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0. INTRODUCTION

A numerically elliptic surface is a complete smooth algebraic surface X
over an algebraically closed field k£ with a proper morphism f: X —» C to a
smooth curve C such that the general fiber of f is an integral curve of
arithmetic genus 1. If the generic fiber is smooth the surface is called
elliptic; otherwise it is called quasi-elliptic. The latter only can occur if k has
characteristic 2 or 3, in which case the general fiber is a rational curve with
an ordinary cusp [BM]. If no fiber of f contains an exceptional curve (ie.,
a smooth irreducible curve isomorphic to P! and having self-intersection
—1), then X is said to be minimal; all elliptic surfaces will hereafter be
assumed to be minimal.

One says that an elliptic surface X is Jacobian if the smooth points of the
generic fiber X, comprise the Jacobian curve of X, . It is equivalent for X,
to have a rational point, or for f to have a section. For a rational Jacobian
numerically elliptic surface, the exceptional curves are precisely the sections
of the fibration, which provides a tool by which an enumeration of the
exceptional curves on a rational Jacobian numerically elliptic surface can
be carried out (cf. [MP, HL, MoP]). Whether Jacobian or not, a rational
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elliptic surface is the blowing up of nine points of the projective plane P2,
so the set of exceptional curves is always geometrically important in order
to understand the structure of X as a blowing up of P2. The point of this
paper is to determine and enumerate the exceptional curves in the non-
Jacobian case. Our approach is to recast combinatorially the problem of
enumerating exceptional curves on rational minimal numerically elliptic
surfaces, which we then solve using generating functions.

Although the complete result is complicated, the “generic result” is sim-
pler to state, for which we recall some well-known facts. Let X be a rational
minimal numerically elliptic surface with finitely many exceptional curves
(i.e., X is extremal; see the definition preceding Proposition 1.5). In this
case X must have reducible fibers, and the intersection graph of such a
reducible fiber is always one of those shown in Fig. 1, and since X is
rational the graph can have at most nine vertices.

Given a reducible fiber F, the vertices of its intersection graph represent
the irreducible components of F, while the number of edges connecting two
vertices indicates the number of times the corresponding components of F
meet. Because X is rational, there is a positive integer m (which we will
refer to as the multiplicity of the fibration on X) such that every fiber is
linearly equivalent to —mK,, where K is the canonical class of X; X is
Jacobian if and only if m=1.

If X is not Jacobian, then m > 1 and every fiber but one has at least one
reduced component. Such fibers are said to have multiplicity 1. The
remaining fiber is called a multiple fiber; its multiplicity is =, in the
following sense. As an effective divisor, any fiber F is a sum of integral
multiples of its irreducible components; the multiplicity is the g.c.d. of these
multiples.

For nonmultiple fibers, the multiples with which each component must
be taken are given in Fig. 1 by the numbers (also often called multiplicities
but here referred to as weights to avoid ambiguities) written inside
each vertex. For a multiple fiber, the weights must be multiplied by the
multiplicity m. The remaining numbers appearing in Fig. 1 are simply for
identification of the various vertices of each graph. To each intersection
graph F (and hence to each fiber having graph F) we associate the number
s of vertices of weight 1; we refer to s, as the discriminant of F.

Now for each graph F shown in Fig. 1, construct the polynomial P.(¢)
in an indeterminate ¢,

n

P.(t)= (SF)I/Z l_[ (1 —1%),

i=0

where the product is over all of the vertices vy, ..., v, of F, u; being the
weight of v,. For each j >0, let (Q,); be the coefficient of the term ¢/ of the
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Taylor series Q. of (Pr)~'. We now give the simplest general statement of
our more complete results. The proof is deferred to Section III.

THEOREM 0.1. Let X be a minimal rational extremal numerically elliptic
surface, let m be the multiplicity of its fibration, and let s be the product of
the discriminants of the nonmultiple reducible fibers of X. If m and s are
relatively prime, then the number of exceptional curves on X is the product
over the reducible fibers F of X of the coefficients (Q ) ,njm,» Where my is the
multiplicity of the fiber F.

It is easy to check that (Q,),=s}? for each intersection graph F
appearing in Fig. 1, which together with the theorem gives the following
well-known result [HL, MP, MoP].

CoroOLLARY 0.2. [If X is a minimal rational extremal Jacobian numeri-
cally elliptic surface, then the number of exceptional curves on X is s'?,

where s is the product of the discriminants of the reducible fibers of X.

We also work out the enumeration of exceptional curves in cases not
covered by Theorem 0.1; that is, when m and s are relatively prime. The
reason we do so is that while m and s need not be relatively prime (but
often are) when X is elliptic, if X is quasi-elliptic and not Jacobian, then m
and s are relatively prime only if X has a fiber of type E; (cf. Fig. 1) [HL,
Sect. 81.

This paper is organized as follows: Section I deals with geometric back-
ground; Section II uses this background to formulate the problem com-
binatorially; Section III examines the foregoing in the context of extremal
surfaces; Section IV discusses the existence of the surfaces; and Section V
gives examples. Thanks go to David Klarner for consultations on
generating functions, to the University of Nebraska at Lincoln College of
Engineering for computer support, to Igor Dolgachev for bringing the
article [Dy] to our attention, and to the Mountain West Algebraic
Geometry Workshop for facilitating several meetings between the authors.

Hereafter, X will denote a minimal rational numerically elliptic surface,
not necessarily with section.

I. AN INTERSECTION—THEORETIC CHARACTERIZATION
OF THE EXCEPTIONAL CURVES ON X
We begin with some definitions and notation:

K, : the canonical class of X;
(—1)-class: a class Ee Pic X with E?= —1 and E-K, = —1;
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M ,: the set of (—1)-classes of X;

(— 1)-curve or exceptional curve: a smooth rational curve E on X the
class of which in Pic X is a (—1)-class;

&: the set of classes of exceptional curves of X;
(—2)-class: a class Ne Pic X with N>*= —2 and N-K, =0;
M, the set of (—2)-classes of X;

(—2)-curve or nodal curve: a smooth rational curve N on X the class
of which in Pic X is a (—2)-class;

A4: the set of classes of nodal curves of X (or, more abstractly, the
vertices of a disjoint union of not necessarily distinct graphs of Fig. 1-—see
the remarks after Proposition 1.5);

A, or nodal cone: the set {DePicX|D-N>0 for all Ne 4};
K*: the classes of Pic X perpendicular to K

I': the subgroup of K generated by 4 and K, (note that I is
generated by 4 if m=1 or the multiple fiber of X is reducible);

A% the free abelian group of functions from 4 to Z;
A*: the semigroup in 4% of functions which are nonnegative on 4;
% the even unimodular rank 8 lattice of type Ejg.
Note 1.0. By sending a curve to its divisor class we get injections
(which for convenience we regard as inclusions) & < M, and Ac M,c K"

since the divisor classes of distinct reduced irreducible curves of negative
self-intersection are distinct.

The following facts are well known.

LemMma L1. Let X be a rational numerically elliptic surface.

(a) The anticanonical class — Ky of X is numerically effective (ie.,
meets any effective divisor nonnegatively) and effective (ie., is linearly
equivalent to an effective divisor).

(by If CcX is an irreducible reduced curve with C?<0, then
Cedué.

(c) Every nodal curve is a component of the numerically elliptic
fibration on X, and every component of a reducible fiber is a nodal curve.

(d) The set A is finite.

() Ifve K™, then v’ <0; moreover, v> =0 if and only if v is a multiple
of Ky.

(f) K*' is a root lattice of type Ey (= Eg) and K*/(Ky)= Z.

(g) For some positive integer m (called the multiplicity of the
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fibration) all fibers of the numerically elliptic fibration on X are linearly
equivalent to —mK . The fibration has a section if and only if m=1, in
which case every fiber has at least one reduced component. If m > 1, there is
always a unique fiber (called the multiple fiber) having no reduced
components. A fiber never has more than nine components, and the inter-
section graph of a reducible fiber is always among those listed in Fig. 1.
Moreover, if {vg, .., v,} are the prime divisors comprising the support of a
reducible fiber F, and {u, .., u,} are the weights of the corresponding
vertices of the intersection graph of F, then F=pu Y, u,v,, where u is either
m or 1, according to whether F is a multiple fiber or not.

