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0. INTRODUCTION 

A numerically elliptic surface is a complete smooth algebraic surface X 
over an algebraically closed field k with a proper morphism f: X-* C to a 
smooth curve C such that the general fiber off is an integral curve of 
arithmetic genus 1. If the generic fiber is smooth the surface is called 
elliptic; otherwise it is called quasi-elliptic. The latter only can occur if k has 
characteristic 2 or 3, in which case the general fiber is a rational curve with 
an ordinary cusp [BM]. If no fiber off contains an exceptional cwue (i.e., 
a smooth irreducible curve isomorphic to [Fp’ and having self-intersection 
- l), then X is said to be minimal; all elliptic surfaces will hereafter be 
assumed to be minimal. 

One says that an elliptic surface X is Jacobian if the smooth points of the 
generic fiber X, comprise the Jacobian curve of X,,. It is equivalent for X, 
to have a rational point, or for f to have a section. For a rational Jacobian 
numerically elliptic surface, the exceptional curves are precisely the sections 
of the libration, which provides a tool by which an enumeration of the 
exceptional curves on a rational Jacobian numerically elliptic surface can 
be carried out (cf. [MP, HL, MOP]). Whether Jacobian or not, a rational 
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elliptic surface is the blowing up of nine points of the projective plane (Fp*, 
so the set of exceptional curves is always geometrically important in order 
to understand the structure of X as a blowing up of P*. The point of this 
paper is to determine and enumerate the exceptional curves in the non- 
Jacobian case. Our approach is to recast combinatorially the problem of 
enumerating exceptional curves on rational minimal numerically elliptic 
surfaces, which we then solve using generating functions. 

Although the complete result is complicated, the “generic result” is sim- 
pler to state, for which we recall some well-known facts. Let X be a rational 
minimal numerically elliptic surface with finitely many exceptional curves 
(i.e., X is extremal; see the definition ,preceding Proposition 1.5). In this 
case X must have reducible fibers, and the intersection graph of such a 
reducible fiber is always one of those shown in Fig. 1, and since X is 
rational the graph can have at most nine vertices. 

Given a reducible fiber F, the vertices of its intersection graph represent 
the irreducible components of F, while the number of edges connecting two 
vertices indicates the number of times the corresponding components of F 
meet. Because X is rational, there is a positive integer m (which we will 
refer to as the multiplicity of the fibration on X) such that every fiber is 
linearly equivalent to -mK,, where K, is the canonical class of X, X is 
Jacobian if and only if m = 1. 

If X is not Jacobian, then m > 1 and every fiber but one has at least one 
reduced component. Such fibers are said to have multiplicity 1. The 
remaining fiber is called a multiple fiber; its multiplicity is m, in the 
following sense. As an effective divisor, any fiber F is a sum of integral 
multiples of its irreducible components; the multiplicity is the g.c.d. of these 
multiples. 

For nonmultiple fibers, the multiples with which each component must 
be taken are given in Fig. 1 by the numbers (also often called multiplicities 
but here referred to as weights to avoid ambiguities) written inside 
each vertex. For a multiple fiber, the weights must be multiplied by the 
multiplicity m. The remaining numbers appearing in Fig. 1 are simply for 
identification of the various vertices of each graph. To each intersection 
graph F (and hence to each fiber having graph F) we associate the number 
sF of vertices of weight 1; we refer to sF as the discriminant of F. 

Now for each graph F shown in Fig. 1, construct the polynomial PF(t) 
in an indeterminate t. 

” 

Pi,(t) = (SF)“2 n (1 - t”‘), 
i=O 

where the product is over all of the vertices uO, . . . . u, of F, pi being the 
weight of ui. For eachj3 0, let (Q,:); be the coefficient of the term tj of the 
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Taylor series QF of (PF)-‘. We now give the simplest general statement of 
our more complete results. The proof is deferred to Section III. 

THEOREM 0.1. Let X be a minimal rational extremal numerically elliptic 
surface, let m be the multiplicity of its fibration, and let s be the product of 
the discriminants of the nonmultiple reducible fibers of X. If m and s are 
relatively prime, then the number of exceptional curves on X is the product 
over the reducible fibers F of X of the coefficients (Qp)m,,,,F, where mF is the 
multiplicity of the fiber F. 

It is easy to check that (QF)l = si!* for each intersection graph F 
appearing in Fig. 1, which together with the theorem gives the following 
well-known result [HL, MP, MOP]. 

COROLLARY 0.2. If X is a minimal rational extremal Jacobian numeri- 
cally elliptic surface, then the number of exceptional curves on X is sLJ2, 
where s is the product of the discriminants of the reducible fibers of X. 

We also work out the enumeration of exceptional curves in cases not 
covered by Theorem 0.1; that is, when m and s are relatively prime. The 
reason we do so is that while m and s need not be relatively prime (but 
often are) when X is elliptic, if X is quasi-elliptic and not Jacobian, then m 
and s are relatively prime only if X has a fiber of type E8 (cf. Fig. 1) [HL, 
Sect. 81. 

This paper is organized as follows: Section I deals with geometric back- 
ground; Section II uses this background to formulate the problem com- 
binatorially; Section III examines the foregoing in the context of extremal 
surfaces; Section IV discusses the existence of the surfaces; and Section V 
gives examples. Thanks go to David Klarner for consultations on 
generating functions, to the University of Nebraska at Lincoln College of 
Engineering for computer support, to Igor Dolgachev for bringing the 
article [Dy] to our attention, and to the Mountain West Algebraic 
Geometry Workshop for facilitating several meetings between the authors. 

Hereafter, X will denote a minimal rational numerically elliptic surface, 
not necessarily with section. 

I. AN INTERSECTION-THEORETIC CHARACTERIZATION 
OF THE EXCEPTIONAL CURVES ON X 

We begin with some definitions and notation: 

K,: the canonical class of X; 
(-l)-class: a class EEPicXwith E*= -1 and E.K,= -1; 
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M, : the set of (- 1)-classes of X; 
(- I)-curve or exceptional curve: a smooth rational curve E on X the 

class of which in Pit X is a (- 1 )-class; 
F: the set of classes of exceptional curves of A’; 
(-2)-class: a class NE Pit X with N2 = -2 and N. K, = 0; 

M,: the set of (-2)-classes of X; 
(-2)-curve or nodal curve: a smooth rational curve N on X the class 

of which in Pit X is a (-2)-class; 
A: the set of classes of nodal curves of X (or, more abstractly, the 

vertices of a disjoint union of not necessarily distinct graphs of Fig. l-see 
the remarks after Proposition 1.5); 

A + or nodal cone: the set {D E Pit X 1 D. N 3 0 for all NE A >; 

Kl: the classes of Pit X perpendicular to K,; 

f: the subgroup of K’ generated by A and K, (note that I- is 
generated by A if m = 1 or the multiple fiber of X is reducible); 

A” : the free abelian group of functions from A to 7; 
A f : the semigroup in A# of functions which are nonnegative on A; 

9: the even unimodular rank 8 lattice of type E,. 

Note 1.0. By sending a curve to its divisor class we get injections 
(which for convenience we regard as inclusions) & c M, and A c M, c Ki 
since the divisor classes of distinct reduced irreducible curves of negative 
self-intersection are distinct. 

