
follows from Theorem 2, since the condition vdim(C) = 0 is equivalent to C being a
(−1)-numerical class or the anticanonical class in Y2

8 .

We ask the following question:

Question 1. Is it true that a smooth, rational, irreducible, non-degenerate curve in Yr
s is rigid if

and only if vdim(C) = 0?

We now have the following for the Mori Dream Space cases.

Proposition 16. A Mori Dream space has finitely many classes of (i)-curves for i ∈ {−1, 0, 1}.

Proof. If i = −1, the statement follows from Theorem 2. Remark 4 implies that (0)-curves
in a Mori Dream Space are either (0)-Weyl lines or F in Y3

7 or 2F in Y4
8 . Assume now that

C is a (1)-curve. If Y is a del Pezzo surface, then a (1)-curve is in the Weyl orbit of a line
and we conclude, since the Weyl group is finite by Corollary 2. If s ≤ r + 3, Proposition 11
implies that a numerical (1)-class is either a (1)-Weyl line or is in the Weyl orbit of the curve
mF + C′, where m and the degree of C′ are bounded above by r+1

2 . Since the Weyl group is
finite, we have finitely many possibilities for a (1)-curve if s ≤ r + 3. If Y = Y4

8 , a numerical
(1)-class satisfies the equality 5d − 3 ∑8

i=1 mi = 5. Suppose the class is Cremona-reduced,
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i.e., d ≥ ∑5
i=1 mi; then, all multiplicities are bounded above by 5, and this implies that the

degree d ≤ 25. We conclude again, since the Weyl group is finite. Similarly, if Y = Y3
7 we

obtain that all multiplicities mi ≤ 2, while the linear invariant gives that d ≤ 8, and we
conclude again via the finiteness of the Weyl group.

Example 6 (The F-class in Y3
8 ). In order to construct examples of (−1)−curves that are not

(−1)− Weyl lines, we study the F-class in Y3
8 . The F-class in Y3

8 represents smooth rational curves
and is also the class of an elliptic curve.

An interesting example of the type of phenomena that can appear is afforded by the F
class in P3 with s = 8, which is the class of quartics passing simply through eight points.
This class is Cremona-reduced and, as we have noted, is invariant under the Weyl group.
It is a numerical (−1)-class: (−K, F) = 0 = 3 − r in this case. It is the class of an effective
curve; the easiest way to see this is to note that if you break up the eight points into pairs,
then the four lines joining the four pairs are a (disconnected, reducible) curve in P3 in
this class.

It is also the class of an irreducible curve of genus one. The linear system of quadrics
in P3 has dimension 9 and the quadrics through the eight points is a pencil P . The base
locus of this pencil, which is the intersection of any two of the quadrics in the pencil, is (in
general) a smooth curve E of degree four and genus one through the eight points. If one
chooses a smooth quadric in the pencil, and considers it as being isomorphic to P1 × P1,
then the genus one curve has bidegree (2, 2).

Since the eight points are general, the general quadrics in the pencil will be smooth and
exactly four members will be cones over smooth conics; none of the four vertices are among
the eight given points. In each case, there are lines on the quadrics: in the smooth case
there are the two rulings, and in the cone case there is the one system of lines through the
vertex. Consider the incidence correspondence I = {(Q, R) | Q ∈ P , R = a ruling on Q}.
We note that I is in 1-1 correspondence with the set of g1

2s on the base curve E; a ruling on
one of the quadrics restricts to E as a g1

2 and inversely a g1
2 gives a quadric in the pencil as

the union of the secants, with the secants forming the ruling.
For a pair (Q, R) ∈ I , if Q is smooth, we may consider the linear system 3R + R′,

where R′ is the other ruling; this system is of bidegree (3, 1) and has dimension 7. Hence,
there is a unique member C ∈ 3R + R′ passing through the first seven of the given original
base points{pi}. We ask that, as we vary Q in the pencil, this curve C pass also through the
last (eighth) point.

Note that 3R + R′ ≡ 2R + H, where H is the hyperplane class on Q, and that these
systems therefore restrict to 2g1

2 + H|E on the genus one curve E. The entire construction
depends on the choice of the g1

2 on E, and we therefore ask how many g1
2s are needed such

that |2g1
2 + H|E − (∑7

i=1 pi)| contains the point p8.
We may always write a g1

2 as p8 + p for a variable point p ∈ E. This condition is then
that 2p + 2p8 + H|E − (∑7

i=1 pi)) = p8 in the Jacobian of E; there are four such points p
of course (any solution plus the two-torsion points). This gives four curves C of bidegree
(1, 3) on a quadric through all eight points. Each of these is a smooth rational curve, and is
indeed a (−1)-curve in Y3

8 with class F. (The normal bundle is O(−1)⊕O(−1) using the
results of [28]).

Example 7 (F-curves). The moduli stack of n-pointed stable curves of genus g, Mg,n, for 2g −
2 + n > 0 has a stratification given by topological type; the 1-dimensional strata are also called
F-curves.

The question of describing the ample and the effective cones of Mg goes back to Mumford.
The F-conjecture of Fulton states that for the moduli spaces M0,n (the moduli spaces of rational

pointed curves), their Mori cone of curves is polyhedral, generated by the F-curves; this was proved
for n ≤ 7 by Hu and Keel.
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It is easy to check, via our theory of curves developed in this paper, that the F-curves in M0,n
are movable for n ≥ 9, sweeping out subvarieties of M0,n of dimension at least 2. A counterexample
to the F-conjecture would have to be a rigid (non-movable) curve; we would expect that such a curve,
if it exists, would be a (−1)-curve. Hence, finding such (−1)-curves in M0,n would be a first step
in disproving the F-conjecture, and would be of great interest.

5. Nine Points in P4

We will prove that, for the case of nine points in P4, the orbit of a line through two of
the points is infinite.

We will use the notation of (d; m1, m2, . . . , m9) to denote the class of a curve of de-
gree d with multiplicity mi at the point pi. The line through two points has the class
(1; 0, 0, 0, 0, 0, 0, 0, 1, 1). The approach will be to take this class and repeatedly apply the Cre-
mona transformation using the five points with the lowest multiplicity. If those five points are
the first five, then we have seen that ϕ(d; m1, m2, . . . , m9) = (d′; m′

1, m′
2, . . . , m′

9) where

d′ = d + 3t; m′
i = mi + t for i ≤ 5; m′

i = mi for i ≥ 6 (15)

where t = d − m1 − m2 − m3 − m4 − m5. We will analyze the process of applying the Cre-
mona to the five lowest multiplicity points, and then re-ordering so that the multiplicities
are in ascending order, in order to simplify the notation.

Lemma 6. Suppose that the class C = (d; m1, m2, . . . , m9) satisfies the following:

(a) mi ≤ mi+1 for every i = 1, . . . , 8;
(b) d > m3 + m4 + m7 + m8 + m9.

Then, the class (e; n1, n2, . . . , n9), which is the (re-ordered) Cremona image C′ = ϕ(C) of C
based at the first five points, equal to (using the notation of (15))

(d′; m6, m7, m8, m9, m1 + t, m2 + t, m3 + t, m4 + t, m5 + t), i.e., (16)

e = d′; n1 = m6; n2 = m7; n3 = m8; n4 = m9; (17)

n5 = m1 + t; n6 = m2 + t; n7 = m3 + t; n8 = m4 + t; n9 = m5 + t (18)

also satisfies (a) and (b) above. Moreover, e > d.

Proof. First, we claim that the multiplicities, in this order, are ascending. It is clear that
n1 ≤ n2 ≤ n3 ≤ n4 and n5 ≤ n6 ≤ n7 ≤ n8 ≤ n9 using (a). We need only check that n4 ≤ n5,
therefore. This is equivalent to having m9 ≤ m1 + t or d ≥ m2 + m3 + m4 + m5 + m9. This
is implied by (b) and the ascending order of the mis. Therefore, we have the multiplicities
in the correct (ascending) order, and so (a) is satisfied for C′.

We next check (b) for C′: this is

e = d + 3t > n3 + n4 + n7 + n8 + n9 = m8 + m9 + (m3 + t) + (m4 + t) + (m5 + t)

which is equivalent to having d > m3 + m4 + m5 + m8 + m9. This follows from (b) for C,
since m7 ≥ m5.