Outline of Proof. (a) By the Bombieri-Mumford formula for fibers,
the class of a fiber on X is a multiple of K, so (K)?=0. Using Riemann-
Roch for surfaces and Castelnuovo’s criterion h°(X,2K,)=0 for
rationality, we see that — K, is effective, so fibers are antipluricanonical,
whence — K is numerically effective.

(b) This follows from the adjunction formula, numerical effectivity of
— K, and the fact that integral curves have nonnegative genus.

(c) The first statement follows since the fibers are antipluricanonical,
and the second statement follows from the classification of reducible fibers
on numerically elliptic fibrations [ BM].

(d) This follows from (c) since there can be only finitely many
reducible fibers.

(e) Since K* and indeed Pic X are isomorphic for all rational mini-
mal numerically elliptic surfaces it suffices to prove this for some such X.
Let X be Jacobian with a fiber of type E; (i.c., the intersection graph of the
fiber is the extended Dynkin diagram of type Eg; see Fig. 1). Then K+ is
generated by the components of the Ej fiber, and since K, is a primitive
element of Pic X the result follows from the lemma on p. 28 of [BM].

(f) The graphs displayed in Fig. 1 are the extended Dynkin diagrams
of the Dynkin diagrams of the finite dimensional simple complex Lie
algebras. In particular, the Eg Dynkin diagram is obtained from the graph
shown in Fig. 1 of a fiber of type E; by excluding a vertex (in this case
unique) of weight 1. The lattice % is just the free abelian group on the
vertices of this E; Dynkin diagram (and hence has rank eight) with the
bilinear form ( }-( ) induced by the following rule. If a and b are different
vertices, then a-6 is 1 if @ and b are adjacent vertices and a-b is 0
otherwise; a-a= —2. But X is obtained by successively blowing up 9
(possibly infinitely near) points of P2 so Pic X is free of rank 10, generated
by ey, ..., €5, Where ¢, is the class of a line and e, is the total transform of
the ith point blown up. The intersection form is induced by taking e, -e;
to be 0 if i#j,1 if i=j=0, and —1 if i=;j>0 Now —K,=3e,—

481:128/2-10
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E, ®s
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FiGURE 1
e,— --- —ey and K* is generated by ro=e,—e, —e,—e;, and r,=¢,—

€.y, i=1,..,9. We also note that — K, =3r,+2r,+4r,+6r;+ 5r,+
drs+3rg+2r,+rg. By (e) the radical of K+ is generated by K,, so the
intersection form on K-+ descends to K*/(Ky) and it is now easy to check
that sending r, ..., r; to the vertices 0 through 7 of the E; Dynkin diagram
(see Fig. 1) induces an isomorphism of K*/(K,) with Z.

(g) See [HL] for proofs and references to original sources. |

To distinguish which elements of M, lie in & we need to know:

LEMMA 1.2. Any (—1)-class is effective.

Proof. Take Ee M,. Riemann-Roch and Serre duality give

WX, E)+h°(X,Ky— E) = (12)(E*—E-Ky)+1=1.

But Lemma I.1(a) and —E- —Ky= —1 shows that —E= —K, + (K, — E)
is not effective, implying that K, — E is not effective; i.e., "°(X, K, — E)=0.
Therefore h°(X, E) =1 so E is effective. |
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We can now give a criterion due to Looijenga [L] for a (—1)-class to
be exceptional.

PrROPOSITION 1.3.  The set & of exceptional curves is precisely A . nM,.

Proof. Since every exceptional class meets every nodal class non-
negatively, we of course have £<4, nM,. To show equality, take
Eed, nM,. By Lemma 1.2 E is effective so we may write E as a positive
linear combination of integral curves. Since E% <0, one of these curves C
has E-C<0 and so necessarily satisfies C*<0. Since E lies in 4,,C
cannot be nodal so by Lemma 1.1(b) C is exceptional. Now E — C is effec-
tive and perpendicular to K,, so £— C is a sum of components of fibers;
ie, E—Cerl. Thus (E— C)*<0 and equality holds iff E— C is a multiple
of K, by Lemma L.1(e). On the other hand, —1=E?=((E—-C)+C)*=
(E—C)’+2E-C—C? and since E>=C?= —1 we find that (E—C)*=
—2E-C—22>0. Thus (E— C)*>=0, whence E— C is a multiple, say mK,,
of K. Finally we derive m=0, giving E=Ce&: —1 =E*=(C+mK,)*=
C*+2mC-Ky=—1-2m. |

To make use of Proposition 1.3, we recall a well-known and very useful
group action on M. For any elements Le K+ and Ee M, define 7,(E) to
be E4+ L+ (3)(L*+2L-E)K, in Pic X. Note that L? is even since (as is
clear for example from Riemann-Roch for surfaces) K+ is an even (negative
semidefinite) lattice, meaning that if ve K*, then »? is an even (non-
positive) integer. Mnemonically, 7, stands for “translation by L,” justified
by this next lemma.

Lemma 14. (a) 1 defines an action of K* on M,.
(b) Ky acts trivially with respect to this action.
(¢} K* acts transitively on M.
(d) The induced action of K*/(Ky) on M, is transitive with only the
identity fixing any elements of M.
(e) If rank(I") <8, then & is infinite.

Proof. These facts are well known. The proofs of (a)-(d) are easy. To
see (e), note that rank(K*)=9 since any rational numerically elliptic
surface which is minimal is a blowing up of P? at nine successive points.
If rank(/") <8, there is an element L of K* in I'* having no multiple in I'.

But & is never empty since X is a blowing up of P2 and for any E€ &, the
classes 1, (E), i>0, are distinct by (d) and lie in & by Proposition 1.3. |

DEerFINITION. If rank(/7) =9, X is said to be extremal.
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The converse (1.5(c)) to Lemma (I.4(e) is also true. Qur proof uses a
homomorphism ":Pic X — A4%: if A4+#¢, we define H* for HePic X by
taking H"(N)= H - N, where Ne 4.

PROPOSITION 1.5. Let O be a I'-orbit in M, with respect to the action
by t.

(a) If A#¢, then the restriction of ™ to O is injective.
(b) The number of (—1)-curves in O is finite and nonempty.
(¢) If X is extremal (ie, [K+: '} < ), then & is finite.

Proof. (a) Let E,Fe(, so E—Fel. But E* =F" means that E—F
is perpendicular to I' so in particular (E— F)?=0. By Lemma I.1(¢) this
means E equals F+ mK, for some integer m, but —1 =E>=(F+mK,)’ =
—1-2m, som=0.

(b) If 4=¢, then & =M, by Proposition 1.3 and every element of
M, is a -orbit by Lemma 1.4(b), so the result follows in this case. Now
say 4#¢. The {(—1)-curves in O} =0 n 4, ; this maps injectively via "
by (a) into 47%. To prove the finiteness it therefore suffices to show that
(O~ A4,)" is finite. Let m be the multiplicity, and let E be in @ n 4 . Then

Y ErNN)= ) Y., E"(N)
Ned reducible N = component
fibers F of F

:ZEA< ¥ N>

reducible N = component
fibers F of F

< )Y ENPF)
reducible
fibers ¥

(since E"(N)=0VYNand F> Y N)

N =component
of F

= Y EN(-mKy)

reducible
fibers F

=m - (# of reducible fibers) = mmn, say.

Therefore (0N 4,)" maps into {6|6(N)=0VN and Y ., 0(N)<mn}
which is finite.

If Fis an element of M,, we can write F as a sum F=3,C, of prime
divisors, and we can let L=3,C, where C, is an element of 4. Then
t_,(F)is an element of 4, " M, so O~ & is not empty.
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(c) If X is extremal, then I has finite index in X+. But M, comprises
one K--orbit, hence finitely many I™-orbits, and by (b) each contains
finitely many (— 1)-curves. Thus & is finite. ]

Proposition 1.5 shows there are two appropriate enumeration problems:
for any X, enumerate O~ A4,, given a I-orbit ¢ in M,; and, for X
extremal, enumerate &. It is convenient to formulate a more abstract
version of the first problem, which we solve in Section II, and we apply the
results to solve the second problem in Section III.