The following facts are well known. 

LEMMA 1.1. Let X be a rational numerically elliptic surface. 

(a) The anticanonical class -K, of X is numerically effective (i.e., 
meets any effective divisor nonnegatively) and effective (i.e., is linearly 
equivalent to an effective divisor). 

(b) If Cc X is an irreducible reduced curve with C2 < 0, then 
CEAU~. 

(c) Every nodal curve is a component of the numerically elliptic 
fibration on X, and every component of a reducible fiber is a nodal curve. 

(d) The set A is finite. 

(e) If v E Kl, then v2 < 0; moreover, v2 = 0 if and only if v is a multiple 
of Kx. 

(f) K’ is a root lattice of type E9 ( = E,) and Kl/(K,) GZ 9. 

(g) For some positive integer m (called the multiplicity of the 
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fibration) all fibers of the numerically elliptic fibration on X are linearly 
equivalent to - mK,. The fibration has a section if and only tf m = 1, in 
which case every fiber has at least one reduced component. If m > 1, there is 
always a unique fiber (called the multiple fiber) having no reduced 
components. A fiber never has more than nine components, and the inter- 
section graph of a reducible fiber is always among those listed in Fig. 1. 
Moreover, if (vO, . . . . v,] are the prime divisors comprising the support of a 
reducible fiber F, and { uO, . . . . u,,} are the weights of the corresponding 
vertices of the intersection graph of F, then F= u xi uiVi, where u is either 
m or 1, according to whether F is a multiple fiber or not. 

Outline of Proof (a) By the Bombieri-Mumford formula for fibers, 
the class of a fiber on X is a multiple of K,, so (K,)* = 0. Using Riemann- 
Roth for surfaces and Castelnuovo’s criterion h’(X, 2K,) = 0 for 
rationality, we see that -K, is effective, so fibers are antipluricanonical, 
whence -K, is numerically effective. 

(b) This follows from the adjunction formula, numerical effectivity of 
-K,, and the fact that integral curves have nonnegative genus. 

(c) The first statement follows since the fibers are antipluricanonical, 
and the second statement follows from the classification of reducible fibers 
on numerically elliptic librations [ BM]. 

(d) This follows from (c) since there can be only finitely many 
reducible fibers. 

(e) Since KL and indeed Pit X are isomorphic for all rational mini- 
mal numerically elliptic surfaces it suffices to prove this for some such X. 
Let X be Jacobian with a fiber of type 8, (i.e., the intersection graph of the 
fiber is the extended Dynkin diagram of type E, ; see Fig. 1). Then KL is 
generated by the components of the & fiber, and since K, is a primitive 
element of Pit X the result follows from the lemma on p. 28 of [BM]. 

(f) The graphs displayed in Fig. 1 are the extended Dynkin diagrams 
of the Dynkin diagrams of the finite dimensional simple complex Lie 
algebras. In particular, the E, Dynkin diagram is obtained from the graph 
shown in Fig. 1 of a fiber of type E, by excluding a vertex (in this case 
unique) of weight 1. The lattice 3 is just the free abelian group on the 
vertices of this E, Dynkin diagram (and hence has rank eight) with the 
bilinear form ( ). ( ) induced by the following rule. If a and b are different 
vertices, then a .b is 1 if a and b are adjacent vertices and a. b is 0 
otherwise; a. a = -2. But X is obtained by successively blowing up 9 
(possibly infinitely near) points of P2 so Pit X is free of rank 10, generated 
by e,, . . . . e,, where e, is the class of a line and ej is the total transform of 
the ith point blown up. The intersection form is induced by taking e,. e, 
to be 0 if i#j, 1 if i=j=O, and -1 if i=j>O. Now -K,=3e,- 
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0 I 2 3 4 6 a cycle of n > 2 nodes 

B n+3 

;>...< 

FIGURE 1 

el - ... - e, and K’ is generated by ro= e,- e, -e2 - e3, and ri= ei- 
ei+I, i= 1, . . . . 9. We also note that -K,= 3ro+2r, +4r2+6r,+ 5r,+ 
4r, + 3r, +2r,+r,. By (e) the radical of K’ is generated by K,, so the 
intersection form on K’ descends to KL/( K,) and it is now easy to check 
that sending ro, . . . . r, to the vertices 0 through 7 of the E, Dynkin diagram 
(see Fig. 1) induces an isomorphism of K’/(K,) with 9. 

(g) See [HL] for proofs and references to original sources. 1 

To distinguish which elements of M, lie in 6 we need to know: 

LEMMA 1.2. Any (- 1)-class is effectioe. 

Proof Take E E M, . Riemann-Roth and Serre duality give 

h”(X, E) + h”(X, K,- E) > ( 1/2)(E2 - E. K,) + 1 = 1. 

But Lemma 1.1(a) and -E. -Kx= -1 shows that -E= -K,+(K,-E) 
is not effective, implying that K, - E is not effective; i.e., h”(X, K, - E) = 0. 
Therefore h”(X, E) 2 1 so E is effective. i 
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We can now give a criterion due to Looijenga [L] for a ( - l)-class to 
be exceptional. 

PROPOSITION 1.3. The set & of exceptional curves is precisely A + n M, . 

Proof: Since every exceptional class meets every nodal class non- 
negatively, we of course have d c A+ n M,. To show equality, take 
E E A + n M, . By Lemma I.2 E is effective so we may write E as a positive 
linear combination of integral curves. Since E2 < 0, one of these curves C 
has E. C < 0 and so necessarily satisfies C2 < 0. Since E lies in A + , C 
cannot be nodal so by Lemma I. 1 (b) C is exceptional. Now E - C is effec- 
tive and perpendicular to K,, so E - C is a sum of components of fibers; 
i.e., E - C E ZY Thus (E - C)’ < 0 and equality holds iff E - C is a multiple 
of K, by Lemma 1.1(e). On the other hand, - 1 = E2 = ((E- C) + C)2 = 
(E-C)*+2E.C-C2, and since E2=C2= -1 we find that (E-C)2= 
-2E. C - 2 B 0. Thus (E - C)’ = 0, whence E - C is a multiple, say mK,, 
ofK,.Finallywederivem=O,givingE=C~Q:-1=E2=(C+mK,)2= 
C*+2mC.K,= -1-2m. 1 

To make use of Proposition 1.3, we recall a well-known and very useful 
group action on M,. For any elements L E Kl and E E M, , define TV to 
be E + L + ($)(L’ + 2L. E)K, in Pit X. Note that L2 is even since (as is 
clear for example from Riemann-Roth for surfaces) K’ is an even (negative 
semidefinite) lattice, meaning that if VE K’, then v2 is an even (non- 
positive) integer. Mnemonically, rL stands for “translation by L,” justified 
by this next lemma. 

LEMMA 1.4. (a) T defines an action of Kl on M, . 

(b) K, acts trivially with respect to this action. 

(c) KI acts transitively on M,. 

(d) The induced action of Kl/(K,) on M, is transitive with only the 
identity fixing any elements of M,. 

(e) Zf rank(E) d 8, then & is infinite. 