Finally, e > d if and only if t > 0, which follows from (b), since m1 ≤ m9.

Corollary 8. With nine or more points in P4, the orbit of a line through two points is infinite.

Proof. Using the notation above, we start with the line class L1 = (1; 0, 0, 0, 0, 0, 0, 0, 1, 1)
and iterate, and set Li+1 = ϕ(Li). We cannot immediately apply the Lemma above be-
cause the inequality (b) is not satisfied for L1. We have L2 = (4; 0, 0, 1, 1, 1, 1, 1, 1, 1, ),
L3 = (7; 1, 1, 1, 1, 1, 1, 2, 2, 2), L4 = (13; 1, 2, 2, 2, 3, 3, 3, 3, 3), L5 = (22; 3, 3, 3, 3, 4, 5, 5, 5, 6),
and L6 = (40; 5, 5, 5, 6, 9, 9, 9, 10). The class L6 does satisfy the conditions of the Lemma,
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and therefore so does Li for all i ≥ 6. Since the degrees strictly increase, they increase
without bound and the orbit is infinite.

6. Infinity of (i)-Curves

In this section, we will prove the following.

Theorem 11. There are finitely many classes of (0)-curves or equivalently finitely many classes of
(1)-curves if and only if Yr

s is a Mori Dream Space.

The proof is presented after Corollary 9 in the first subsection below.
Although Y5

9 is not a Mori Dream Space, we can determine all (−1)- and (0)-curves.

Proposition 17.

1. In Y5
9 , all (0)-curves are (0)-Weyl lines (or have numerical (0)-classes).

2. In Y5
9 , the only (−1)-curves are ones in Example 1 (i.e., the proper transforms of lines through

two points and the proper transform of the rational normal curves through n + 3 points).

Proof. Indeed, Theorem 2 implies that there are finitely many (−1)-curves; therefore, the
notion of (−1)-curves does not determine the finite generation of the Cox Ring of Y.
Moreover, Proposition 14 implies that all Cremona-reduced (0)-curves are lines through
two points. Therefore, every (0)-curve is a (0)-Weyl line (and there are infinitely many),
see Remark 4.

Question 2. Does Theorem 11 hold for other varieties?

6.1. Infinity of Movable Curves in Pr

In this subsection, we analyze (i)-Weyl lines in Yr
s , which is not a Mori Dream Space;

namely, in Section 6.1 we begin with an analysis of (1)-Weyl lines, which are the Cremona
images of the general line h in Pr, and in Section 6.2 we study rigid curves, i = −1.

We will analyze the process of applying the Cremona to the r + 1 lowest multiplicity
points, and then re-ordering so that the multiplicities are in ascending order, in order to
simplify the notation. We begin with the s = r + 4 case. It is more useful for this section to
place the multiplicities in ascending order, and we will systematically perform that here.

Lemma 7. Let L = (d; m1 ≤ m2 ≤ . . . ≤ mr+4) be a curve class in Ar−1(Yr
r+4) with positive

degree and non-negative multiplicities in nondecreasing order. Let I ⊂ {1, . . . , r + 4} have size
r + 1, so that there are three indices missing; assume that those indices are 1, k, ℓ with 4 ≤ k and
k + 3 ≤ ℓ ≤ r + 2. (This implies in particular that 1 /∈ I; 2, 3 ∈ I; mr+3, mr+4 ∈ I; and r ≥ 5).
Assume that

d > ∑
i∈I

mi, or d = ∑
i∈I

mi and mr+4 > m1. (19)

Then the Cremona image ϕ(L) (where ϕ is based at the first r + 1 points, those with the lowest
multiplicities) has the form ϕ(L) = (d′; {m′

i}) (where the m′
i are also placed in increasing order)

and these parameters also satisfy (19). Moreover, in this case d′ > d.

Proof. We define t = d − ∑r+1
i=1 mi, and note that the degree of ϕ(L) is then d′ = d + (r − 1)t

and the multiplicities are

m1 + t, m2 + t, . . . , mr+1 + t, mr+2, mr+3, mr+4

in some order, by Proposition 2a.
We first claim that mr+4 ≤ m1 + t. This is equivalent to having d ≥ ∑r+1

i=2 mi + mr+4,
which is implied by (19) and the assumptions that 1 /∈ I and mr+4 ∈ I.
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Since this is true, the re-ordering of the multiplicities of ϕ(L) to be in increasing
order gives

m′
1 = mr+2, m′

2 = mr+3, m′
3 = mr+4, and for 4 ≤ i ≤ r + 4, m′

i = mi−3 + t.

Therefore (19) for ϕ(L), which is d′ > ( resp. ≥) ∑i∈I m′
i, is equivalent to

d + (r − 1)t > ( resp. ≥) mr+3 + mr+4 + ∑
i∈I,i≥4

(mi−3 + t)

since 1 /∈ I and 2, 3 ∈ I. Note that since |I| = r + 1, the sum above contains r − 1 indices;
hence, we may subtract (r − 1)t from both sides of this inequality to obtain

d > ( resp. ≥) ∑
i∈I,i≥4

mi−3 + mr+3 + mr+4.

To prove this, it suffices to show that the right side of (19) is at least the right side of
the above, i.e., that

∑
i∈I

mi ≥ ∑
i∈I,i≥4

mi−3 + mr+3 + mr+4.

Now, the sum of r + 1 multiplicities on the right side of this is exactly that of the
indices in the set I′ = {1, . . . , r + 4} − {k − 3, ℓ− 3, r + 2}. If we denote the j’th index in I
by I(j), and similarly for I′, it will suffice to show that I(j) ≥ I′(j) for each j.

The set of indices in I increases by one at the 1, k, ℓ points; that of I′ increases at the
k − 3, ℓ− 3, r + 2 points. Since 1 ≤ k − 3, the first increase in I is no later than that in I′;
since ℓ ≤ r + 2, the third increase in I is no later than that in I′. The only failure then would
be if the second increase in I would be later than the second in I′, and that will only happen
if ℓ− 3 < k. This is forbidden by the assumption that k + 3 ≤ ℓ.

This proves that (19) also holds for ϕ(L).
To finish and show d′ > d, we must show that t > 0, or that d > ∑r+1

i=1 mi. This follows
immediately from (19) if the inequality is strict; if not, but mr+4 > m1, we obtain the result
since r + 4 ∈ I. Finally, we must show that if the inequality (of the parameters for ϕ(L)
and hence also for L) is an equality, then m′

r+4 > m′
1, i.e., that mr+1 + t > mr+2; this is

equivalent to d > ∑r
i=1 mi + mr+2. The indices in I dominate those in this sum, and so

the only way this could fail is if we have equality here, and all mjs are equal. This is a
contradiction, since mr+4 > m1.

Lemma 8. Assume r ≥ 5. Let L = (d; m1 ≤ m2 ≤ . . . ≤ mr+4) be a curve class in Ar−1 with
positive degree and non-negative multiplicities. Assume that

d > m2 + m3 + m5 + m6 +
r+4

∑
i=8

mi. (20)

Then the Cremona image ϕ(L) (where ϕ is based at the first r + 1 points, those with the lowest
multiplicities) has the form ϕ(L) = (d′; {m′

i}) (where the m′
i are also placed in increasing order)

and these parameters also satisfy (20). Moreover, in this case d′ > d.

Proof. We define t = d − ∑r+1
i=1 mi, and note that the degree of ϕ(L) is then d′ = d + (r − 1)t

and the multiplicities are

m1 + t, m2 + t, . . . , mr+1 + t, mr+2, mr+3, mr+4

in some order, by Proposition 2a.
We first claim that mr+4 ≤ m1 + t. This is equivalent to having d ≥ ∑r+1

i=2 mi + mr+4,
which is implied by (20) since the multiplicities are in increasing order.
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Since this is true, the re-ordering of the multiplicities of ϕ(L) to be in increasing
order gives

m′
1 = mr+2, m′

2 = mr+3, m′
3 = mr+4, and for 4 ≤ i ≤ r + 4, m′

i = mi−3 + t.