To formulate the abstraction, let 4 denote the union of the vertices of a
collection Fy, ..., F, of not necessarily distinct graphs from Fig. 1. A case of
special interest will of course be when these are the intersection graphs of
the reducible fibers on some surface. We will use the notation (4) for the
free abelian group on the elements of 4; note that the intersection graphs
F,, .., F, induce a bilinear form on (4) by defining it on 4: if N and M are
elements of 4, define N- M to be —2 if N=M and to be r if N # M, where
r is the number of edges directly connecting the two vertices representing
N and M in the disjoint union of the graphs F,, .., F, (and thus either 0
or 1 unless N and M are the two vertices of 4, where N- M =2). For 4*
the free abelian group of integer valued functions on 4 we thus have
“:4 - 4% defined as before. We denote by A4* those elements of 4%
which are nonnegative on 4, by (4 ") the subgroup of 4* generated by the
image 4" of 4 under ~, and by [ ]:4* - 4%/(4") the quotient
homomorphism. We will denote the vertices of a single graph F by 4, and
in a similar way we also have: 47,47, ,and [ ],:47 > 47 /(4}). Note
that by restriction of domain we have canonical surjections 4% — 47
whenever F is one of the graphs in the collection Fi, ..., F,.

LeEmMMA 1.6, Consider a finite collection C of not necessarily distinct
graphs F of Fig. 1.

(a) The canonical maps A* — A} induce isomorphisms A* ~
Drdf, AT=D A7, (4")=Dr(47), and A% [(A" )= D A} [(4}),
where the sums are taken over all graphs F in C.

(b) Suppose C # ¢ and that C is the collection of graphs arising from
the reducible fibers of some surface X. If O is.a I'-orbit in M,, then 0" =
[ 17'[@"] and the number of (—1)-curves in O is precisely the cardinality
IL17'[0" DA AaZ| of the set ([ 17'[0"])n 4%,

(c) Let 6=y be any element of A*/(A" )= @D A} /(4}). Then
IL 17'(6)n4?*| is finite and equals T[]y 4%, n [ 17"(6F)|, where the
product is taken over all Fe C.

Proof. (a) Since 4 is the disjoint union A, 4* =@, 4} is
obvious and it is clear that it induces a bijection 4% > @ 4}, . Since
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vertices in distinct graphs are orthogonal, (4" )= @ (4, ) is clear and
A# /(A Y= D4} /(4}) follows.

(b) Clearly, ©* <[ ] '[¢"]. On the other hand, let f be in
[ 17'[0"]. Then [f]=[E"] for some Ee€(@, so f—E"~e(4")=T".
Pick Ge I’ with G" = f— E". Then t4(E)e 0; since 1o(E)=E+ G+ kK,
for some k, we have 14(E)" =E” + G" (since Ky =0), hence 14(E)" = /.
This proves that [ ] ![0"]=0". Since " is injective on @, then the
number of (—1)-curves in O is [0 nd |=|0" nd4*|=|([ ] '[0"])n
4%|.

(c) By (a) it is clear that A* [ ] 'O)=x @4}, [ 17'(85)
under the isomorphism 4% =~ @47 . Thus the result follows if we merely
show that 47, n[ 17'(dy) is finite. But F is a nonnegative sum Y a,N, of
elements N,€ 4., and for any Ne 4., we have F-N=0. Since any two
elements f and g of [ ], '(6;) differ by elements of (4 ), we see that
> a;f(N;)=3X a;g(N,). Since elements of 4}, are nonnegative on 4, there
can be at most finitely many for which the sum 3 a, f(N,) is fixed. ||

II. COMBINATORIAL PROBLEM

In this section we work out the following

Combinatorial Problem. Given F a graph from Fig. 1 and an element §
of 47 /(4}), compute (47, n[ 1. '(35)I.

Remark 11.1. When F is the collection of graphs arising from the
reducible fibers on some surface X and 6= @ 5 is the image [E"]
in A*/(A")=@A4F/(4}) of a (—1)class on X, then the number
4% ~ [ ] '(8)| of (—1)-curves on X in the same I-orbit of M, as E is by
Lemma 1.6 the product [1,[47, N[ 17'(85)| over the graphs F of 4.
Thus a solution of the Combinatorial Problem solves the problem of com-
puting the number of exceptional curves in any given /-orbit of M.

We now need to understand for each graph F of Fig. 1 the
homomorphism [ Jy:4f - 4%/(4}); we will denote 47 /(4 ) by 4%. Let
v; be the element of 47 dual to the vertex v,, ie., v,(v;) = Kronecker’s d,.
Recall from our labelling that v, has multiplicity one for every F, ie.,
1o = 1. Finally denote by z, the class 3 u,v; in (4¢); this is the fundamental
cycle of the fiber F.

LemMMma I1.2. (a) The kernel of ":(dg)—> A% has rank 1, and is
generated by zp.

(b) A¥=Z @ Ty, where Ty is a finite abelian group.
(¢c) The “degree map” d- A} — Z given by d(f)=f(zr) is an onto
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homomorphism, and (4} )< ker(d); hence d descends to a map d: A%¥— Z,
and 0 > Tp— A% > 7 -0 is exact.

(d) Trx=ker(d)/(4]).

Proof. Statement (a) is well known; it is easy to prove using the lemma
of Bombieri and Mumford [BM, p. 28]. Statement (b) follows from (a),
after noting that (4,) and 4} have the same rank; T, is the torsion part
of 4% To prove (c), note that d(v,)=1, showing that 4 is onto;
d((4}))=0 since z, is orthogonal to each v,. Part (d) follows from (c). ||

A splitting of the sequence of 11.2(c) is afforded by a choice of a multi-
plicity one component of F, as follows. Let v, be such a component. Then
for each i, v, — p;v, is in ker(d) and therefore g, = [v;, — u;09] € T. The map
from A% to T defined by sending [ a;v;] to 3 «, g, is the splitting of the
sequence, and exhibits 4% as a direct product Z x T.. Note that the
projection onto the Z factor is given by the degree map d, and therefore
sends [v;] to y; for each i.

Therefore our problem, slightly restated, is to compute

o(g)=14f, n[ 17'(n®g) for neZandgin T,

after making the identification of A¥ with Z@® T, as described above.
Let Hp(g)=23,-00,(g)t"eZ[[t]]. We will compute this generating
function H,.

Let Z[T\] be the group ring of the finite abelian group T, and define
Gr=T1,(1-g:*)" '€ Z[T][[¢]]. Define

1 if h=
xg:Tf~azbyxg(h)={0 " h;éj

this is a “characteristic function” for the element g of T, and is not a
group homomorphism. Extend y, to a map y : Z[T1[[t]]— Z[[#]] by
letting x, act on the coefficients; this map is additive, but is not a ring
homomorphism.

THEOREM I1.3. H,(g)=x,(Gp).

Proof. By expanding the factors of G, we have

Go=TIX (8= T [
i kg

(kg, ...) i
allk; =0
— k ik
= Z (H g[:> IZ H i
(kg, ...) i
allk; =0

Note that the terms of the sum are in 1-1 correspondence with the
elements of AZ, :(ky,..) corresponds to ¥ k,v,. The term (k,,...)
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corresponds to an element of [ ],'(n® g) if and only if [T, g“= g and
2 u;k;=n. Hence the coefficient of g¢” in G, is the cardinality of 47, n
[ 1,'(n® g), which is by definition ¢,(g). The map %z NOw eliminates all
terms of G other than those of the form gr”, and replaces the g with 1,
giving therefore H.(g). |

To apply this result in a concrete situation, we will need to know the
group T and the elements g,. This information follows in Table I1.4. We
have gone to a multiplicative notation for the group T, since addition in
T, appears in our application as group ring multiplication.

The calculations involved in producing Table 11.4 are quite standard,
and the results well known. The lattice generated by deleting v, from 4. is
a negative definite root lattice of type 4,, D,,, or E,. The group T, is the
discriminant-form group (using the notation of [N]), or the dual quotient
group (using the notation of [CS]) of the root lattice. The computations
of the g; in each case are straightforward.

Note that for each g in T there is a unique vertex v, with y;=1 in the
graph, such that g,= g. This identification of T, with the multiplicity one
components of the graph depends of course on the choice of v,.