Proof These facts are well known. The proofs of (a)-(d) are easy. To 
see (e), note that rank(K’) = 9 since any rational numerically elliptic 
surface which is minimal is a blowing up of P2 at nine successive points. 
If rank(E) < 8, there is an element L of K’ in E’ having no multiple in E. 
But I is never empty since X is a blowing up of P2, and for any EE 8, the 
classes z~~(E), i > 0, are distinct by (d) and lie in d by Proposition 1.3. 1 

DEFINITION. If rank(r) = 9, X is said to be extremal. 
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The converse (1.5(c)) to Lemma (1.4(e) is also true. Our proof uses a 
homomorphism h : Pit X -+ A # : if A # 4, we define H” for HE Pit X by 
taking H”(N)= H.N, where Ned. 

PROPOSITION 1.5. Let Co be a r-orbit in M, with respect to the action 
by z. 

(a) Zf A # 4, then the restriction of A to 0 is injective. 
(b) The number of ( - 1)-curves in 0 is finite and nonempty. 
(c) ZfX is extremal (i.e., [Kl: r] < CD), then d isfinite. 

Proof: (a) Let E, Fe&J, so E-FET. But E” =F” means that E-F 
is perpendicular to r so in particular (E - F)* = 0. By Lemma 1.1(e) this 
means E equals F+ mK, for some integer m, but - 1 = E2 = (F+ mK,)* = 
-1-2m, so m=O. 

(b) If A =$, then d = M, by Proposition I.3 and every element of 
M, is a r-orbit by Lemma 1.4(b), so the result follows in this case. Now 
say A # 4. The { ( - 1 )-curves in 0} = 0 n A + ; this maps injectively via A 
by (a) into A#. To prove the finiteness it therefore suffices to show that 
(0 n A+) h is finite. Let m be the multiplicity, and let E be in 0 n A + Then 

Ned reducible N = component 
fibers F 01 F 

= redgibk EA ’ N N = component 
fibers F OfF 

< 1 E”(F) 

reducible 
fibers F 

since E”(N)>OVNand F2 1 N 
N = component 

ofF 

= redgibk 

E”( -mK,) 

libers F 

= m . ( # of reducible fibers) = mn, say. 

Therefore (tJJnA+)” maps into {sl&N)aOVN and CNEA6(N)Gmn} 
which is finite. 

If F is an element of Mi, we can write F as a sum F= xi Ci of prime 
divisors, and we can let L = cj C, where C, is an element of A. Then 
r _ L(F) is an element of A + n M, , so 0 n 8 is not empty. 
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(c) If X is extremal, then r has finite index in KL. But M, comprises 
one K’-orbit, hence linitely many r-orbits, and by (b) each contains 
finitely many ( - 1)-curves. Thus d is finite. 1 

Proposition I.5 shows there are two appropriate enumeration problems: 
for any X, enumerate 0 n d + , given a r-orbit 0 in M,; and, for X 
extremal, enumerate &. It is convenient to formulate a more abstract 
version of the first problem, which we solve in Section II, and we apply the 
results to solve the second problem in Section III. 

To formulate the abstraction, let A denote the union of the vertices of a 
collection F, , . . . . F,, of not necessarily distinct graphs from Fig. 1. A case of 
special interest will of course be when these are the intersection graphs of 
the reducible fibers on some surface. We will use the notation (A) for the 
free abelian group on the elements of A; note that the intersection graphs 
F 1, . . . . F,, induce a bilinear form on (A) by defining it on A: if N and M are 
elements of A, define N. M to be - 2 if N = A4 and to be r if N # M, where 
Y is the number of edges directly connecting the two vertices representing 
N and M in the disjoint union of the graphs I;,, . . . . F, (and thus either 0 
or 1 unless N and M are the two vertices of A, where N. M= 2). For A” 
the free abelian group of integer valued functions on A we thus have 
A : A + A# defined as before. We denote by A T those elements of A# 
which are nonnegative on A, by (A A ) the subgroup of A” generated by the 
image A” of A under “, and by [ 1: A# + A#/(A h ) the quotient 
homomorphism. We will denote the vertices of a single graph F by A,, and 
in a similar way we also have: A$, AF#t, and [ IF: A,” + A%/(A,^ ). Note 
that by restriction of domain we have canonical surjections A# + A: 
whenever F is one of the graphs in the collection F, , . . . . F,. 

LEMMA 1.6. Consider a finite collection C of not necessarily distinct 
graphs F of Fig. 1. 

(a) The canonical maps A# + A,# induce isomorphisms A # z 
@,A:, A: z @,A,“,, (A^)r @r(A;), andA#/(A”)z @rAF#/(A>), 
where the sums are taken over all graphs F in C. 

(b) Suppose C # r+5 and that C is the collection of graphs arising from 
the reducible fibers of some surface X. If 0 is a r-orbit in M, , then 0 A = 
[ ] - ’ [S h ] and the number of ( - 1 )-curves in 0 is precisely the cardinality 
I([]--‘[cO”])nA:I of theset ([ ]-‘[O”])nA~. 

(c) Let6=@.6,beanyelementofA#/(AA)~@rA,#/(A,^). Then 
I[ ]-‘(6)nATI is finite and equals nr IAF#+ n [ ];‘(S,)l, where the 
product is taken over all FE C. 

Proof (a) Since A is the disjoint union u A,, A# E @r A; is 
obvious and it is clear that it induces a bijection AT r @r A?+. Since 
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vertices in distinct graphs are orthogonal, (A h ) 2 OF (A > ) is clear and 
d#/(d^)r @FdF#/(d;) follows. 

(b) Clearly, CO” c [ ]-‘[0”]. On the other hand, let f be in 
[ ]-‘[O”]. Then [f]= [E”] f or some EEO, so f-E”E(A”)=f^. 
Pick GEM with G” =f -EA. Then T,(E)EO; since r,(E)=E+G+kK, 
for some k, we have T,(E)” = E” + GA (since K; =O), hence zJE)” =f: 
This proves that [ ] ~’ [O h ] = 0 A, Since A is injective on 0, then the 
number of (-1)-curves in 0 is JcOnd+l = [CO” ndT[ = I([ ]-‘[0”])n 
A:I. 

(c) By (a) it is clear that AT n [ I-‘(S)= eF(AJJ+ n [ ];‘(S,)) 
under the isomorphism A# z OF A,“. Thus the result follows if we merely 
show that AF”, n [ 1; ‘(6,) is finite. But F is a nonnegative sum C a,N, of 
elements Nj E A,, and for any NE A,, we have F. N = 0. Since any two 
elements f and g of [ 1; ‘(6,) differ by elements of (A,^ ), we see that 
C ai f(Ni) = C a,g(Ni). Since elements of AF”, are nonnegative on A, there 
can be at most finitely many for which the sum 2 ai f (Ni) is fixed. 1 

II. COMBINATORIAL PROBLEM 

In this section we work out the following 

Combinatorial Problem. Given F a graph from Fig. 1 and an element 6, 
of A,#/(A,^ ), compute IA:+ n [ ];‘(d,)l. 

Remark 11.1. When F is the collection of graphs arising from the 
reducible fibers on some surface X and 6 = OF 6, is the image [E” ] 
in A #/(A h ) E @ F A f /(At ) of a ( - 1 )-class on X, then the number 
)A: n [ Ip’(S)l of (-l)- curves on X in the same r-orbit of M, as E is by 
Lemma I.6 the product nfi- iA:+ n [ ];‘(S,)l over the graphs F of A. 
Thus a solution of the Combinatorial Problem solves the problem of com- 
puting the number of exceptional curves in any given r-orbit of M,. 