Therefore, (20) for ϕ(L), which is d′ > m′
2 + m′

3 + m′
5 + m′

6 + ∑r+4
i=8 m′

i, is equivalent to

d + (r − 1)t > mr+3 + mr+4 + (m2 + t) + (m3 + t) +
r+1

∑
i=5

(mi + t).

Subtracting (r − 1)t from both sides, we see that this is equivalent to

d > m2 + m3 +
r+1

∑
i=5

mi + mr+3 + mr+4.

In order to prove this, it therefore suffices to show that the right side of (20) is at least
the right side of this, i.e., that

m2 + m3 + m5 + m6 +
r+4

∑
i=8

mi ≥ m2 + m3 +
r+1

∑
i=5

mi + mr+3 + mr+4.

For r = 5, these are exactly the same set of multiplicities, and so the inequality is an
equality, and holds. For r ≥ 6, subtracting m2 + m3 + m5 + m6 + mr+3 + mr+4 from both
sides gives

r+2

∑
i=8

mi ≥
r+1

∑
i=7

mi;

this inequality is true since the mis are in increasing order.
This proves that the inequality (20) is preserved under the Cremona transformation,

as claimed.
To show that d′ > d, we must prove that t > 0. This is equivalent to d > ∑r+1

i=1 mi,
which immediately follows from (20).

In case of r = 3, 4, a completely parallel lemma can be proved, but we need to have
one more point (s = r + 5). In particular, using the same notation, if

d > m3 + m4 +
r+5

∑
i=7

mi, or d = m3 + m4 +
r+5

∑
i=7

mi and mr+5 > m1 (21)

then we have the same conclusion: the Cremona image ϕ(L) has parameters also satisfying
(21), and the degree increases. We leave it to the reader to check the details, which are
parallel in all respects to those of Lemma 7.

For r = 2 and s = 9, the recursive argument requires the inequality

d > m3 + m6 + m9, or d = m3 + m6 + m9 and m9 > m1 (22)

and again the same argument goes through, with the same conclusion.

Corollary 9. If r ≥ 5 and s ≥ r + 4, r ≥ 3 and s ≥ r + 5, or r = 2 and s ≥ 9, there are infinitely
many (1)-Weyl line classes and (0)-Weyl line classes.

Proof. For r ≥ 5, it suffices to prove this for s = r + 4. For the (1)-Weyl line classes, apply
Lemma 7 repeatedly starting with L = h, the general line class. Since the degrees increase
without bound (using the strict inequality of (19)), we have the result. For the (0)-Weyl
line classes, we apply the same lemma starting with L = h − e1, which, using the (d; m)
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notation, is given by (1; 0r+3, 1). Here, we do not have the strict inequality in (19), but we
do have mr+4 = 1 > m1 = 0; the result follows.

For r = 3, 4, it suffices to prove this for s = r + 5; the same argument holds, this time
using the recursive assumption of (21).

Finally, for r = 2, it suffices to prove this for s = 9, and again this is carried out via the
recursion supplied by (22).

We can now prove the statement at the beginning of the section.

Proof of Theorem 11. One direction follows from Proposition 16. The other direction
follows from Corollary 9.

One can also be very explicit about the recursion that produces the infinite family of
curves in these cases with low r. For example, for r = 3 and s = 8, one can easily see (by
induction) that the sequence of (0)-Weyl line classes ϕi(h − e8) has the form d = i2 + i + 1,
and multiplicities ((k2)4, (k2 + k)3, (k2 + k+ 1)1) if i = 2k and ((k2 + k)3, (k2 + k+ 1)1, (k2 +
2k + 1)4) if i = 2k + 1.

For r = 2 and s = 9, the sequence of (0)-Weyl line classes ϕi(h − e9) has the form
d = 1 + i(i + 1)/2, and multiplicities ((k + 3k(k − 1)/2)3, (2k + 3k(k − 1)/2)3, (3k(k +
1)/2)2, (1 + 3k(k + 1)/2)1) if i = 3k; ((3k(k + 1)/2)2, (1 + 3k(k + 1)/2)1, ((k + 1)(1 +
3k/2))3, (2k + 3k(k − 1)/2)3) if i = 3k + 1; and ((3k(k + 1)/2)2, (1 + 3k(k + 1)/2)1, ((k +
1)(1 + 3k/2))3, ((k + 1)(2 + 3k/2))3) if i = 3k + 2.

We now observe that the results of Section 4 imply that, for the Mori Dream Spaces
Yr

s (r = 2, s ≤ 8; r = 3, 4, s ≤ r + 4; r ≥ 5, s ≤ r + 3), there are only finitely many numerical
(1)-classes and numerical (0)-classes. Hence, this gives a criterion for these spaces Yr

s being
Mori Dream Spaces.

Theorem 12. The space Yr
s is a Mori Dream Space if and only if there are finitely many numerical

(1)-classes in Ar−1, and if and only if there are finitely many numerical (0)-classes in Ar−1.

The following Lemma can be used to generate infinitely many (0)-Weyl classes in Ar−1.

Lemma 9. Assume r ≥ 6. Let L = (d; m1 ≤ m2 ≤ . . . ≤ mr+4) be a curve class in Ar−1 with
positive degree and non-negative multiplicities. Assume that

d > m2 + m3 + m4 +
r+1

∑
i=6

mi + mr+3 + mr+4. (23)

Then the Cremona image ϕ(L) (where ϕ is based at the first r + 1 points, those with the lowest
multiplicities) has the form ϕ(L) = (d′; {m′

i}) (where the m′
i are also placed in increasing order)

and these parameters also satisfy (23). Moreover, in this case d′ > d.

Proof. We define t = d − ∑r+1
i=1 mi, and note that the degree of ϕ(L) is then d′ = d + (r − 1)t

and the multiplicities are

m1 + t, m2 + t, . . . , mr+1 + t, mr+2, mr+3, mr+4

in some order, by Proposition 2a.
We first claim that mr+4 ≤ m1 + t. This is equivalent to having d ≥ ∑r+1

i=2 mi + mr+4,
which is implied by (23) since the multiplicities are in increasing order.

Since this is true, the re-ordering of the multiplicities of ϕ(L) to be in increasing
order gives

m′
1 = mr+2, m′

2 = mr+3, m′
3 = mr+4, and for 4 ≤ i ≤ r + 4, m′

i = mi−3 + t.
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Therefore, (23) for ϕ(L), which is d′ > m′
2 + m′

3 + m′
4 + ∑r+1

i=6 m′
i + m′

r+3 + mr+4′ , is
equivalent to

d + (r − 1)t > mr+3 + mr+4 + (m1 + t) +
r−2

∑
i=3

(mi + t) + (mr + t) + (mr+1 + t).

Subtracting (r − 1)t from both sides, we see that this is equivalent to

d > m1 +
r−2

∑
i=3

mi + mr + mr+1 + mr+3 + mr+4.

In order to prove this, it therefore suffices to show that the right side of (23) is at least
the right side of this, i.e., that

m2 + m3 + m4 +
r+1

∑
i=6

mi + mr+3 + mr+4 ≥ m1 +
r−2

∑
i=3

mi + mr + mr+1 + mr+3 + mr+4.

For r = 5, this is

m2 + m3 + m4 + m6 + m8 + m9 ≥ m1 + m3 + m5 + m6 + m8 + m9

which is equivalent to m2 + m4 ≥ m1 + m5, which may not hold. However, if r ≥ 6,
subtracting the common terms from both sides, we see that this is equivalent to

m2 + mr−1 ≥ m1 + m5

which is true since the mis are in increasing order.
This proves that the inequality (23) is preserved under the Cremona transformation,

as claimed.
To show that d′ > d, we must prove that t > 0. This is equivalent to d > ∑r+1

i=1 mi,
which immediately follows from (23).

We make an additional observation here, concerning these infinite series of (0)- and
(1)-Weyl classes. Each imposes a condition on divisors to be effective: for any such class c,
it is a necessary condition for D to be effective that (D · c) ≥ 0. We note below that these
conditions are independent.

Proposition 18. For the infinite series {ck} of (0)-Weyl classes constructed above, we have that
ck+1 is not in the convex hull of {cj}j≤k for all k.