Let S, be the automorphism group of the graph for F. Note that S, acts
transitively on the set of vertices with multiplicity one. We have of course
an induced action of Sz on (4,), 4%, 4%, etc., preserving the bilinear forms
and the degree map d.

LeMMA LS. Assume ged(n, |Tr|)=1. Then S acts transitively on the
set of elements & of A% with d(6)=n.

Proof. The above set is {n[v,]® gl ge Tr}. We will show that for
each g in T, there is an automorphism ¢, in S, which sends n[v,]® 1
to n[v,]@® g. Fix the g in T,. Let 6, be an automorphism of the graph
sending v, to v;, where g7 = g. Then

ay(nfvo]) =nlv;J=nloe] +n([v;—ve]) =nlve] ® g7 =nlve]® g

as required. |

TABLE 114
F T, Elements g,(g,=1in every case)

i BIB=1 g,= B for every i

ﬁn+3q"°dd: (ﬂa7|ﬂ2=}’2:1> 81=Py.8:=7.8:=b.8u=1 u . =Py (k22)
Brw}sneve“: <B|ﬁ4:l> g,:ﬁz,gZ:B,g3=ﬂ3,g2k=l,g2,‘+,:ﬁ2(k22)
Eg: BB =1> gi=8:=1,8=8 =B g=gs=F

E;: (BIB=1) 81=8:=8=8=1,8,=8,=8=F8

Ey: {1} g.=tforeveryi

»
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Note that the action of S on 4} preserves 47, , and so by the above

lemma, if ged(n, |7} =1, then ¢,(g) is independent of g. This leads to the
following

CoROLLARY I1.6. Define y: T.—Z by y(g)=1 for every g; note that
Y= Xg Extend y to y:Z[T 1[[t1]—- Z[[t]] as before. Assume
ged(n, |Tg|)=1. Then o,(g)= (1/|T|) - coefficient of t" in y(G ), and y(G )

1

is simply TT, (1 —¢#*)~".
Proof. Follows directly from Theorem I1.3 and the above lemma. |

Remark 11.7. Let F be a fiber on a surface X, and E a (—1)-class on
X. Then the image of [E*] in 4% /(A ) can be written in the form n® g.
Interpreting Lemma 1.1(g), we see that » is either 1 or the multiplicity of
the fibration on X, according to whether F is a multiple fiber or not, and
thus the coordinate » for the images of [E" ] in 47 for all nonmultiple
reducible fibers F must agree, and » must be 1 for the multiple fiber.

All of the generating functions H(g) we obtain are rational, meaning
that they are the Taylor series of a quotient of polynomials. To see why
this is so, and to compute them explicity, we have the following lemma.

LemMma I1.8. Assume T=T,@® --- ®T,, where the T, are finite cyclic
groups with generators g; of order k;; then |T| =11k,;. Let Q(x4, ..., X,,, t) be
a rational function such that G.=Q(g,, ... €., 1). Let g be in T, and write
g=1I1g"™ Then

] kit kp— 1

=m z fcl,ml i"""'"Q(C;;", . Ck"jn’ 1),

=0 Jn=0

Hy(g)

where {, = e*™k,

Proof. Fix g, and recall that H.(g)=y,(Gr); hence both sides of the
above expression are additive in the terms of the power series of Q. Hence
it suffices to prove it for Q = f(x)¢, where f'is monomial in the x/s; in this
case Gp=ht", where h= f(g). If h= g, then every term of the multi-sum
above is ¢, and so the right-hand side sums to ¢’; this is H.(g) also. If
h # g, then the sum gives 0, since the sum of the powers of a primitive root
is 0. In this case H.(g)=0 also. |

We will now present our computations of the H,’s for those F’s with at
most 9 components without much further comment; we leave the verifica-
tions to the reader. The reader should be warned that some terms have
been collected in the following list.



418 HARBOURNE AND MIRANDA

List 11.9 of H.’s and G['s:
Eg:T={1};
G=1/(1-0)(1 =) (1= (1=t (1 ->)(1—19)
H)=1/(1-n1-2P 1= (1= (1 -r)1 -1
=1+1432+ 52+ 106 + 1565 + 27¢°
+ 3917 4+ 63184+ 90¢° +135¢1° 4 ...
E;:T={1,p};
G=[(1-0)(1 - (1 =) 1 =*)(1 = pr)(1 — p*)(1 — p*)] !
HO)=(1+2+4+2)/[(1=0)(1 =12 1 =2)(1—r*)? (1 —1%)]
=1+14+47+ 60+ 156* +220° + 444°
+ 6417 + 11218 + 159¢° + 2541 + ...

HB)=0@+2+2+ )/ [1-0(1-P 1-2)1—1*)* (1-1%)]
=14+202 4613+ 10¢* + 22¢° + 35¢°
+ 6417 + 9615 + 1597 +229¢1° + ...

EG:TZ{I,ﬁ’ﬁZ};
G=[(1-01—-r)(1-)1—-py(1 — )1 - p)(1 - p*r*)] !
H(1)=3[Gls_1+2Gls_¢,1;
=14+14+32+ 83+ 141" + 2665+ 491 + 7717 + 124:5 + 195° + - --
H(f)=H(*)=3[Gly_,—Gls_¢]
=t+302+62+ 1414+ 2607 + 4515+ 7717 + 1242 + ...
D2k9k>2: T={1aﬁ7yyﬂy}’
G=[1—0(1 =2 (1 =By 2 (1= )1 —y)(1 = Byr)] !

k=2 _
H(1)=<—t(1 — 224 (1413 Z (kj 2) t2’>

j=0
Jeven

. [(1_,)2 (1 _tl)k+l (1 _td)k—Z]-l

k=2 /1
H(ﬂy):(t(l =)+ (1447 Y (kj 2) t2f>

. [(1 _t)z (1 _t2)k+1 (1 __t4)k72]v1
H(B)=H(y)=1t-[(1-)* (1 —2)* ']
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Hps(1)=(1—1+2)/[(1—1)> (1-1%)*]
=1+14+52+683+ 161+ 201> + 405+ 5017 + 85¢5 + -
Hpy(B)=H(y)=H(By)=1/[(1 — 1)’ (1—7)*]
=1+202 461> +101* 4+ 2013 + 3015 + 50¢7 + 703 + - -
Hp(1y=(1—1+ 2+ 2)/[(1—1)> (1 =) (1 —1%)]
=1414+6024+853425 4355+ 806% + 112¢7 + 21415 + ---
Hps(By)=(t+ 7 =2+ ) [(1—1)> (1 =22)* (1 —1%)]
=143 +8°2 + 18 +35° + 6710 + 11247 +192¢8 4 .
Hpo(B)=Hpe(y)=(t+ 17+ +1)/[(1 —)(1 —1*)* (1 = 1%)]
=422 485 4+ 1464 + 358 + 561 + 11247 + 16818+ -
Hpg(D)=(1—t+ 2420+ =2+ 19)/[(1 —1)> (1 = 3)° (1 — 1%)?]
=1+14+72 4108 + 36¢* + 54¢° + 1401% + 21017 + 45068 + .-
Hpg(By)= (14202 =20+ 2¢* + 2°)/[(1 = 1)> (1 = )’ (1 = 1%)*]
=14 417+ 108 4+ 281% + 54° 4+ 12415+ 2107 + 4208 + - -
Hos(ﬁ)=H08(V)
=+ 4208+ 26+ P2+ 18/ [(1 — ) (1 —r2)° (1 — 1]
=4 2024100 4 181 + 54£° +90:% + 21017 + 3308 + - -
D2k+!’k>2:T={l9ﬁ9B2’ﬂ3};
G=[(1-0)(1—=B)(1 = F2r)(1—B*0)(1 —2) 1 (1= B2y 17!
H(B) =3[0 =) (1= >+ x()(1 = *) " + (= 1) (1 = 2) %],
2 if i=0(4)
where x(i)=< —2 if i=2(4)

0 if iisodd;
Hps(D=(1+24+32+3* + 38+ 315+ 7+ 2)/[(1 — 1)(1 — 12)? (1 — t*)?]
=14+t4+42+T78+184 42702 + 5265+ 7707 + 1318+ -