We now need to understand for each graph F of Fig. 1 the 
homomorphism [ IF: A$ -+ A,#/(A,^); we will denote AF#/(AF) by A:. Let 
ai be the element of A,$ dual to the vertex ui, i.e., oi(u,) = Kronecker’s 6,. 
Recall from our labelling that u0 has multiplicity one for every F, i.e., 
pLo = 1. Finally denote by zF the class C piu, in (AF); this is the fundamental 
cycle of the fiber F. 

LEMMA 11.2. (a) The kernel of “: (AF)-+ A; has rank 1, and is 
generated by zF. 

(b) A:= b @ T,, where T, is a finite abelian group. 
(c) The “degree map” d: A f -+ Z given by d(f) = f (zF) is an onto 
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homomorphism, and (A; ) c ker(d); hence d descends to a map d: A; -+ Z, 
andO-+T,-+A~~Z-+Oisexact. 

(d) TFg ker(d)/(A,^). 

Proof. Statement (a) is well known; it is easy to prove using the lemma 
of Bombieri and Mumford [BM, p. 281. Statement (b) follows from (a), 
after noting that (AF) and Ad have the same rank; T, is the torsion part 
of A:. To prove (c), note that d(o,) = 1, showing that d is onto; 
d((A,? )) = 0 since zF is orthogonal to each ui. Part (d) follows from (c). 1 

A splitting of the sequence of 11.2(c) is afforded by a choice of a multi- 
plicity one component of F, as follows. Let u,, be such a component. Then 
for each i, ui - piu, is in ker(d) and therefore g, = [oi - ,u~u~] E TF. The map 
from A: to T, defined by sending [C criui] to C cr,g, is the splitting of the 
sequence, and exhibits AZ as a direct product Z x T,. Note that the 
projection onto the Z factor is given by the degree map d, and therefore 
sends [oil to pi for each i. 

Therefore our problem, slightly restated, is to compute 

a,(g) = IA;+ f-J c I;‘(m 811 for n E Z and g in T,, 

after making the identification of A; with Z @ TF as described above. 
Let fMg)=Lo o,(g) t” E Z [ [t] 1. We will compute this generating 
function H,. 

Let Z[ TF] be the group ring of the finite abelian group T,, and define 
GF=ni(l-g,t~l)-‘~~[Tf][[t]]. Define 

xx: T/.-r Z by XJh)= ; 
if h=g 
if h#g; 

this is a “characteristic function” for the element g of T,., and is not a 
group homomorphism. Extend xs to a map xg : H[ TF] [ [ t] ] + Z[ [ t] ] by 
letting xg act on the coefficients; this map is additive, but is not a ring 
homomorphism. 

THEOREM 11.3. H,(g) = xn(G,). 

Proof: By expanding the factors of G, we have 

G,= n c (g,t”‘)kc= 1 n gk,tfllk, 
i k, (ko, . ..I i 

all k, > 0 

= (& (I-I P:‘) t= pckl. I 
all k, > 0 

Note that the terms of the sum are in l-l correspondence with the 
elements of AZ+ : (k,, . ..) corresponds to Ckiui. The term (k,, . ..) 
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corresponds to an element of [ ];‘(n @ g) if and only if ni gf’ = g and 
C pLiki= n. Hence the coefficient of gt” in G, is the cardinality of A?+ n 
[ ]f ‘(n@ g), which is by definition a,(g). The map xn now eliminates all 
terms of G, other than those of the form gt”, and replaces the g with 1, 
giving therefore H,(g). 1 

To apply this result in a concrete situation, we will need to know the 
group T, and the elements g;. This information follows in Table 11.4. We 
have gone to a multiplicative notation for the group T,, since addition in 
T, appears in our application as group ring multiplication. 

The calculations involved in producing Table 11.4 are quite standard, 
and the results well known. The lattice generated by deleting uO from A, is 
a negative definite root lattice of type A,, D,, or E,. The group Tb- is the 
discriminant-form group (using the notation of [N]), or the dual quotient 
group (using the notation of [CS]) of the root lattice. The computations 
of the gj in each case are straightforward. 

Note that for each g in T, there is a unique vertex ui with pi= 1 in the 
graph, such that gi = g. This identification of T, with the multiplicity one 
components of the graph depends of course on the choice of uO. 

Let S, be the automorphism group of the graph for F. Note that S, acts 
transitively on the set of vertices with multiplicity one. We have of course 
an induced action of S, on (AF), A:, AZ, etc., preserving the bilinear forms 
and the degree map d. 

LEMMA 11.5. Assume gcd(n, 1 T,I ) = 1. Then S, acts transitively on the 
set of elements 6 of AZ with d(6) = n. 

Proof. The above set is (n[o,] @ gl gE TF}. We will show that for 
each g in T, there is an automorphism eg in S, which sends n[oo] @ 1 
to n[oo] 0 g. Fix the g in TF. Let O, be an automorphism of the graph 
sending uO to ui, where gy = g. Then 

~,(nCkJ)=nC~il =nCbl +~(C~i-~~l)=~C~~lOg~=~Co~lOg 

as required. 1 

TABLE II.4 

F T, Elements g,(g, = 1 in every case) 

A,-,: (BIB”=l> g, = fi’ for every i 

fin+,, n odd: <B,Ylb*=Y*=1) g,=By,g,=y,g,=8,g*,=l,g,+,=By(k~2) 
d ,,+,,neven: <PlB’=l> g,=B*,g,=8,R1=8~.92*=I.g2X+i=82(k~2) 
E,: <BIP’=l> g,=g,=l,g,=g,=P,g,=g,=8’ 
E,: (818’=1> g,=g,=g,=g,=l,g,=g,=g,=8 
IT;,: (11 g, = I for every i 
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Note that the action of S, on Af preserves A;,, and so by the above 
lemma, if gcd(n, 1 T,J) = 1, then o,(g) is independent of g. This leads to the 
following 

COROLLARY 11.6. Define x: TI;+ Z by x(g) = 1 for every g; note that 
x = C, xg. Extend x to x:Z[TF][[t]] -+Z[[t]] as before. Assume 
gcdh ITFI)= 1. Then o,(g)=(IIIT,-II . coefficient oft” in x(GF), and x(G,) 
is simply Hi (1 - t’“) I. 

Proqf: Follows directly from Theorem II.3 and the above lemma. 1 

Remark 11.7. Let F be a fiber on a surface X, and E a (- 1 )-class on 
X. Then the image of [E”] in A,#/(A,^ ) can be written in the form n@ g. 
Interpreting Lemma 1.1(g), we see that n is either 1 or the multiplicity of 
the libration on X, according to whether F is a multiple fiber or not, and 
thus the coordinate n for the images of [E” ] in A: for all nonmultiple 
reducible fibers F must agree, and n must be 1 for the multiple fiber. 

All of the generating functions H,(g) we obtain are rational, meaning 
that they are the Taylor series of a quotient of polynomials. To see why 
this is so, and to compute them explicity, we have the following lemma. 