Proof. We argue by contradiction: suppose that ck+1 = ∑k
j=1 ajcj for non-negative real

numbers aj. Since each class cj is an (0)-Weyl class, we have that ⟨cj, F⟩ = 2 for every j;
applying this to ck+1 and dividing by 2 gives that 1 = ∑k

j=1 aj. This would then imply that

deg(ck+1) = ∑k
j=1 aj deg(cj). However, this is not possible, since the degrees of the classes

cj increase monotonically.

We remark that the same proof applies for (1)-Weyl classes unless ⟨h, F⟩ = 0, which
only happens if r = 3.

6.2. Infinity of Rigid Curves in Pr

In this section, we discuss the question of an infinite number of (−1)-curves in the
sense of Kontsevich [3], in Yr

s , where s ≥ r + 5 via Corollary 10. For r = 3, 4, the Weyl
group with r + 4 = 7, 8 points is finite, and so there are only finitely many (−1)-Weyl lines.
However, we can prove a similar statement for r + 5 (or more) points.
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Lemma 10. Assume r ≥ 3. Let L = (d; m1 ≤ m1 ≤ . . . ≤ mr+5) be a curve class in Ar−1(Yr
r+5)

with positive degree and non-negative multiplicities. Assume that

d > m3 + m4 +
r+5

∑
i=7

mi. (24)

Then the Cremona image ϕ(L) (where ϕ is based at the first r + 1 points, those with the lowest
multiplicities) has the form ϕ(L) = (d′; {m′

i}) (where the m′
i are also placed in increasing order)

and these parameters also satisfy (24). Moreover, in this case d′ > d.

Lemma 11. Suppose that the class c = (d; m1, m2, . . . , mr+5) satisfies the following:

(a) mi ≤ mi+1 for every i = 1, . . . , r + 4;
(b) d > m3 + m4 + m7 + m8 + · · ·mr+5.

Then the class (e; n1, n2, . . . , nr+5), which is the (re-ordered) Cremona image c′ = ϕ(c) of c
based at the first r + 1 points, is equal to

(e; mr+2, mr+3, mr+4, mr+5, m1 + t, m2 + t, . . . , mr+1 + t), i.e.,

n1 = mr+2; n2 = mr+3; n3 = mr+4; n4 = mr+5; nj = mj−4 + t for 5 ≤ j ≤ r + 5

where t = d − m1 − m2 − · · · − mr+1 and e = d + (r − 1)t. In addition, c′ also satisfies (a) and
(b) above, and e > d.

Proof. We note that (24) implies that

d > mi1 + mi2 + . . . + mir+1 if i1 ≤ 3, i2 ≤ 4, and ij ≤ j + 4 for 3 ≤ j ≤ r + 1. (25)

We again define t = d−∑r+1
i=1 mi, and note that the degree of ϕ(L) is then d′ = d + (r − 1)t

and the multiplicities are

m1 + t, m2 + t, . . . , mr+1 + t, mr+2, mr+3, mr+4, mr+5

in some order, by Proposition 2a.
We claim that mr+5 ≤ m1 + t. This is equivalent to having d ≥ ∑r+1

i=2 mi + mr+5, which
is implied by (25).

Since this is true, the re-ordering of the multiplicities of ϕ(L) to be in increasing
order gives

m′
1 = mr+2, m′

2 = mr+3, m′
3 = mr+4, m′

4 = mr+5, and for 5 ≤ i ≤ r + 5, m′
i = mi−4 + t.

We next check (24) for ϕ(L): this is d′ > m′
3 +m′

4 +m′
7 + · · ·+m′

r+5 which is equivalent to

d + (r − 1)t > mr+4 + mr+5 + (m3 + t) + · · ·+ (mr+1 + t)

= m3 + . . . + mr+1 + mr+4 + mr+5 + (r − 1)t

which is equivalent to having d > m3 + . . . + mr+1 + mr+4 + mr+5. This follows from (25)
if r ≥ 3.

Finally, d′ > d if and only if t > 0, which also follows from (25).

We will now apply Lemma 10 to (−1)-Weyl lines, giving a different perspective on
the topic from Corollary 11.

Corollary 10. For r ≥ 3, with r + 5 or more points in Pr, the orbit of the proper transform of a line
through two points is infinite. Hence, there is an infinite number of (−1)-Weyl lines and numerical
(−1)-classes.
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Proof. We will use exponents to denote repeated multiplicities. Using the notation above,
we start with the line class L1 = (1; 0r+3, 12) and iterate, and set Li+1 = ϕ(Li). We
cannot immediately apply the Lemma above because the inequality of the Lemma is not
satisfied for L1. We have t = 1, so L2 = (r; 02, 1r+3); this also does not satisfy (24) of the
Lemma, so we continue, noting that t = 1 again. Hence, L3 = (2r − 1; 12, 2r−1, 14) =
(2r − 1; 16, 2r−1); again, the inequality fails, and now t = 3. Continuing, if r ≥ 5 we have
L4 = (5r − 4; 46, 5r−5, 24) = (5r − 4; 24, 46, 5r−5) and this does satisfy the inequality; hence,
so does Li for all i ≥ 4. Since the degrees strictly increase, they increase without bound and
the orbit is infinite.

If r = 4, then L4 = (13; 1, 2, 2, 2, 3, 3, 3, 3, 3), L5 = (22; 3, 3, 3, 3, 4, 5, 5, 5, 6), and
L6 = (40; 5, 5, 5, 6, 9, 9, 9, 10). The class L6 does satisfy the conditions of the lemma, and
therefore so does Li for all i ≥ 6. Since the degrees strictly increase, they increase without
bound and the orbit is again infinite.

For r = 3, the Lemma is not useful; the inequality is never satisfied. The reader
can check, though, that if we write i = 2j + e with e ∈ {0, 1}, then Li = (2i − 1; (j + e −
1)2, j4, (j + e)2) (for each Li, we have h = 2i − 1 − 2(j + e − 1)− 2j = 1), which also gives
an infinite set.

We remark that the infinity of (−1)-Weyl lines does not directly follow from the fact
that the Weyl group is infinite: Y5

9 is not a MDS and has an infinite Weyl group but has
finitely many (−1)-curves, so there is a subtlety here.

6.3. Summary of Results in Sections 4 and 6

Case of (−1)-curves: numerical (−1)-classes: ⟨c, F⟩ = 3− r; (−1)-Weyl line: ⟨c, c⟩ = 3− 2r.

1. For Y2
s : if C is irreducible, then C is a (−1)-curve ⇐⇒ C is a (−1)-Weyl line

(Proposition 6).
2. For Y2

s , s ≤ 8: c is represented by a (−1)-curve ⇐⇒ (c, c) = (c, K) = −1 (Proposition 7).
3. We note that if c is a numerical (−1)-class in Y2

s , then either c is a (−1)-Weyl line or
s = 8 and c = −K.

4. For Yr
r+3: if C is irreducible, then C is a (−1)-curve ⇐⇒ C is a (−1)-Weyl line ⇐⇒

⟨C, F⟩ = 3 − r (Theorem 9).
5. For Yr

r+4, r ≤ 5: if C is irreducible, then C is a (−1)-curve ⇐⇒ C is a (−1)-Weyl line
⇐⇒ ⟨C, F⟩ = 3 − r (Proposition 12).

6. For Yr
r+3, r ≥ 2: a class c with positive degree and multiplicities is a (−1)-Weyl class

⇐⇒ ⟨c, F⟩ = 3 − r and ⟨c, c⟩ = 3 − 2r (Proposition 10).
7. For Yr

r+4, r ≤ 5: a class c with positive degree and multiplicities is a (−1)-Weyl class
⇐⇒ ⟨c, F⟩ = 3 − r and ⟨c, c⟩ = 3 − 2r (Proposition 13).

8. If Yr
s is a Mori Dream Space or Y5

9 , the only (−1)-curves are the ones in Example 1.
9. If r ≥ r + 5 then Yr

s has infinitely many (−1)-curves.

Case of (0)-curves: numerical (0)-classes: ⟨c, F⟩ = 2; (0)-Weyl line: ⟨c, c⟩ = 2 − r.