HDS(.B)zHDS(ﬂ3)
=+ 2430 +30 430+ 35+ 7+ 8)/[(1 — )(1 — 2)? (1 —1*)*]
=1+ 22+ T8 1204278 + 4205+ 770 + 1128 + - -
Hps(BH)=(t+32+ 2+ 3t + 38 + 1+ 307 + 8)/[(1 — 1)(1 = 1)? (1 — 1*)*]
=t1+47+ 70 + 160 + 2707 + 52654+ 7747 + 12815 + - ..
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Hp,()=(1+ 24453+ 61 +41° + 61+ 467 + 15 + 41° 4+ 1'%)/
(=01 =12 (1—-1**]
=1+1452+9 4 28¢* + 441> +100¢° + 15617 + 3061° + - -
HD?(B)=HD7(ﬂ3)
=+ +40+ 41 + 667+ 615+ 417 + 415 + 12 + 110
[ =1 =22 (1—1*)"]
=1+202 498 + 161% + 441° + 721° + 15617 + 240¢° + - ..
Hp (B =(1+4°7 + 2+ 41 + 667 + 415+ 617 + 415 + 2 4+ 1)/
(=01 =) (1-1")]
=1+ 502+ 97 + 25¢* + 441> + 100¢° + 15617 4 300¢% + - --
A 1, k=222T={1,8,8% .., B}
G=[(1—-0)(1—pe)(1 —p)--- (1= "'n)] "
Glpoy= (=11 where d=gcd(j, k).
To come up with the formulas below in these cases, the following result

is helpful; it follows from Lemma I1.8, and we leave it to the reader to
verify it:

H,, (B)=7) x(d i)(1—") """,

Etﬂk
where

() uldid, i)

d )=l )

== i 0)

(Here u(N)=the Mobius function =(—1) if N is a product of j distinct
primes, and 0 if there is a prime p such that p? | N; u(1) = 1.) In particular,
if k is a prime p, then

1
H(ﬂ’)=; [(1=0)""+x(p, )1 —1t7)""],

where
L fp—1 i pli
x(p’l)_{—l it pri
Hy(1)=1+414+202 42043+ 30°0 + 45+ 47 + 568+ -
H (B)=t+2420 4204385+ 315+ 487+ 418 + ...

A T={1, 5, p};
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Ho(D)=1+4+14202 4483 +50 + 75+ 1000 + 1207 + 155 + -

HAZ(ﬁ)=HA2(ﬂ2)
=t 4+ 204383+ 5+ T+ 9+ 1207 + 158 + - -

A3:T:{17 B’ ﬂZ’BB};
H(1)=1+1+32+ 534+ 106 + 1415 + 2215+ 3017 + 4315 + -
HA3(ﬁ)=HA3(ﬂ3)

=t 4+ 202+ 53 + 8%+ 141 +201° + 3017 + 405 + -
H(B)=1t+37+ 5249 + 1487 + 2215 + 3007 + 4218 + - -

A4:T={1, ﬂ7 ﬂz’ ﬂ33 ﬂ4}’

H o (1)=141t432+73 4 1414 4+ 261 + 421° + 6617 +991° + ..
HA4(B)=HA4(ﬂ2)=HA4(ﬁ3)=HA4(ﬁ4)

=143+ 734+ 1414 + 250> + 4215+ 6617 + 998 + ...
As: T={1,8, 8% B B* B°};
H (1)=1414+42+1083 42204+ 4265 + 800 + 13247 + 2178 + ..

HAS(B):HAS(ﬁS)
=t+32492 4200 + 4265 + 7500 + 13207 + 212688 + ...

HAS(ﬁZ)zHAS(ﬂ4)
=t+42 493 4+ 2204+ 420 + T8 + 13207 + 21718 + - ..

H () =143+ 108 + 206 + 426° + 7615 + 13247 + 21268 + - .
A6: T={1, ﬁ’ ﬂz’ )83, ﬂ4a ﬁsa :86}
Ho(1)=1+1+42 41202 +30t* 4 661° + 1321° + 24617 + 429:% + ...
H o(B)=t+4 + 1263 4+ 30t* + 661°
+ 13215+ 24517 + 42968 + ... for7ti.
A T={1, 8,68 .. B"};
H (1) =141+5+ 156 +431* + 996 + 21715 + 42917 + 81018 + - .

H (B*) for i odd = 1 + 41 + 15 + 40r*
+99£° 4 212° 4+ 42917 + 8001 + - - -

HA7(ﬁ2) = HA7(ﬂ6)
=14+ 502+ 15083 44204 + 9945 + 2171 + 42917 + 8088 + ...
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H (B =t+ 52+ 1563+ 43¢* +991° + 21715+ 42917 + 80918 4 - -
Ag: T={1, B, B2, ... B*};
H,(1)=1+1+ 52+ 1912 + 55¢* + 143¢°
+ 3356+ 715¢7 + 1430¢% + 27041° + - --
H o (BYif3 fi=1t+4 52+ 182+ 55¢*
+ 143¢% + 333¢% + 715¢7 4 14306 + 2700¢° + - --
H 5(B?)=H x(B%) =1+ 517 + 1913 + 55r* + 143¢°
+335¢% 4+ 715¢7 + 143078 + 2703¢° + - -

II1. EXTREMAL SURFACES

Our goal in this section is to compute the number |&| of exceptional
curves on an extremal (rational minimal numerically elliptic) surface X in
terms of the data assembled in the previous sections. To state the main
theorem, we require just a bit more notation. Note that [K* */I'*] can
be viewed as a subgroup of @7 in the extremal case; we denote this
subgroup by R. For r in R, we write r for the coordinate of r in T,. Recall
also the degree function d on A%.

THeoReM II1.1. Let X be an extremal rational minimal numerically
elliptic surface. Fix any (—1)-class E in M,. Then

1€l =Y T] (coefficient of t*T=" 17

reR F

in H {torsion part of ([E" ]p+rp)).

Proof. Note that ¥ = K*/K acts transitively on M, with trivial stabi-
lizers, and I'/K< & is finite index in the extremal case. Fix any Ee M.
Then M, =% - E. (Here the “” is the #-action.) Also,

M, = U (x+I)-E= | I (x-E),
x+lekYr x+TekYr
and these unions are disjoint. Hence
é”=( U F-(x-E))mA+= U (- (x-E)ynd,)
x+Feki/r x+TekKi/r

and the union is disjoint, so
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6= Y Il-(x-E)nd = 3 |[(x-E)"nd4%|

x+TeKi/yr x+Teki/yr

since " is injective on the [™-orbits

= Y I[1'II(x-E)"1nd%] by Lemma L6(b)

x+TeKYr

= Y J[1'(x-E)1nd}] since [ ] is modding by I"
x+rekir

= Y ([17'M(x"+E")]ndle  since{x E)*=x"+E"
x+IeKYr

=Y LT NE T+r)nd?] using the definition of R
reR

=Y [TIL 17 (CE*Yp+rp)ad ], ]
reR F

=Y [] (coefficient of r*t#" 17 in H .(torsion part of ([E"1+r,)). 1
reR F

This is our main theorem. To make this solution of more interest we
now show what collections F of reducible fibers arise and what images
R=[K*"/I'"] arise.

It is easy but tedious to check that if F is a particular graph from Fig. 1
then the sublattice of .# generated by 4, is the root lattice of the simple
complex Lie algebra of the same name (without the ~ ) as that used for the
graph of Fin Fig. 1. If 4 — . is an embedding of a disjoint union of such
graphs, the lattice generated by 4 in & is the orthogonal direct sum of the
root lattices corresponding to the various graphs comprising 4. The sub-
lattices of ¥ corresponding to orthogonal sums of root lattices have been
classified. The result of interest in the extremal case is for sublattices of
rank 8.

THEOREM II1.2. The rank 8 lattices which are sums of root lattices and
which embed in ¥ are precisely those listed below:

E8s A83D83 E7®A11A7@A15E6®A2, DS(-BAS’ D4®23A4®25
Di@AY, A @A, DA, APDAD?, AP, D,® AP, and
A®E,

Up to reflections through the (—2)-classes in ¥, each of these lattices
embeds in & on a unique way.