LEMMA 11.8. Assume T= T, @ . @ T,,, where the Tj are finite cyclic 
groups with generators gj of order k,; then I TI = n ki. Let Q(x,, . . . . x,, t) be 
a rational function such that G,= Q( g,, . . . . g,, t). Let g be in T, and write 
g = n gy”‘. Then 

1 k, ~ 1 k,- I 

HFk) = jyj ,;, . . .,“;, r:;“’ . . it’-‘Q(ik,“, . . . . ik,‘“, t), 

where ik = e2nilk. 

ProoJ Fix g, and recall that H,(g) = x&G,); hence both sides of the 
above expression are additive in the terms of the power series of Q. Hence 
it suffices to prove it for Q = f (x) t’, where f is monomial in the x,‘s; in this 
case G,= ht’, where h = f(g). If h = g, then every term of the multi-sum 
above is t’, and so the right-hand side sums to t’; this is H,(g) also. If 
h # g, then the sum gives 0, since the sum of the powers of a primitive root 
is 0. In this case HF( g) = 0 also. [ 

We will now present our computations of the H;s for those F’s with at 
most 9 components without much further comment; we leave the verika- 
tions to the reader. The reader should be warned that some terms have 
been collected in the following list. 
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List II.9 of H$s and G,‘s: 

E,:T={l); 

G=1/(1-t)(l-t2)2(l-t3)2(1-t4)2(1-t5)(1-t6) 

H(1)=1/(1-t)(l-t2)2(1-t3)2(1-t4)2(l-t5)(l-t6) 

= 1 + t + 3t2 + 5t3 + lot4 + 15t5 + 27t6 

+ 39t’ + 63ts + 90t9 + 13%” + . . 

E,: T= { 1, /I}; 

G=[(1-t)(l-t2)2(1-t3)(1-t4)(1-~t)(l-~t2)(1-~t3)]~1 

H(1)=(1+t3+t4+t5)/[(1-t)(l-t2)3(1-t3)(1-t4)2(1-t6)] 

= 1 + t + 4t2 + 6t3 + 15t4 + 22t5 + 44t6 

+64t’+ 112t8+ 159t9+254t1’+ ... 

H(~)=(t+t2+t3+t6)/[(1-t)(l-t2)3(1-t3)(1-t4)2(1-t6)] 

= t + 2t2 + 6t3 + lot4 + 22t5 + 35t6 

+ 64t’+ 96t* + 159t9 +229t”+ ... 

= 1 + t + 3t2 + 8t3 + 14t4 + 26t5 + 49t6 + 77t’ + 124t’ + 195t9 + . . . 

H(B)=H(82)=fCGIS=I-Glp=r,l 
= t + 3t2 + 6t3 + 14t4 + 26t5 + 45t6 + 77t’ + 124t8 + . . . 

D,,,k~2:T=(l,B,y,By}; 

j even 

H(&I)= t(l-t2)k-2+(1+t2) 1 1;: (“T’) 121) 

j odd 
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H”4(1)=(1-t+t~)/[(1-t)2(1-f*)3] 

= 1 + t + 5t2 + 6t3 + 16t4 + 20t5 + 40t6 + 50t’ + 8%’ + . 

HD4(P)=H(y)=H(By)=tlC(1--t)2(1-t2)31 
= t + 2t2 + 6t3 + lot4 + 20t’ + 30t6 + 50t’ + 70t8 + . . . 

ff,,(1)=(l-t+t2+t3)/[(l-t)2(1-t2)4(l-t4)] 
= 1 + t + 6t2 + 8t3 + 25t4 + 35t5 + 80t6 + 112t’ + 214t* + . . 

HD6( fly) = (t + t2 - t3 + t4)/[( 1 - t)2 (1 - t*)4 (1 - t4)] 

= t + 3t2 + 8t3 + 18t4 + 35t5 + 67t6 + 112t’ + 192t* + ... 

ff,,( B) = HD&) = (t + t* + t3 + t4)/[( 1 - t)( 1 - t2)’ (1 - t”)] 

= t + 2t2 + 8t3 + 14t4 + 35t5 + 56t6 + 112t’ + 168t* + ... 

H,,( 1) = (1 - t + t* + 2t3 + t4 - t5 + t6)/[( 1 - ty (1 - t2)5 (1 - t4)2] 

= 1 + t + 7t2 + lot3 + 36t4 + 54t5 + 140t6 + 21Ot’ + 45Ot* + . . . 

HD*(~Y)=(t+2t*-2t3+2t4+ts)/[(1-t)*(1-t*)5(1-t4)2] 

= t + 4t2 + lot3 + 28t4 + 54t’ + 124t6 + 210t’ + 420t’ + . . 

= (t + t* + 2t3 + 2t4 + tS + P)/[( 1 - t)( 1 - t*y (1 - t4)2] 

= t + 2t2 + lot3 + 18t4 + 54t5 + 90t6 + 210t’+ 330t* + . . . 

2 if i=O(4) 

where x(i) = - 2 if i=2(4) 

0 if iis odd; 

H,,( 1) = (1 + t2 + 3t3 + 3t4 + 3t5 + 3t6 + t’ + ?)/[I( 1 - t)( 1 - ty (1 - t4)3] 

=1+t+4t2+7t3+18t4+27t5+52t6+77t7+131t8+ . . . 

= (t + t* + 3t3 + 3t4 + 3tS + 3t6 + t’ + t”)/[( 1 - t)( 1 - t*y (1 - t4y-j 

= t + 2t2 + 7t3 + 12t4 + 27t5 + 42t6 + 77t’ + 112P + . . 

H,,( B') = (t + 3t2 + t3 + 3t4 + 3t5 + t6 + 3t’ + P)/[( 1 - t)( 1 - tq2 (1 - t4)3] 

= t + 4t2 + 7t3 + 16t4 + 27t5 + 52t6 + 77t’ + 128t’ + . . . . 
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= 1 + t + 5t2 + 9t3 + 28t4 + 44t5 + lOOr + 156t7 + 3061~ + . . . 

ffD7(P) = ffD7(P3) 

= (t + t2 + 4t3 + 4t4 + 6t5 + 6t6 + 4t7 + 4t8 + t9 + t”)/ 

[(l-t)(l-t2)3(1-f4)4] 
= t + 2t2 + 9t3 + 16t4 + 44t5 + 72t6 + 156t7 + 240t’ + . . . 

H,,( p*) = (t + 4t2 + t3 + 4t4 + 6t5 + 4t6 + 6t7 + 4t8 + t9 + t”)/ 

[(1-t)(l-t’)“(l-t4)4] 
= t + 5t2 + 9t3 + 25t4 + 44t5 + 100t6 + 1 56t7 + 300t8 + . 

A k~,,k>2:T={1,p,P2 ,..., fikp’}; 

G=[(1-t)(l-~t)(l-~2t)~~(l-~k-1t)]~’, 

GI,=C6=(1-tk’d)--d, where d = gcd(j, k). 

To come up with the formulas below in these cases, the following result 
is helpful; it follows from Lemma 11.8, and we leave it to the reader to 
verify it: 

where 

HA,&?‘)=; 1 x(d, i)(l -PPk“‘, 
dlk 

(Here p(N) = the Mobius function = ( - 1)’ if N is a product ofj distinct 
primes, and 0 if there is a prime p such that p2 1 N; p( 1) = 1.) In particular, 
if k is a prime p, then 

where 

X(P, 4 = 
P-l if pli 
-1 if pli. 