10. For Y2
s : if C is irreducible, then C is a (0)-curve ⇐⇒ C is a (0)-Weyl line (Proposition 6).

11. For Y2
s , s ≤ 8: c is represented by a (0)-curve ⇐⇒ ⟨c, c⟩ = 0 and ⟨c, K⟩ = −2

(Proposition 7).
12. For Yr

r+3: if C is irreducible, then C is a (0)-curve ⇐⇒ C is a (0)-Weyl line ⇐⇒
⟨C, F⟩ = 2 (Proposition 9).

13. For Yr
r+4, r ≤ 5: if c is Cremona-reduced and ⟨c, F⟩ = 2, then c = h − e1, (in the case

Y3
7 ) c = F, or (in the case Y4

8 ) c = 2F (Proposition 14).
14. For Yr

r+4, r ≤ 5: a curve C whose class c is Cremona-reduced with non-negative multi-
plicities is a (0)-Weyl line if and only if ⟨c, c⟩ = 2− r and ⟨c, F⟩ = 2 (Corollary 5).

15. If Yr
s is a Mori Dream Space, then the only (0)-curves are the ones in Example 1

together with (0)-curves in the anticanonical curve class F in Y3
7 and 2F in Y4

8 .
16. Yr

s is a Mori Dream Space if and only if it has finitely many classes of (0)-curves.
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Case of (1)-curves: numerical (1)-classes: ⟨c, F⟩ = r + 1; (1)-Weyl line: ⟨c, c⟩ = 1.

17. For Y2
s : if C is irreducible, then C is a (1)-curve ⇐⇒ C is a (1)-Weyl line (Proposition 6).

18. For Y2
s , s ≤ 8: there is a (1)-curve with class c ⇐⇒ (c, c) = 1 and (c,−K) = 3

(Proposition 7).
19. For Yr

r+3: if C is an irreducible curve with class c, then ⟨c, F⟩ = r + 1 ⇐⇒ C is a
(1)-Weyl line or 2|r + 1 and c is in the Weyl orbit of a class of the form c = mF + c′,
where m ≤ (r + 1)/4 and c′ = (e; n), where e = (r + 1)/2 − 2m, ni = 0 for i ≥ r − 1,
and e = ∑i ni (Proposition 11).

20. Yr
s is a Mori Dream Space if and only if it has finitely many classes of (1)-curves.

7. Applications

A movable curve in Yr
s is a curve that moves in a large enough family so that a general

point is contained in at least one member of the family.
In Section 7.1, we give applications of the theory of movable curves to the faces of

the effective cone of divisors, while in Section 7.2 we give applications of the theory of
rigid curves to the dimensionality problems of linear systems with multiple points in Pr, to
resolutions of singularities, and we conclude with some examples of vanishing theorems.
The most important results of this section are contained in Theorem 13 (presented directly
below) and Theorems 15 and 16, which prove Theorem 3. Theorem 15 gives a one-to-one
correspondence between faces of this cone and the collection of (0)- and (1)-Weyl lines.
More precisely, a divisor D ∈ Pic(Yr

r+3) is effective if and only if D · C ≥ 0 for every curve
C that is a (0)- or a (1)-Weyl line on Y. In general, if Y is not a Mori Dream Space (arbitrary
s), then Theorem 16 implies that (0)- and (1)-Weyl lines define an infinite set of conditions
for the effectivity of a divisor.

We now present the proof of Conjecture 1 for i = 0, 1, which we will use later.

Proposition 19. Conjecture 1 is true for i = 0 and i = 1: for all r and s, every (i)-Weyl line is an
(i)-curve.

Proof. The proof of (a) is relatively straightforward after we make the following observa-
tion. First, the statement is true for the actual line through 1 or 0 points (the initial case of a
(0)-Weyl line or a (1)-Weyl line): the normal bundle of a line is a direct sum of O(1)s and,
upon blowing up, the normal bundle is twisted by O(−1).

The argument proceeds by induction on the number of standard Cremona transforma-
tions required to arrive at the given (i)-Weyl line. When that number is zero, we have the
initial case above. When that number is one, the curve is always a rational normal curve,
and has the expected balanced normal bundle too.

If C is an (i)-Weyl line that is obtained by applying k standard Cremona transforma-
tions to a line, then we may write C = ϕ(C′), where C′ is obtained by applying k − 1 such
transformations to a line, and ϕ is a standard Cremona transformation. By induction, C′

will be an (i)-curve in Yr
s .

The standard Cremona transformation ϕ on Yr
s , as explained in Section 2.2, is factored

by systematically blowing up and down the proper transforms of the linear subspaces of
codimension at least two spanned by subsets of the r + 1 initial base points. Hence, if these
proper transforms are disjoint from the curve C′, the curve C will be isomorphic to C′, and
will have the same normal bundle, proving that C is also an (i)-curve in the transformed Yr

s .
It suffices to show that C′ is disjoint from the proper transforms of the codimension-two
subspaces, since these contain the others.

Let ψ be the composition of standard Cremona transformations that take C′ back
to a line. To show that C′ is disjoint from the finite number of proper transforms of the
codimension-two subspaces {Lα} in question, it suffices to show that ψ(C′) is disjoint from
the transforms ψ(Lα), which are a finite number of codimension-two subvarieties in Yr

s .
This is obvious for i = 1: the line ψ(C′) is a general line, and can be chosen to be

disjoint from any finite set of codimension-two subvarieties. For i = 0, the line ψ(C′) is a
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line through one of the s points, but is otherwise general; in this case, a simple dimension
count shows that the general member of the (r − 1)-dimensional family of such lines can
be chosen to be disjoint from the finite set of codimension-two subvarieties as well.

Corollary 11. For r ≥ 3 and s ≥ r + 6, or r ≥ 5 and s ≥ r + 5, there are infinitely many
(−1)-curves in Yr

s .

Proof. We know from the above that there are infinitely many (0)-Weyl line classes in
these cases, and using Proposition 19, we see that these are all (0)-curves. By imposing an
additional point of multiplicity one, we will create infinitely many (−1)-Weyl line classes,
all of which are (−1)-curves.

The following Theorem 13 was first proved by Mukai in [25], using the infinity of
(−1)-Weyl divisors. In this section, we will prove this result using the theory of movable
curves that we introduced in this paper.

Theorem 13. If F2 = ⟨F, F⟩ ≤ 0, (i.e., r = 2 and s ≥ 9; r = 3, 4 and s ≥ r + 5; or r ≥ 5 and
s ≥ r + 4) then Yr

s is not a Mori Dream Space.

Proof. If F2 ≤ 0, Corollary 9 implies that there are infinitely many classes of (0)-Weyl
lines. Each such curve class gives a facet of the cone of effective divisors of Yr

s (see
Theorem 16). Effective cone facets given by (0)-classes are independent, via Proposition 18.
We conclude that Y can not be a Mori Dream Space because its effective cone is not rational
polyhedral.

Question 3 asks whether the extremal rays of the cone of movable curves in all Mori
Dream Spaces Yr

s are (0)-Weyl lines and (1)-Weyl lines.

Remark 5. In Yr
r+3, Theorem 9 reveals that (0)-curves are (0)-Weyl lines and in even dimensions

and Theorem 10 shows that (1)-curves are (1)-Weyl lines. Remark 4 shows that the F-class in
Y3

6 contains a (1)-curve that is not (1)-Weyl line. However, this (1)-curve is not an extremal ray
because it is the sum of two (0)-Weyl lines in Example 1.