Proof. See [Dy]. |

For our applications, we need to appeal to some of the theory of
Nikulin [N]. Let L be one of the above 15 direct sums of root lattices. The
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bilinear form (which is even, negative definite, and Z-valued) on L extends
to one on the dual lattice L* (which is Q-valued there), and descends to
a quadratic form g in L* /L, defined by ¢(x mod L) = {x-x)/2 mod Z. Any
overlattice of L corresponds to a totally isotropic subgroup R of L¥#/L; the
overlattice is realized as n ~'(R), where = is the quotient map from L* to
L*/L. The isotropicity ensures that = '(R) inherits a Z-valued bilinear
form. Now, according to Nikulin’s theory, = '(R) is unimodular if and
only if |R|?>=|L?*/L|. Since all these L’s are negative definite and rank 8,
if this size condition on R is satisfied, 7~ '(R) must be E; and we have
realized our embedding of L into E,.

Now in our situation the L is exactly I'/{(Ky) and the E; lattice is
K+/K, so that the R is realized as K*/I', or, more precisely in our situa-
tion, [K*+ /I~ ]. That is, the R of the discussion above is the previous R,
and the finite group L*/L is exactly @7T,.

For each group @7, there are only a finite number of possible R’s
satisfying the size condition and the isotropicity. We list them below; it is
exactly this information that Theorem III.1 requires.

List TIL.3. Root lattices which embed into the E; lattice, with the
possible isotropic subgroups R. For cyclic T, generated by f, we associate
the exponent of f; for D,,, where T is the Klein four group {1, §,v, By},
we associate (1,0) to 5, (0, 1) to v, and (1, 1) to fy.

Eg: T={1}; R={1}.
E.®A,;: T=2,xZ5; g(a, b) = (a* — b*)/4.
R=1{(0,0), (1, 1)}

Ec®A,: T=7,xZs; g(a, b) = (a* — b*)/3.
R=1{(0,0), (1, 1), (2, 2)}
R=1{(0,0),(1,2), (2, 1)}

Dy: T=27,x2,; q(a, b)=ab/2.
R={(0,0),(1,0)}

R={(0,0), (0, 1)}

De® AR T=79%  qla, b, c,d)=(a’+b*—c*—d*)/4.
R=1{(0,0,0,0),(0,1,1,0),(1,0,0, 1), (1,1, 1, 1)}
R=1{(0,0,0,0),(0,1,0,1),(1,0,1,0), (1,1, 1, 1)}

D®A,: T=Z,xZ,; qla b)=3(a—b>)S.
R={(0,0),(1, 1),(2,2), (3, 3)}
R={(0,0),(1,3),(2,2), (3, 1)}
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D% T=27%*% gla, b, ¢, d)
=(a*+ab+b*+c*+cd+d?)2.
R=1{(0,0,0,0),(1,0,1,0), (0,1,0, 1), (1, 1, 1, 1)}
R=1{(0,0,0,0),(1,0,1,0), (0, 1,1, 1), (1, 1,0, 1)}
R=1{(0,0,0,0),(1,0,0,1),(0,1,1,0), (1, 1, 1, 1)}
R=1{(0,0,0,0), (1,0,0,1), (0, 1,1, 1), (1, 1, 1, 0)}
R=1{(0,0,0,0),(1,0,1,1),(0,1,1,0), (1, 1,0, 1)}
R={(0,0,0,0),(1,0,1,1),(0,1,0, 1), (1,1, 1,0)}

— o~ -

ie, R=1{(0,0,0,0),(1,0,x),(0,1,»),(1,1,z)} where {x, y,z} are the
three nonzero elements of Z, x Z,,

D,@®AP*T=27%%  qla,b,c.de.f)
=(a’+ab+b*)2—(*+d>+e*+f7)/4.
R = {(000000), (001111), (10x,)(10x,)(01y, )01y, )(11z,)(11z,) },
where x,, v, z,€ ZP*, each with exactly two 0’s and two I's, such that

X +X3=p,+ y,=z,+z,=(1111) and x,+ y,+ z;= (0000).
There are six such subgroups R of T.

Ag: T=274; q(a)=5a9.
R=1{0,3,6}.
A, ®A,: T=7,x2,; q(a, b)—(az—4b2)/l6.
={(0,0),(2,1),(4,0), (6, 1)}.
AP T=2Zsx2Zs; qla, b)=3(a + b?)/5.
R=1{(0,0),(1,2),(2,4),(3,1),(4,3)}
(3,4), (4,2)}.

)
R=1{(0,0), (1,3),(2, 1),
As@A, PA: T=Zyx 2% 2>, g(a, b, ¢)
‘ =T7a*/12 + 2b%/3 + 3¢c%/4 = (Ta* + 8b% + 9¢?)/12.
R=1{(0,0,0),(2,1,0),(4,2,0),(3,0,1), (5 1, 1), (1,2, 1)}
R=1{(0,0,0),(4,1,0),(2,2,0),(3,0,1), (1, 1, 1), (5,2, 1) }.
AP?DAP: T=792x79? qla, b, ¢, d) = (5a° + 5b* + 6¢2 + 6d?)/8.
R=1{(0,0,0,0),(0,2,1,1),(2,0,1,1),(2,2,0,0),
(1,1,1,0),(1,3,0,1),(3,1,0,1),(3,3,1,0)}
R=1{(0,0,0,0),(0,2,1,1),(2,0,1,1),(2,2,0,0),
(1,1,0,1),(1,3,1,0),(3,1,1,0),(3,3,0, 1)}

481:128:2-11
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AP T=7%% gqla b, c,d)=2a*+b*+c*+d?)3.
R = {(0000), (01x,), (02y,), (10x,), (20y,),
(11z), (21w), (12u), (22v)},

[S]

where x,, y,e(1,1),(1,2),(2,1),(2,2)}, x,+y,=(0,0), z, w,u,ve {(01),
(02), (10), (20)}, such that x,+x,=z, x;+y,=w, y,+x,=u, and
y1+ y,=0. One can choose x, arbitrarily, and then any x, with exactly
one entry different from x,. Then the y’s, and z, w, u, v are determined.
There are eight such subgroups R of 7.

A% T=7%% g(a)=3) a}/4, where a=(a,, .., ag).

> a; =0 defines a quadratic Q in P],. This quadric is ruled by P} s in two
different ways. Any of these linear spaces lift to subspaces of T of rank 4;
these are the possible R’s. To be more specific, partition {1, ..., 8} into pairs
{iy, s}, {ia 06} {issi7), and {i,, ig}. Any such partition determines an
isotropic subgroup R as R={xel}]| x;+x;,, =1 for j=1,..4}. For
example, if one chooses each i, =k, then one obtains the R whose [F,-basis
is

(1,0,0,0,0, 1,1, 1),

(0,1,0,0,1,0,1, 1),

0,0,1,0,1,1,0, 1),
and

(0,0,0,1,1,1, 1,0).

All others are gotten by permuting the columns; there are 105 such R’s.

Remark 111.4. 1t is perhaps worth remarking that for each of the 15
root lattices above, one can construct a numerically elliptic surface which
gives rise to it. See Section IV.

We are now able to prove Theorem 0.1:

Proof of 0.1. By Corollary 11.6, H(g)=(1/|T¢|) x(G) for every F and
every g in T,. Moreover, |T|=s, |R|=([1rsF)"* (by the Nikulin
theory), and d([E"];)=m/m,, and since x(Gp)=s/*Qr, we have
coefficient of r“[E"1” in H.(torsion part of ([E" ]+ ry)= coefficient of
" in s;7'2Q, independent of r. Hence |&|=|R| TTr(sr"*Qr)mme=
[T (QF)mm, as claimed. |

Remark TIL.5. In general, it is clear from Theorem IIL1 that to

compute the number of exceptional curves |{£| in any case it suffices to
know the following data:
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» The reducible fibers F of the numerically elliptic surface. This
information is used to label the vertices of the corresponding graphs, and
to give projections onto the various torsion parts T of the 4}’s.

e One (—1)-class [E" ], written in terms of the generators set up for
the T/s in Section 1L

e The subgroup R=[K*"/T"] of @T.
+ The relevant coefficients of the power series H .