A,:T={lJ}; 

HA,(l) = 1 + t + 2t2 + 2t3 + 3t4 + 3t5 + 4t6 + 4t’ + 5t8 + . . . 

H,,(P) = t + t2 + 2t3 + 2t4 + 3t5 + 3t6 + 4t7 + 4t8 + . . . 

A,: T={LP,B2}; 



NUMERICALLY ELLIPTIC SURFACES 421 

H,,( 1) = 1 + t + 2t2 + 4t3 + 5t4 + 7tS + lot6 + 12t’ + 15t8 + ‘. . 

ff.42( PI = ff,*( b2) 

= t + 2t2 + 3t3 + 5t4 + 7tS + 9P + 12t’+ 15t* + ‘. 

A,: T= (1, P, 8*> B3); 
H,,( 1) = 1 + t + 3t2 + 5t3 + lot4 + 14P + 22t6 + 30t’ + 43t* + ‘. . 

HA3(B) = fL3M3) 

= t + 2t2 + 5t3 + 8t4 + 14P + 20t6 + 30t’ + 40P + . . . 

H,,( j3’) = t + 3t2 + 5t3 + 9t4 + 14tS + 22P + 30t’ + 42P + . . . 

A,: T= { 1, B, I*, b3, B”}; 
H,,( 1) = 1 + t + 3t2 + 7t3 + 14t4 + 26t5 + 42t6 + 66t7 + 99t* + . . 

ff/l4(/3) = ffA4(B2) = ff,44(P3) = ff,44(P4) 
= t + 3t2 + 7t’ + 14t4 + 25t* + 42t6 + 66t7 + 99t8 + . . 

A5:T=rl,8,82,p3,84,85}; 

H,,( 1) = 1 + t + 4t2 + lot3 + 22t4 + 42t’ + 80t6 + 132t’ + 217t* + . . 

ffAS(B) = ffA5(B5) 
= t + 3t2 + 9t3 + 20t4 + 42t5 + 75t6 + 132t’ + 212t* + . . . 

H/45( B’) = ff,45( 6”) 
= t + 4t2 + 9t3 + 22t4 + 42t5 + 78t6 + 132t’ + 217P + . . 

H,,( j3’) = t + 3t2 + lot3 + 20t4 + 42t5 + 76t6 + 132t’ + 212P + . . . 

A,: T= { 1, 8,8*, P3, P4, B5, B”} 

HA6( 1) = 1 + t + 4t2 + 12t3 + 30t4 + 66t5 + 132t6 + 246t’ + 429~’ + . . . 

H,,( pi) = t + 4t2 + 12t3 + 30t4 + 66t5 

+ 132t6 + 245t7 + 429t’ + . . . for 7 1 i. 

-47: T= { 1, B, 8*> P3, . . . . B’}; 
HA’(l) = 1 + t + 5t2 + 15t3 + 43t4 + 99t5 + 217t6 + 429t’ + 810t’ + . . 

H,,( /Ii) for i odd = t + 4t2 + 15t3 + 40t4 

+ 99t5 + 212t6 + 429t’ + 800t’ + . 

H‘47( D’) = H,47( P”) 

= t + 5t2 + 15t3 + 42t4 + 99t5 + 217t6 + 429t7 + 808~~ + . 
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H,,( /?“) = t + 9’ + 1 5t3 + 43r4 + 99t5 + 21 7t6 + 429t7 + 809t’ + . . 

A,: T= (1, fi, p2, . . . . /3”}; 

H,,( 1) = 1 + t + 5t2 + 19t3 + 55t4 + 143t5 
+ 335t6 + 715t7 + 1430P + 2704t9 + ..’ 

H,,(/I’)if3Ji=t+5t2+18t3+55t4 
+ 143t5 + 333t6 + 715t7 + 1430P + 2700t9 + ..’ 

H,,( /I’) = HA8( /I”) = t + 5t2 + 19t3 + 55t4 + 143ts 
+ 335t6 + 715t7 + 1430P + 2703t9 + . . . 

III. EXTREMAL SURFACES 

Our goal in this section is to compute the number 181 of exceptional 
curves on an extremal (rational minimal numerically elliptic) surface X in 
terms of the data assembled in the previous sections. To state the main 
theorem, we require just a bit more notation. Note that [K’ ,,/r” ] can 
be viewed as a subgroup of @T, in the extremal case; we denote this 
subgroup by R. For r in R, we write rF for the coordinate of r in T,. Recall 
also the degree function d on A$ 

THEOREM 111.1. Let X be an extremal rational minimal numerically 
elliptic surface. Fix any ( - 1 )-class E in M, . Then 

J&l = 1 n (coefficient oftdtCE” IF) 
~GR F 

in ffF( torsion part of ( [E A ] F + rF)). 

Prooj Note that 2 = K’/K acts transitively on M, with trivial stabi- 
lizers, and T/K E 2’ is finite index in the extremal case. Fix any E E MI. 
Then M1 = 3. E. (Here the “?’ is the 2-action.) .Also, 

Ml= u (x+r).E= u T.(x.E), 
x+i-cKL/I- .x + l-c Klji- 

and these unions are disjoint. Hence 

T.(x.E) nA+= u (r.(x.E)nA+) 
> x + r t Kljr 

and the union is disjoint, so 
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Jdl= c Ir.(X.E)nA+I= c If.(x.E)^ ndT/ 
x + I-e KLII- r f rc KLli- 

since A is injective on the f-orbits 

= C I[ ]P1[r.(~~E)“]~A~~ byLemmaI.6(b) 
x+r~K1ir 

= C I[ ]p’[(x.E)“]nd:I since [ lismoddingbyr 
.~+r~Kl/r 

=,,,sL,rl[ ]-‘[(x^+E^)]nd,Xo since(x~E)A=xA+EA 

=rFRl[ ]p’([E”]+r)nd#,( usingthedefinitionofR 

=rJRp ff toe icient of tdtCEA If) in H,(torsion part of ( [EA ] + rF)). m 

This is our main theorem. To make this solution of more interest we 
now show what collections F of reducible fibers arise and what images 
R = [K’ “/I-^] arise. 

It is easy but tedious to check that if F is a particular graph from Fig. 1 
then the sublattice of 6p generated by A, is the root lattice of the simple 
complex Lie algebra of the same name (without the - ) as that used for the 
graph of F in Fig. 1. If A + 9 is an embedding of a disjoint union of such 
graphs, the lattice generated by A in 3 is the orthogonal direct sum of the 
root lattices corresponding to the various graphs comprising A. The sub- 
lattices of 9 corresponding to orthogonal sums of root lattices have been 
classified. The result of interest in the extremal case is for sublattices of 
rank 8. 

THEOREM 111.2. The rank 8 lattices which are sums of root lattices and 
which embed in 9 are precisely those listed below: 

E,, A,, D,, COAL, A,OA,, E,OA2, D,OAx, Dy2, A?‘, 
&@A?‘, AsOA,OA,, Ay2@Ap2, Ap4, D4@Ap4, and 
AB8 1 . 

Up to reflections through the (-2)-classes in 9, each of these lattices 
embeds in 9 on a unique way. 