7.1. Effective Cone of Divisors

In this section, we discuss the theory of movable curves and applications to the cone
of effective divisors when s ≤ r + 3. There is a vast literature studying the geometry of the
space Yr

r+3, and for a more proper list of citations we will refer you to [12] (Section 0). The
chamber decomposition of the effective divisorial cone of Yr

r+3 is exposed in [29].
Also, Mukai proves that Y4

8 is isomorphic to the moduli space S of rank two torsion-
free sheaves G, with prescribed Chern classes c1(G) = −KY and c2(G) = 2. In [26], the
authors use the work of Mukai and Gale duality, which relates spaces Y4

8 ,Y2
8 , and S, in

order to study the effective cone of divisors for Y4
8 . In particular, Gale duality gives a

correspondence between extremal rays for the effective cone divisors on Y4
8 and curves C in

Y2
8 for which C · C = 0 and C · KY = −2. These curves are (0)-curves on Y2

8 , and we prove
they correspond to (0)-Weyl lines. The correspondence is more general, as Corollary 4,
Section 3.3, proves that (0)-divisorial classes are equivalent to (0)-Weyl hyperplanes on Y2

s .
In recent work [26,27], the authors use a different approach to the birational geometry

of blown-up projective spaces and give a geometric meaning to the walls of the Mori Cham-
ber Decomposition. From the birational geometry point of view, Theorem 15 proves that
the faces of the effective cones of divisors for Mori Dream Spaces are given by hyperplanes
corresponding to i-curves, where i ∈ {0, 1} for Mori Dream Spaces. Moreover, all chambers
are organized in hyperplane arrangements and each chamber corresponds to some Weyl
orbit of a curve class of the form mh − e1 − . . . − em+1 for some 1 ≤ m ≤ r − 1. From this
point of view, the birational geometry of these blown-up spaces is completely understood
with the tools of Weyl actions on curves developed here. The geometrical meaning behind
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this observation is that each such curve sweeps out a fixed subvariety of dimension m,
which is part of the stable base locus of these blown-up spaces and therefore determines
a wall in the Mori Chamber Decomposition. The authors do not know other spaces that
satisfy this property.

These observations motivate the following considerations.
In this section, we will prove that in Y = Yr

r+3 the collection of (0)- and (1)-curves,
C, give all faces of the effective cone of divisors. In order to see this, let us review known
results about the faces of effective cones. We recall that in these cases the movable cone
of divisors (i.e., divisor classes that do not contain divisorial base components) consists
of effective divisors that have positive intersection with all other effective divisors of Y
with respect to the Dolgachev–Mukai pairing ([30], Theorem 4.7): if EffRY∧ = {D ∈
A1(Y) | ⟨D, EffR⟩1 ≥ 0}, then

Mov(Y) = EffRY ∩ EffRY∧.

For Yr
r+3, the (−1)-Weyl hyperplanes generate the Cox ring [24] (Theorem 1.2).

We first introduce coordinates for the divisor D ∈ Pic(Y), ie D := dH − ∑r+3
i=1 miEi.

We recall the following.

Theorem 14 ([31], Theorem 5.1).
Case 1. If the number of points s = r + 2, a divisor D is effective if and only if

(Ai) : d ≥ mi and rd ≥
n+3

∑
j=1,j ̸=i

mj

Case 2. If the number of points s = r + 3, then a divisor D is effective if and only if inequalities
(Ai) together with (Bn,I(t)) hold, where

(Bn,I(t)) : kt,I(t) := [(t + 1)n − t]d − t
r+3

∑
i=1

mi − ∑
i∈I

mi ≥ 0

for every set I(t) so that |I(t)| = r − 2t + 1, where −1 ≤ t ≤ l + α and r = 2l + α,
α ∈ {0, 1}.

We recall that in Mori Dream Space cases, the Weyl group and therefore the Weyl
orbits of a general line h and a pencil of lines through one point h − ei are finite.

Denote the collection of all (0)- and (1)-curves on the Mori Dream Space Y by

E := {(i)-Weyl line for i ∈ {0, 1}} ⊂ Ar−1(Y). (26)

Introduce E≥0 to be the collection of divisors that intersect every (0)-curve and (1)-
curve positively:

E≥0 := {D ∈ Pic(Y)R so that (D · C) ≥ 0 for every C ∈ E} ⊂ Pic(Y)R.

Consider also the boundary

E ∂ := {D ∈ E≥0 so that (D · C) = 0 for some C ∈ E} ⊂ Pic(Y)R.

We will now prove the main result of this section.

Theorem 15. If s ≤ r + 3, then
EffRYr

s = E≥0.

i.e., (0)- and (1)-Weyl lines give the extremal rays for the cone of movable curves in Pr with r + 3
points blown up.
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Proof. We will first compute the set E ⊂ Ar−1(Y) of Equation (26).
It is easy to see that (0)-Weyl lines consist only of a pencil of lines through one point

and rational normal curves of degree r passing through r + 2 general points.

αi = h − ei and α′i = nh − ∑
j ̸=i

ej.

The (0)-Weyl lines αi give the facets (Ai).
We will leave to the reader to check that the (1)-curves are of the form

βt,I(t) = (t + 1)r − t − ∑
i∈I(t)

(t + 1)ei − ∑
i/∈I(t)

tei

for every −1 ≤ t ≤ l + α and |I(t)| = r − 2t + 1. Indeed, ordering the multiplicities in a
decreasing order, one can see that performing a standard Cremona transformation on the
last r + 1 points yields

Cr(βt,I(t)) = βt+1,I(t+1).

The (1)-Weyl line of minimal degree corresponds to t = −1, i.e., the general hyper-
plane class β−1,I(−1) = h, while the (1)-Weyl line of maximal degree corresponds to t being
a half of r, i.e., when α = 0 (r is even) it is a quasihomogeneous curve βl,I(l), and if α = 1, a
homogeneous curve βl+1,I(l+1). The (1)-Weyl line βt,I(t) with |I(t)| = r − 2t + 1 give facets
(Br,I(t)). We obtain

E = {{αi, α′i}1≤i≤r+3, and {βt,I(t)}−1≤t≤l},

E≥0 = {D ∈ Pic(Y)R so that D · C ≥ 0 for C ∈ E},

= {D ∈ Pic(Y)R satisfying (Ai) and (Bn,I(t))},

= EffRY.

(27)

Remark 6. For the Mori Dream Spaces Y3
7 , we can find 4 types of curves of odd degree up to 7 as

(1)-Weyl lines and 8 types of curves of odd degree up to 15 as (0)-Weyl lines. For Y4
8 , there are

seven types of (0)-Weyl lines up to degree 19. The Cox ring of Y3
7 is generated by the (−1)-Weyl

divisors together with the anticanonical divisor, and for Y4
8 the effective cone was considered in [26].

It is natural to ask the following question:

Question 3. Does the collection of (0)- and (1)-Weyl lines form all the extremal rays for Y3
7

and Y4
8 ?

Corollary 12. The faces of the effective cone of divisors on Pr with r + 3 points are the components
of E ∂.

If Y is not a Mori Dream Space, we define the infinite collection of curves

I : = {(0)-Weyl lines and (1)-Weyl lines} ⊂ Ar−1(Y)

I≥0 : = {D ∈ Pic(Y)R so that D · C ≥ 0 for C ∈ I} ⊂ Pic(Y).
(28)

i.e., I≥0 consists of all divisors that intersect every curve of I positively. The next theorem
gives an infinite set of necessary conditions for the effectivity of a divisor on Yr

s .

Theorem 16. Let Y = Yr
s ; then EffRY ⊂ I≥0.
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Proof. We use that if C is an (i)-Weyl line (i = 0, 1) and q is a general point in Y, then
there is another (i)-Weyl line through q with the same class; these (i)-curves move in an
appropriately large family.

Assume by contradiction that an (i)-Weyl line has negative intersection with a divisor
D; then, choosing a point q not in D we find an (i)-Weyl line with the same class (and hence
also negatively meeting D) through q, which is a contradiction.

7.2. Base Locus of Effective Divisors

We recall that for the Picard group of Y, Pic(Y) =< H, E1, · · · , Es >, where H is the
general hyperplane class and Ei are the exceptional divisors. We recall Definition 3: a
(−1)− Weyl hyperplane is the Weyl orbit of the exceptional divisor.

Let G be a (−1)Weyl hyperplane; then, there exists a Weyl group element w with
G = w(E1). We recall that ⟨−,−⟩1 is a bilinear form on the Picard group of Y invariant
under the Weyl group action. In particular,

⟨G, G⟩1 = ⟨w(E1), w(E1)⟩1 = ⟨E1, E1⟩1 = −1.

Theorem 17. If a (−1)-Weyl line C and a (−1)-Weyl hyperplane G are part of the base locus of
the linear system |D| of an effective divisor D, then

(C · G) = 0.

Proof. Assume by contradiction that there exists an effective divisor D containing in the
base locus the Weyl hyperplane G and the (−1) Weyl curve C, with (G · C) ≥ 1. Let
G = σ(E1) for σ ∈ Weyl(Y), and note that ⟨G, G⟩1 = −1. By [12] (Lemma 7.1), we have for
some p > 0

−p = ⟨D, G⟩1 = ⟨D, σ(E1)⟩1 = ⟨σ−1(D), E1⟩1.