Of course, in some situations one can get away with less; in particular,
in Theorem 0.1 only the fibers and the power series are necessary.
Moreover, the R’s can be determined from fairly meager data in many
cases: the difference of any two exceptional curves gives a class in K+,
hence in R, and if one has enough such elements one can pin R down fairly
quickly. Also, List I11.3 shows that if the fibers are F£, and 4, then R is
already determined since only one R is possible. Finally, if one only knows
the fibers and m, and no other information, one can at least give a finite
list of possibilities for |&| by making the calculation for all possible R’s and
all possibie cosets of those R’s (the class [£” ] really only contributes in
the formula of Theorem IIl.1 to the R-coset). And in fact this is not so
complicated; it turns out that all R’s are conjugate under an automorphism
of ®@T, and one can get all the possibilities by trying all cosets of just
one R

Remark 1I1.6. We will close this section by explicitly showing how to
determine the classes in & themselves, instead of simply their number. Let
0;,=v,— u;vy; each §; is in the Q-span of the v/, with i>1. Note that
[8,]1= g:. Suppose that one (—1)-curve E is given. Write E~ =Y p,v,; with
p;=0. The set £ is of course {mvo+3 ¢,;0;1¢,20, % q; i, <m, ¥ (p;—
gq;) g;€ R}. To find & instead of & *, we must know E and the (— 2)-curves.
Then we simply plug in and get all the exceptional curves as the set { £+
Z(qi—p)wi+ U +(E+X (9~ p;)d,)’ ] Ky}, where we have written
w, for the element in the Q-span of the v, such that w =4,. If one desires
to have the classes of & in terms of an exceptional configuration, one must
now express the (—2)-curves in that way.

We use this method in Example V.6.

IV. EXISTENCE

One can arbitrarily prescribe data {4, R, e 4*} (here 6=[E" ] if the
data comes from a surface X) and compute a putative number of (—1)-
curves. But it is natural to ask:
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Question 1V.1. When does a surface exist with prescribed numerical
data {4, R, 8}, when 4 is an extremal set of fibers?

We will give a partial answer to this question in this section. Recall that
after choosing a multiplicity one component of each fiber F, we may write
5=, (ng, gr), where gr€ T and npe Z. Moreover, by Remark I1.7, each
ny=m except possibly for one F, and in that case n,= 1; this case occurs
only if the F with n.=1 is the multiple fiber. We call the data {4, R, 0}
uniform if n=m for every F, this corresponds to either a Jacobian surface
or a non-Jacobian surface whose multiple fiber is irreducible. It is the case
of uniform data for which we will answer Question I1V.1. Note that in any
case the multiplicity m is well defined from the data {4, R, d}.

To begin, fix uniform extremal data {4, R,J}. For each F recall the
degenerate lattice (4,) with basis 4., and define L= (4)/rad(4;). By
Nikulin’s theory, R determines an intermediate lattice M between @, L,
and (®,L;)*, which is abstractly isomorphic to an Ej lattice. Form the
lattice M =M @ ZI by introducing an additional basis vector I which is
isotropic and orthogonal to M; M is abstractly isomorphic to an E, lattice.

Choose an inverse image e in 4* of 8. Define i,: (1) > M =M@ ZI by
i,(x)=(x mod rad(4), e(x)I). We claim that i/, is independent of e, up to
an automorphism of M. To see this, let e and e’ be two lifts of § to 4%,
Then r* =e—e¢' € (4" ); if one defines o: M - M by a(v)=v+ (r-v)l, then
o transports i,. to i, and is a lattice automorphism. This justifies denoting
i, by i;, which we will henceforward do.

Define % to be the quotient M/Im(is); we call ¢ the group associated to
the data {4, R, §}. Since we assume that 4 is an extremal set of fibers, ¥
has rank 1, and is an extension of R by Z/mZ. If {4, R, 6} comes from a
surface X, then ¥~ K+ /(4°).

DerINITION 1V.2. The data {4, R, 8} is split if ¥~ R® Z/mZ, i.e., if the
extension ¢ of R by Z/mZ splits.

The structure of ¢ is, as we will see, important for deciding the answer
to Question IV.1, and so it is useful to have a simple criterion for given
data to be split. This we now provide.

ProPOSITION IV.3. Let X be an extremal surface with uniform data
{4, R, 8}. Then {4, R, &} is split if and only if X has a (—1)-curve E such
that, for every reducible fiber F of X, E meets F only at a single, multiplicity
one component of F.

Proof. We may assume m>2. Assume first that E as above is given.
For each F, number the components of F as in Section II so that the multi-
plicity one component v, is the one meeting E, and let 4’ be the set of
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other components. Then (4) is generated by the elements 4’ orthogonal to
E and by mK,; but Ky =E+*®ZK, so that

4 =Ky /(4)=(E*)/A)D(Z-Kx/Z -mKy)=R®Z/mL.

Conversely, assume that the data {4, R, d} for X splits, and choose a
splitting K+/(4) - Z/mZ. Let Q be the kernel of the composition K* —
Z/mZ. Since Q/(QnZ-K,)=Q/(mZ-K}) is isomorphic to E, there is a
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splitting Q> E, @ Z -mK,. Therefore, a s isomorph n £,
lattice.

In this situation there is a functional /, in Q% such that for every F
l,(xz)=1 for a unique weight one vertex xr in 4, and /,(v) =0 for other
vertices v of F. To see this geometrically, pass to the Jacobian surface X of
X. X has a section E, and E" is such a functional for K3 . Simply transport
this functional to /, via an isomorphism between Q and K ;y which preserves
4. (One can exhibit the desired /, using pure lattice theory also, a la the
arguments of Section III.)

Let Q,=ker(/,); then Q=Q,®7 -mK, and @, is isomorphic to an
E, lattice. Moreover, regarding /, as being in (2,® 7 -mKy)* we have
Li(mKy)= —1.

Since Q>Q,®7 -mK,<K;, we must have Ky =Q,@DZ-K; hence
mi, extends to a functional / on Ky such that /(K,)= —1, and still
I(xz)=m, but l(v) =0 for ve 4, — {x,}. Using the unimodularity of K*/K,
one can see that the image M, of M, in (K*)* is exactly the set
{le (K*)* | (K)= —1}. Hence there is a (—1)-class E such that /= E".
The assumptions above imply that E* €A, , so that F represents a
(—1)-curve. ||

This splitting criterion can easily be reformulated so as not to depend on
the existence of X; one simply replaces the existence of E by the existence
of the appropriate functional.

Note that, given a surface X, the data {4, R, 4} is not determined; R
depends on a choice of weight one component (and a numbering of the
components) in each fiber, and é depends on the choice of a (—1)-class.
We can to some extent normalize the data in the uniform split case:

CoROLLARY IV.4. Let X be an extremal surface with uniform split data.
Then Rc A4* can be taken arbitrarily, and 6 € A* can be taken so that the
torsion part of d is trivial.

Proof. Let E be the (— 1)-curve of the previous proposition. Then after
appropriate renumbering of 4, E meets only component v, of each
reducible fiber. Hence ¢ is as desired. To see that R may be taken arbitrarily,
simply note that all possible R’s are conjugate under lattice automorphisms
of 4* preserving 4, and these fix 5. |
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We can now give our partial answer to IV.1:

THEOREM IV.5. (a) Suppose X is extremal and has an irreducible fiber
mC, m>= 1, where C is anti-canonical. Then K*/(A4) is isomorphic to a sub-
group of Pic®(C).

(b) Let {4, R, 0} be uniform extremal data such that the associated
group % is isomorphic to a subgroup of Pic®(C) for some irreducible cubic

curve C < P2 Then there is a numerically elliptic surface X inducing the data
{4, R, 5}

Proof. (a) Assume first that 4#AP% Consider the restriction
n: Pic(X) — Pic(C); note that (4) < ker(n) so that K*/(4) maps to Pic®(C).
Suppose that K*/(4) does not embed into Pic®(C); then there is an inter-
mediate lattice I” between (4) and K+, I'# (4), with n(I")=0. One checks
that for (4)# A%, any intermediate lattice is a root lattice, and so I” has
a (—2)-class r not in (4). Riemann-Roch now implies that either r or —r
is effective. But any effective element in K+ is a linear combination of
(—2)-curves, so this is impossible since r¢ (4).