Proof See [Dy]. 1 

For our applications, we need to appeal to some of the theory of 
Nikulin [N]. Let L be one of the above 15 direct sums of root lattices. The 
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bilinear form (which is even, negative definite, and Z-valued) on L extends 
to one on the dual lattice L# (which is Q-valued there), and descends to 
a quadratic form q in L#/L, defined by q(x mod L) = (x x)/2 mod Z. Any 
overlattice of L corresponds to a totally isotropic subgroup R of L#/L; the 
overlattice is realized as n ~ ‘(R), w h ere rr is the quotient map from L# to 
L#/L. The isotropicity ensures that c’(R) inherits a Z-valued bilinear 
form. Now, according to Nikulin’s theory, 7-t ‘(R) is unimodular if and 
only if [RI2 = 1 L#/LI. Since all these L’s are negative definite and rank 8, 
if this size condition on R is satisfied, xc ‘(R) must be E, and we have 
realized our embedding of L into E,. 

Now in our situation the L is exactly T/(K,) and the E, lattice is 
K’IK, so that the R is realized as K’IT, or, more precisely in our situa- 
tion, [Kl “/r”]. That is, the R of the discussion above is the previous R, 
and the finite group L#/L is exactly Or,,.. 

For each group @T,, there are only a finite number of possible R’s 
satisfying the size condition and the isotropicity. We list them below; it is 
exactly this information that Theorem III.1 requires. 

List 111.3. Root lattices which embed into the E, lattice, with the 
possible isotropic subgroups R. For cyclic T,, generated by b, we associate 
the exponent of fl; for D,,, where T is the Klein four group { 1, /?, y, /?y 1, 
we associate (1,0) to j, (0, 1) to y, and (1, 1) to py. 

E,: T= (1); R= {l}. 

E,@A,: T= Z, x Z,; q(a, b) = ( a2 - b2)/4. 

R= {(O,O), (1, 1,) 

E,@A,: T=Z,xZ,; q(a, 6) = (a’- b2)/3. 

R= ((0, Oh (1, 11, C&2)) 

R = { (0, 01, (1,219 CL1 ,> 

D,: T= Z, x Z,; q(a, b) = ab/2. 

R = { (0, 01, (1, O,} 

R= {(O,O), (0, I,> 

De@ A?‘: T= Zp4; q(a, b, c, d) = (a2 + b2 - c2 - d2)/4. 

R= {(O,O,O,O), (0, 1, LO), (l,O,O, I), (1, 1, 1, 1)) 

R= ((0, O,O, 01, (0, l,O, 11, (l,O, 1, Oh (1, 1, 1, 1)) 

D,@A,: T=n,xn,; q(a, 6) = 3(u2 - b2)/8. 

R= {(O>O), (1, 11, (2,2), (3, 3)) 

R= ((0, Oh (1, 3), (2, 2), (3, 1,) 
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002: 4 T= Z,04; da, b, c, 4 
= (a’+ ah + b2 + c2 + cd+ d2)/2. 

R= {(O,O,O,O), (l,O, LO), (0, l,O, l), (1, 1, 1, 1,) 

R= ((O,O, (401, (LO, l,O), (0, 1, 1, l), (1, 130, I,> 

R= ((O,O,O,O), (1,&O, 11, (0, 1, LO), (1, 1, 1, I,> 

R= {(O,O, 0, Oh (l,O,O, I), (0, 1, 1, 11, (1, 1, to,> 

R= ((O,O, 0, Oh (LO, 1, I), (0, 1, 1, O), (1, l,O, l,} 

R= ((O,O, O,O), (40, 1, I), (0, l,O, l), (1, 1, 1, O,} 

i.e., R= {(O,O,O,O), (1,0,x), (0, 1, y), (1, 1,~)) where {x, y,z} are the 
three nonzero elements of Z, x Z,, 

D,OA, . 04. T= q36; da, b, c, d, G-J 
= (a’ + ab + b2)/2 - (c’ + d2 + e2 +f’)/4. 

R= {~~~~~~),~~~~~~~),~~~~,~(~~~~~~~~Y,~~~~Y,~~~~~,~~~~~,~}, 

where xi, y,, zi E ZI,04, each with exactly two O’s and two l’s, such that 
x,+x,=y,+y,=~,+z~=(1111) and x,+yi+zi=(OOOO). 

There are six such subgroups R of T. 

A,: T=n,; q(u) = 5u2/9. 

R = (0, 3, 6). 

A,@A,: T=n,xn,; q(u, 6) = (a’- 4b2)/16. 

R = ((0, 01, (2, l), (4,OL (6, 1)). 
A@. 

4 . T=n,xn,; q(u, b) = 3(u2 + b2)/5. 

R= {(O,O), (1, 2), (2,4), (3, 11, (4, 3)) 

R = ((&Oh (1, 3), (2, 11, (3, 4), (4, 2)). 

A,@A,@A,: T=n,xn,xn,; 40, b, cl 
= 7u2/12 + 2b2/3 + 3c2/4 = (7~’ + 8b2 + 9c2)/12. 

R= ((0, O,O)> (2, 1, Oh (4, 2,0), (330, l), (5, 1, I), (1, 2, I,} 

R= ((0, 0, Oh (4, LO), (2, 2,0), (320, 11, (1, 1, 11, (5,2, l,}. 

AF*@AF*: T= nQ2 x nQ2. q(u, b, c, d) = (5~’ + 5b2 + 6c2 + 6d2)/8. 

R = {;O, 0, o:o;, (0, 2, 1, 11, GO, 1, I), (2, LO, O), 

(1, 1, 1, Oh (1, 3,0, 11, (3, l,O, 11, (3, 3, 1, O,} 

R= ((0, (20, O), (0, 2, 1, l), (270, 1, 11, (2,2, 0, O), 
(1, l,O, l), (1, 3, 1,0), (3, 1, 1, O), (3, 3,0, l,} 

4x1 I?X’?.lI 
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A 04: 
2 T= ZF4; q(a, 6, c, d) = 2(a* + b2 + c2 + d2)/3. 

R= {WW, (01x,), WY,), (lox,), CW,h 

(llzh (21w), (12u), G-)l, 

where x,, Y,E (1, 11, (1,2), (2, l), (2, I)}, xi+ Y,= C&O), z, w, u, UE {(Ol), 
(02L (lo), wj, such that x,+x2=z, x,+y2=w, y,+x,=u, and 
y, + y, = v. One can choose x, arbitrarily, and then any x2 with exactly 
one entry different from x,. Then the y;s, and z, w, U, u are determined. 
There are eight such subgroups R of T. 

A OS: I T= z,08; q(a) = 3 1 af/4, where a = (a,, . . . . ag). 

C uf = 0 defines a quadratic Q in Pi2. This quadric is ruled by Pz2’s in two 
different ways. Any of these linear spaces lift to subspaces of T of rank 4; 
these are the possible R’s. To be more specific, partition { 1, . . . . S} into pairs 
{il, G}, {i2, G}, {i 3, i,}, and {i,, i8}. Any such partition determines an 
isotropic subgroup R as R={x~[F:Ix~+x~,+,=l for j=1,...4}. For 
example, if one chooses each i, = k, then one obtains the R whose [F,-basis 
is 

(1,0,0,0,0, 1, 1, l), 
(0, 1 , 0, 0, 1 , 0, 1, 11, 
(O,O, l,O, 1, LO, 11, 

and 

All others are gotten by permuting the columns; there are 105 such R’s. 