The bilinearity implies that

⟨D − pG, G⟩1 = ⟨D, G⟩1 − p⟨G, G⟩1 = 0.

We know that D − pG is an effective divisor, and therefore σ−1(D − pG) is also an
effective divisor. Moreover,

⟨σ−1(D − pG), E1⟩1 = ⟨D − pG, σ(E1)⟩1 = ⟨D − pG, G⟩1 = 0.

Therefore the divisor σ−1(D − pG) is based at at most s − 1 points, missing the
point E1.

We assume that

1 ≤ (D · C) = (σ(E1) · C) = (E1 · σ−1(C)).

The positive intersection (E1 · σ−1(C)) implies that σ−1(C) is an effective curve (i.e.,
not contracted by the Weyl group element σ). Therefore, σ−1(C) is a (−1) Weyl line that
passes through the point E1. Moreover, since p > 0 we have

(σ−1(D − pG) · σ−1(C)) = ((D − pG) · C) = (D · C)− p(G · C) < 0.

We conclude that σ−1(C) is the base locus of the effective divisor σ−1(D − pG). This
is a contradiction, since σ−1(C) passes through the point E1 while the divisor σ−1(D − pG)
does not pass through the point E1. Therefore, σ−1(C) is a family of curves sweeping out
the effective divisor σ−1(D − pG), and this is a contradiction.

Theorem 18. Let G1 and G2 be two (−1)-Weyl hyperplanes in the base locus of an effective divisor
D. Then,

⟨G1, G2⟩1 = 0
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Proof. By [12] (Lemma 7.1), we know

⟨D, G1⟩1 < 0

⟨D, G2⟩1 < 0

and we claim that G1 and G2 are orthogonal with respect to the Dolgachev–Mukai pairing.
Let σ be an element of the Weyl group so that G1 = σ(E1). Then, for some p > 0 (the

multiplicity of containtment of G1 in D)

−p = ⟨D, G1⟩1 = ⟨D, σ(E1)⟩1 = ⟨σ−1(D), E1⟩1.

Therefore,
⟨D − pG1, G1⟩1 = ⟨D, G1⟩1 − p⟨G1, G1⟩1 = 0.

Moreover,

⟨σ−1(D − pG1), E1⟩1 = ⟨D − pG1, σ(E1)⟩1 = ⟨D − pG1, E1⟩1 = 0.

Therefore the effective divisor σ−1(D − pG1) is based at at most s − 1 points, missing
the point E1. Assume by contradiction that

1 ≤ ⟨G1, G2⟩1 = ⟨σ(E1), G2⟩1 = ⟨E1, σ−1(G2)⟩1.

Since p > 0, we obtain

⟨σ−1(D − pG1), σ−1(G2)⟩1 = ⟨D − pG1, G2⟩1 = ⟨D, G2⟩1 − p⟨G1, G2⟩1 < 0.

By [12] (Lemma 7.1), we have that the (−1) Weyl divisor σ−1(G2) splits off the divisor
σ−1(D − pG1). This gives a contradiction, since the divisor σ−1(G2) passes through the
point E1 and the divisor σ−1(D − pG1) does not pass through the point E1.

Let D be an effective divisor on Y. Necessary conditions for effectivity are given in
Section 7.1. We remark that Theorem 18 does not hold for curves contained in an effective
divisor D, with respect to the bilinear form ⟨−,−⟩.

Example 8. Consider the effective divisor D := 6H − ∑9
i=1 4Ei in P5. We can see that two types of

(−1) Weyl lines are contained in D: one is C (the rational normal curve of degree 5 passing through
first eight points) and the other is L19 (the line through points 1 and 9), and both are contained in
the base locus of D; however, ⟨C, L19⟩1 = 5 − 4 = 1 > 0.

Moreover, ref. [15] (Corollary 8.3) shows that if two Weyl surfaces (i.e., the Weyl orbit
of a plane through three fixed points) can not be a fixed part of a divisor in P4 based at
eight points, then their intersection in the Chow ring is zero.

This makes us predict that for an effective divisor D on Y, it has a resolution of
singularities by blowing up its base locus for D, with the blown-up space Ỹ being smooth.
In the next subsection, we show that (−1)-curves create a contribution to the dimension of
the linear system of an effective divisor D.

7.3. Resolutions of Singularities

In this subsection, we discuss applications of rigid curves to obtain Riemann–Roch
statements for divisors in Pr interpolating points. The most important result we prove is
Corollary 13, which gives an expected dimension formula for divisors in Pr whose base locus
contain (−1)-curves together with linear subspaces spanned by the base points, and we
pose Question 4.

Let D be an effective divisor on Y = Yr
s ; necessary conditions for effectivity are given in

Section 7.1. For Mori Dream Spaces Yr
s and for P2 and P3 with an arbitrary number of points,

conjectures regarding the dimension h0(D) of the space of global sections of an effective
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divisor were formulated ([15,31,32]). For P2 and P3, the main observation was that for
Cremona-reduced divisors, the Weyl base locus can only be linear. As Examples 9 and 10
suggest, this does not hold in higher dimensions, and therefore an explicit formula for the
action of the Weyl group ([15]) must be given first.

Remark 7. Example 10 shows that in P5 the Cremona-reduced divisor D can have in its base locus
(−1)-curves that are not lines, which contribute to h1(D). In order to address this problem in this
section, we consider more general resolutions of singularities. It has been exploited before that a
dimension count can imply vanishing theorems and vanishing theorems imply positivity results
for divisors. In Examples 9 and 10, we show explicitly how to obtain vanishing theorems from the
dimension count.

Proposition 20 proves that if C is a (−1)-curve and (C · D) = −kC < 0, then by Bezout
C is a fixed part of D at least k times. We blow up the space Y along all (−1)-curves
contained in the base locus of an effective divisor D, and we denote by EC the exceptional
divisor created after blowing up the curve C.

The exceptional divisor created after blowing up the (i)-curve C for i ∈ {−1, 0, 1} is

EC ∼= P1 × Pr−2

and it comes equipped with the information of the normal bundle that

EC|EC = OP1×Pn−2(i,−1).

Proposition 20. Let D be an effective divisor and C a (−1)-curve so that (D · C) = −k < 0.
Then, the curve C is contained in the base locus of the divisor D at least k times.

Proof. For any 0 ≤ s ≤ k − 1, we have the short exact sequence

0 → D − (s + 1)EC → D − sEC → (D − sEC)|EC → 0

(D − sEC)|EC = OP1×Pr−2(s − k, k)

Since s < k, we have h0(O1
P(s − k) = 0, so by the Kunneth formula h0(D − sEC) = 0.

This implies that h0(D) = h0(D − EC) = . . . = h0(D − kEC).

Let GD := {C | C be a (-1)-curve on Y, with kC = (−D · C) ≥ 1} ⊂ Ar−1(Y). Let Ỹ be
the blown up-space Y and denote by D(1) the proper transform of D under the blowup of
all its base loci.

D(1) := D − ∑
C∈GD

kCEC. (29)

We will denote the following:

hi(D(1)) := dim Hi(Y(1),O(D(1))).

In the planar case P2, the Segre–Gimigliano–Harbourne–Hirschowitz conjecture pre-
dicts that h1(D(1)) = 0.

We recall from [33] (Theorem 2.1) that if D is an effective divisor on Y = Yr
s , and D(1)

the proper transform transform of D (29), then
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h1(D) = ∑
C∈GD

(
r + kC − 2

r

)
+ h1(D(1))− h2(D(1)).

hi(D(1)) = 0 for every i ≥ 3

χ(D(1)) = χ(D) + ∑
C∈GD

(
r + kC − 2

r

)
.

(30)

The next corollary is a consequence of [32] (Corollary 4.9); we recall from paper [32]
(Definition 3.2) the notion of ldim D, which is the linear expected dimension, taking into
account linear base loci.

Corollary 13. Let D be an effective divisor on Y, and denote by D̄ the proper transform of D under
the blow up of its linear base locus of arbitrary dimension and all (−1)-curves. Then,

χ(D̄) = ldimD + ∑
C∈ĜD

(
r + kC − 2

r

)
.