Suppose finally that 4 = AP8 Then X is quasi-elliptic and the charac-
teristic must be 2, so C must be of additive type, and in particular Pic’(C)
has only 2-torsion. Moreover, the data must split: otherwise the image of
Ky in K5 /(4) would be twice another element, hence K, goes to zero
under =, forcing X to be Jacobian, in which case the data is trivially split.
Thus K*/(4)=(Z/2Z)', where t=8 or 9 (depending on whether X is
Jacobian). Hence certainly K*/(4) is isomorphic to a subgroup of Pic®(C),
even though the induced map K*/(4) - Pic’(C) may not be injective.

(b) As in the discussion at the beginning of the section, the data
{4, R, 6} determines an inclusion is: (4) > M and a quotient n: M —» ¥4,
with ker(n)=Im(i;). Choose a set of simple roots rg, ..., rs of the Eq lattice
M with respect to which 4 is a set of positive roots. Now n: M — % induces
f: M = Pic®(C), since by hypothesis 4 = Pic°(C). Pick a smooth point ¢, of
C and inductively define {g, | 2<i<9} by Oc(¢)=0c(q; )@ f(—ro_,);
set L=0-(q,+q,+q3)® f(rg). Now £ is very ample, giving an embed-
ding of C into P2 Blowing up the images of the g, .., g, we obtain a
numerically elliptic surface X such that g: Pic(X)— Pic(C) restricts to
K+ =M as f. Now 4 is a set of positive roots of K+ which generates ker(r)
so A is indeed the set of (—2)-curves. Using the enumeration of 4 as given
in the data {4, R, §}, X induces the same R and J by construction. |

V. EXAMPLES

ExaMpPLE V.1. The simplest example is of a surface X with an Ej fiber
F. If F is multiple then X has precisely one exceptional curve. If F is not
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a multiple fiber but the fibration on X has multiplicity m>1, then the
number of exceptional curves on X is the coefficient 4, of the ™ term of
the Talor series of [(1—1%)(1—)(1 =t (1 -V (11— (1—-n] L
So, for example, a, =1, a,=3, a;=35, and a,=27. These results follow
immediately from Theorem 0.1, and the existence of an X for every m> 1
follows from Theorem IV.5.

ExampLE V.2. If X is an extremal surface with 4=FE;, Ag, Dy,
E,®A,, or A,® A, then there is only one possible R to use, so having
a (—1)-class represented by some known deA*/(4”), the number of
(—1)-curves on X is already determined. On the other hand, suppose F=
Ec® A, and 6= (3, B)® (3, B). Using the two possible R’s in this case we
find that there are either 68 or 66 exceptional curves on X. Both situations
occur by Theorem IV.5.

ExaMmpLE V.3. To give an example in greater detail, suppose X has
reducible fibers F and G of types D5 and A4, and that X has an exceptional
curve E such that (in the notation of Lemma I1.1} E" = (v5+ v, +05)@
(v)ed? @®AZ. Then by Table 1.4 we have [E"]=(4, B)D (1, B*)e
(4%) @ (4%). In this example the A, fiber must, by I1.7, be the multiple one,
and the multiplicity is 4. There are two possible R’s to use here, one
generated by (B, B), the other by (B, #*). In the formula of Theorem III.1,
the term corresponding to the fiber 4, is the coefficient of ¢! in H,(g) for
various g’s; this coefficient is 1 for all g, and therefore Theorem 0.1
simplifies to

|€| =Y (coefficient of #* in H p, (torsion part of [E" ] +rp,))
reR
3
=Y (coefficient of t* in H (')

i=0

=18+ 12+ 16 + 12 = 58, independently of which R is chosen.

ExaMPLE V4. The cases D,® A®* and A®* are remarkable for only
occurring for quasi-elliptic fibrations and only in characteristic 2. If X is a
non-Jacobian quasi-elliptic surface with either of these two configurations
of reducible fibers then the multiplicity of the fibration is 2. If the multiple
fiber is irreducible, then by Section IV, K/ @, I'(F) splits and hence we
can compute |&] by choosing § =0 and choosing R arbitrarily. The result
is [£|=133if A=D,® AP* and |&| =481 if 4=A4%* and both actually
occur. If the multiple fiber is reducible (a situation which definitely does
occur for both configurations [HL]), then we get the following results by
checking all possible choices of 6 and R. For D,® A®*, with D, multiple,



432 HARBOURNE AND MIRANDA

|&] is either 40 or 41. If one of the 4,’s is multiple, then |£| is 72 or 81.
For A®%, we get 270 or 297. Whether all of these actually occur we do not
know.

ExaMpLE V.5. We now consider an example “from scratch.” Let C be
a smooth conic in the plane, and let L,, L,, and L; be three distinct
tangent lines to C. Consider the pencil generated by 3C and 2(L, + L, +
L,); it has nine base points, three each at the tangent points. Upon
resolving the base points of the pencil one obtains an elliptic fibration with
one singular fiber of type E, (the transform of 3C) and one of type A4, (the
transform of the three lines). The 4, fiber has multiplicity 2, and we see
three exceptional curves immediately: the last blowup at each tangent point
produces a (—1)-curve. In_this case Theorem 0.1 applies, and says that
|é”’|=(QE6)2-(QA2)1=(9/ﬁ)~(1/\/§)=3. Therefore there are no other
exceptional curves. This example illustrates 0.1, has a multiple reducible
fiber, and we can “see” every curve with negative self-intersection on the
surface.

ExaMmpLE V.6. Our final example also starts from scratch, but is a bit
more ambitious than the previous example. Let C be a smooth plane cubic,
with a flex point p (taken to be the origin of the group law on C), and the
three nontrivial points ¢, g,, and g, of order 2. (The odd numbering is so
that a fiber will be labeled properly at the end.) Let L be the flex line
at p. Let v,, v,, and v; be the tangents to C at q,, ¢,, and ¢;, and let v,
be the line through the ¢,. Note that v,, v,, and v, all pass through p.
Consider the pencil of sextics generated by 2C and 2v,+ 2v;+ v, + v;.
There are nine base points to the pencil, two each at ¢,, g3, and p, and
three at ¢,. Let us resolve the pencil rather explicitly.

First biow up the order two points g,: this produces vs over g, vy Over
g,, and v, over g;. Now blow up p twice: this produces first a curve vy,
then a curve B. At this point the pencil is generated by 2C (writing C, etc.
for the proper transform) and 2v,+2v,4 v, + 03+ 205+ v+ vy + 204.
There is left one base point at each g,; blowing up g, to produce E, g, to
produce R,, and g, to produce R, resolves the pencil and gives an elliptic
fibration over P! with a double fiber (2C) and one Dy fiber (the vs). We
see five exceptional curves: L, B, E, R,, and R;. The components of the Dy
fiber are labeled properly to use the notations of Section IL

With F=Dg, T, ~Z7Z/2Z xZ/2Z, and the image of [E"] in T, is
[vs—2v,]=g¢=1 (Table IL4). For amusement, the other exceptional
curves have the following images in T,: L+—1, B—1, Ry+—> 7y, and Ry~ 7.
Since R, — E€ K*, [(R,— E)" ] is in R; this is the element 7, so R must be
{1,7} (the other choice would be {1, fy}). Since d[E" ]p,=2, we have
|&€] = (coefficient of > in H (1)) + (coefficient of > in Hp(y))=7+2=9.



NUMERICALLY ELLIPTIC SURFACES 433

Where are the other four? This is not so clear at the outset, but some
calculations show that the classes

Gl=U0+2R2—L_KX, G2=Ul+2R3"‘L—‘KX,
Gy=L—-v,—Ky, Gy=L—v,—K,

all represent exceptional curves. G, is the proper transform of a conic in P?
tangent to C to order 4 at ¢,, and tangent to C to order 2 at g,. Similarly,
G, is the proper transform of a conic tangent to C to order 4 at g, and to
order 2 at g,.

There is an order 2 automorphism of X, “reflecting” the Djg fiber about
its middle component v¢. G5 and G, are the images of G, and G, under this
involution. An alternate description of G, and G, is to blow the surface
down to P? in a different way, by blowing down E, R,, R;, L, v,, v,, v,
v;, and vg; then G5 and G, descend to conics similarly situated as G, and
G, were using the original way to blow down. In this original way, G, is
the proper transform of a quartic in P2 which: has a tacnode at p, with
tangent line L, meeting C four times at p; meets C four times at ¢,; has a
double point at ¢,; and is tangent to C at ¢;. G, is similar, exchanging the
roles of ¢, and ¢,.
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