If we define ĜD ⊂ GD to be the subset of curves of degree bigger than one (the non-line
cases), then we recall that [32] implies

h0(D) = ldimD + ∑
C∈ĜD

(
r + kC − 2

r

)
+

r

∑
ρ=1

(−1)ρ−1hρ(D̄).

It is important to remark that linear subsets of dimension k spanned by k + 1 subsets of
the base points do not intersect (−1)-Weyl lines. Indeed, if k ≤ r − 2 this follows from the
generality of the points, while if k = r − 1 this follows from Theorem 17. This observation
allows one use the proof of [32] (Corollary 4.9), replacing D(1) by the proper transform of
D under the blowup of all (−1)-curves in the base locus.

Question 4. Let D be an effective divisor on Y. Then, is it true that h1(D(1)) = 0?

Is it true that the effective divisor D = 4H − 2 ∑9
i=1 Ei in P3 has h1(D) = 1 but

D · C ≥ −1 for any (−1)-curve C?

Examples

So far, dimensionality problems for divisors and vanishing theorems such as the one
predicted by Question 4 have only been computed for divisors that a have linear base locus.
The dimension of the space of global sections in Examples 9 and 10 were known, and in
this section we show how to prove vanishing theorems. The technique is to start from a
divisor F̃0 whose cohomology is known and to use several short exact sequences to increase
some of the multiplicities. As long as the cohomology for the restricted divisors F̃0|Ei in the
short exact sequences are known, then one can conclude vanishing theorems. Question 4
holds for the next examples.

The first example discusses a divisor in P4 with 7 points, and in the article [15] we
analyzed Cremona images of linear spaces in P4 with up to eight points. Those involving
only seven points are of several types. There are three types of divisors (the linear spaces,
the double cone over a conic, and the secant variety to the rational normal quartic curve
through seven points). There are also surfaces: the 2-planes and the cone over the twisted
cubic. As for curves, there are only the lines and the rational normal curves. In the example
below, one only has the curve cases appearing as base loci.
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Example 9. Consider the effective divisor D := 10H − ∑7
i=1 6Ei in P4. One can easily see that it

is Cremona-reduced and D contains in its base locus all (−1)-curves on Y4
7 , i.e., the (7

2) = 21 lines
passing through two base points and the double rational normal curve passing through all seven
points. Each of these double (−1)-curves make h0(D) increase by (4+2−1

4 ) = 1; the Formula (13)
gives that h0(D) = (14

4 )− 7(9
4)+ 21+ 1 = 141, which also agrees with a computer check. Moreover,

one can show by the same method as the next Example 10 that hi(D(1)) = 0 for all i ≥ 1, where
D(1) is the proper transform under the blowup of all 22 (−1)-curves, so it satisfies Question 4.

Example 10. We finish this paper with an example that illustrates the utility of this approach in
proving vanishing theorems.

The space Y5
9 is not a Mori Dream Space, and Corollary 8 applies. We recall that the

only (−1)-curves are lines through two points and the rational normal curve of degree
5 passing through eight points. In this example, to answer Question 4, we will use four
restriction sequences to divisors E8 and E9, and after each such sequence we eliminate the
simple base locus created in the kernel divisor.

Consider the effective divisor D := 6H − ∑9
i=1 4Ei in P5, with

dim H0(P5,O(D)) = 3.

As explained in [32] (Example 6.3), if C is the elliptic normal curve of degree 6 through
nine points, (which has the anticanonical curve class F), then the secant variety σ2(C) is a
threefold, which is a complete intersection of two hypersurfaces of degree 3, G1 = 0 and
G2 = 0, and the three sextics G2

1 = 0, G1G2 = 0, and G2
2 = 0 generate the space of global

sections of D.
The divisor D is Cremona-reduced and D contains in its base locus all (−1)-curves on

P5 blown up at nine points with multiplicity 2, i.e., the (9
2) = 36 lines passing through two

base points and the nine rational normal curves passing through eight of the nine points.
This divisor has χ(D) < 0; however, the set of 36 + 9 double (−1)-curves will make h0(D)
increase, and we have that Corollary 13 gives

dim H0(P4,O(D)) =

(
11
5

)
− 9

(
8
5

)
+ 36 + 9 = 3.

We will now prove that the dimension count will imply vanishing theorems as pre-
dicted in the question above. We introduce the following notation:

F0 := 6H −
7

∑
i=1

4Ei − 2E8 − 2E9

and F̃0 := F0 − ∑7
i,j=1 2Eij is the strict transform under the blowup of its base locus, consist-

ing of (7
2) = 21 lines through the first seven points. This divisor is only linearly obstructed

and by [32] (Theorem 5.3) we know that h0(F̃0) = (11
5 ) − 7(8

5) − 2(6
5) + (7

2) = 79 and
hi(F̃0) = 0 if i > 0 by [34] (Theorem 1.6). Introduce

F1 := F̃0 − E8 = 6H −
7

∑
i,j=1

4Ei − 3E8 − 2E9 −
7

∑
i=1

2Eij.

We have the short exact sequence

0 → F1 → F̃0 → F̃0|E8 → 0.
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The restriction is a quadric divisor in E8 ∼= P4 and h0(F̃0|E8) = h0(2h) = (6
4) = 15.

One obtains

h0(F1) = h0(F̃0)− h0(F̃0|E8) + h1(F1)

≥ h0(F̃0)− h0(F̃0|E8) = 79 − 15 = 64
(31)

Moreover, F1 has only simple obstructions, so by a restriction sequence to the excep-
tional divisor we obtain that hi(F1) = hi(F̃1) for any i, where F̃1 := F1 − ∑7

i=1 Ei8 − EC9̂
is

the strict transform under the blowup of seven lines Li8 and rational normal curve skipping
the ninth point. We further restrict the divisor F̃2 to E8 and denote by F2 the residual divisor

F2 := F̃1 − E8 = 6H −
8

∑
i=1

4Ei − 2E9 − 2
7

∑
i,j=1

Eij −
7

∑
i=1

Ei8 − EC9̂
.

Running the same argument with

0 → F2 → F̃1 → F̃1|E8 → 0,

the restriction is a divisor in P4 and h0(F̃1|E8) = h0(3h − ∑8
i=1 ei) = (7

4)− 8 = 27.

h0(F2) ≥ h0(F̃1)− h0(F̃1|E8) = 64 − 27 = 37.

Moreover, hi(F2) = hi(F̃2) for any i, where F̃2 := F2 − ∑7
i=1 Ei8 − EC9̂

is the strict
transform under the blowup of its simple base locus. We restrict next to E9 and denote by
F3 the kernel divisor

F3 := F2 − E9 = 6H −
8

∑
i=1

4Ei − 3E9 − 2
8

∑
i,j=1

Eij − 2EC9̂

0 → F3 → F̃2 → F̃2|E9 → 0.

The restriction has h0(F̃2|E9) = h0(2h) = 15 so h0(F3) ≥ h0(F̃2)− h0(F̃2|E8) = 37 −
15 = 22 and hi(F3) = hi(F̃3) for any i where F̃3 := F3 − ∑8

i=1 Ei9 − ∑8
i=1 ECî

is the strict
transform under its simple base locus.

Finally, let F4 := F̃3 − E9; consider the short exact sequence

0 → F4 → F̃3 → F̃3|E9 → 0.

The restriction F̃3|E9 has degree 3 and 16 simple points, 8 coming from the restriction
ei := E9|Ei9 and the other 8 coming from the restriction ecî

:= E9|ECî

h0(F̃3|E9) = h0(3h −
8

∑
i=1

ei −
8

∑
i=1

ecî
) = 35 − 16 = 19

h0(F4) = h0(F̃3)− h0(F̃3|E9) + h1(F4)

≥ h0(F̃3)− h0(F̃3|E9) = 22 − 19 = 3
(32)

and hi(F4) = hi(F̃4) = hi(D̃) for any i. Since h0(F4) = h0(D) = 3, Equation (32) implies
that h1(F4) = h1(F̃4) = 0, and therefore h2(F̃4) = 0. We conclude that the divisor D satisfies
Corollary 8 and gives a positive answer to Question 4.
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