Remark 111.4. It is perhaps worth remarking that for each of the 15 
root lattices above, one can construct a numerically elliptic surface which 
gives rise to it. See Section IV. 

We are now able to prove Theorem 0.1: 

ProofofO.1. By Corollary 11.6, H,(g) = (l/l T,I ) x(G,) for every F and 
every g in T,. Moreover, 1 TJ = sF, 1 RI = (J&s,)“~ (by the Nikulin 
theory), and d( [E”lF) =m/mF, and since x(GF) =syQF, we have 
coefficient of td(rEA IF) in H,(torsion part of ([E^ ] + rF) = coefficient of 
tmimF in s;‘/‘Q,, independent of r. Hence Id1 = IRI nF(~;“2QF)mlmF= 

FL- (Q~)m,w as claimed. 1 

Remark 111.5. In general, it is clear from Theorem III.1 that to 
compute the number of exceptional curves (b( in any case it suffices to 
know the following data: 
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l The reducible fibers F of the numerically elliptic surface. This 
information is used to label the vertices of the corresponding graphs, and 
to give projections onto the various torsion parts T, of the Az’s. 

l One (- 1)-class [E” 1, written in terms of the generators set up for 
the T,‘s in Section II. 

l The subgroup R = [K”/r^ ] of @T,. 
l The relevant coefficients of the power series H,. 

Of course, in some situations one can get away with less; in particular, 
in Theorem 0.1 only the fibers and the power series are necessary. 
Moreover, the R’s can be determined from fairly meager data in many 
cases: the difference of any two exceptional curves gives a class in K’, 
hence in R, and if one has enough such elements one can pin R down fairly 
quickly. Also, List III.3 shows that if the fibers are E, and A,, then R is 
already determined since only one R is possible. Finally, if one only knows 
the fibers and m, and no other information, one can at least give a finite 
list of possibilities for 181 by making the calculation for all possible R’s and 
all possible cosets of those R’s (the class [E” ] really only contributes in 
the formula of Theorem III.1 to the R-coset). And in fact this is not so 
complicated; it turns out that all R’s are conjugate under an automorphism 
of @T, and one can get all the possibilities by trying all cosets of just 
one R. 

Remark 111.6. We will close this section by explicitly showing how to 
determine the classes in & themselves, instead of simply their number. Let 
6,=oi-pjo,; each Sj is in the Q-span of the u,“, with i> 1. Note that 
[S,] = g,. Suppose that one (- I)-curve E is given. Write E” = C piui with 
pi >, 0. The set 8 h is of course {mu, + C qiSi ) qi 2 0, C qi pL, 6 m, C (pi - 
qi) giE R). To find 6 instead of b”, we must know E and the (-2)-curves. 
Then we simply plug in and get all the exceptional curves as the set (E + 
C (qi- pi)“!+ (i)[l + (E+C (qi-pi)6i)2] K,}, where we have written 
wi for the element in the Q-span of the ui such that wp =6,. If one desires 
to have the classes of d in terms of an exceptional configuration, one must 
now express the (-2)-curves in that way. 

We use this method in Example V.6. 

IV. EXISTENCE 

One can arbitrarily prescribe data (A, R, 6 E A* > (here 6 = [,?^I if the 
data comes from a surface X) and compute a putative number of ( - l)- 
curves. But it is natural to ask: 
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Question IV.l. When does a surface exist with prescribed numerical 
data {A, R, S}, when A is an extremal set of fibers? 

We will give a partial answer to this question in this section. Recall that 
after choosing a multiplicity one component of each fiber F, we may write 
6 = CF (nF, gF), where gFE T, and n,E Z. Moreover, by Remark 11.7, each 
rzF = m except possibly for one F, and in that case nF= 1; this case occurs 
only if the F with nF= 1 is the multiple fiber. We call the data {A, R, S} 
uniform if nF= m for every F; this corresponds to either a Jacobian surface 
or a non-Jacobian surface whose multiple fiber is irreducible. It is the case 
of uniform data for which we will answer Question IV.l. Note that in any 
case the multiplicity m is well defined from the data {A, R, S}. 

To begin, fix uniform extremal data {A, R, S>. For each F recall the 
degenerate lattice (AF) with basis A,, and define EF = (A,)/rad(A.). By 
Nikulin’s theory, R determines an intermediate lattice iii between OFL, 
and (@,L,)#, which is abstractly isomorphic to an E, lattice. Form the 
lattice M = ii;i@ ZZ by introducing an additional basis vector I which is 
isotropic and orthogonal to li;i; M is abstractly isomorphic to an E, lattice. 

Choose an inverse image e in A# of 6. Define i, : (A) + M = ii;r@ ZZ by 
i,(x) = (x mod rad(A), e(x)1). We claim that i, is independent of e, up to 
an automorphism of 44. To see this, let e and e’ be two lifts of 6 to A#. 
ThenrA=e-e’~(AA);ifonedefinesa:M~Mbycc(o)=o+(r.u)Z,then 
a transports i,. to i, and is a lattice automorphism. This justifies denoting 
i, by is, which we will henceforward do. 

Define 9 to be the quotient M/Im(i,); we call 9 the group associated to 
the data (A, R, S}. Since we assume that A is an extremal set of fibers, 9 
has rank 1, and is an extension of R by Z/mZ. If {A, R, S} comes from a 
surface X, then 9 z K$/(A’). 

DEFINITION IV.2. The data {A, R, S} is split if 3 z R @ Z/m& i.e., if the 
extension 9 of R by ZJmZ splits. 

The structure of 99 is, as we will see, important for deciding the answer 
to Question IV.l, and so it is useful to have a simple criterion for given 
data to be split. This we now provide. 

PROPOSITION IV.3. Let X be an extremal surface with uniform data 
{A, R, S}. Then {A, R, S} is split if and only if X has a (- 1)-curve E such 
that, for every reducible fiber F of X, E meets F only at a single, multiplicity 
one component of F. 

Proof. We may assume m 2 2. Assume first that E as above is given. 
For each F, number the components of F as in Section II so that the multi- 
plicity one component v. is the one meeting E, and let A’ be the set of 
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other components. Then (A) is generated by the elements A’ orthogonal to 
E and by mK,; but K$ = E’@ ZK,, so that 

Conversely, assume that the data {A, R, 6 > for X splits, and choose a 
splitting K’/(A) -+ Z/mZ. Let 52 be the kernel of the composition KI + 
Z/mZ. Since Q/(52 n Z . K,) = Q/(mZ . K,) is isomorphic to E,, there is a 
splitting Q g E8 @ Z mK,. Therefore, abstractly, Q is isomorphic to an E, 
lattice. 

In this situation there is a functional I, in Q# such that for every F 
I,(x,) = 1 for a unique weight one vertex xF in A,, and I,(Y) = 0 for other 
vertices v of F, To see this geometrically, pass to the Jacobian surface 2 of 
X. R has a section E, and E A is such a functional for Ki . Simply transport 
this functional to I, via an isomorphism between 52 and Ki which preserves 
A. (One can exhibit the desired 1, using pure lattice theory also, a la the 
arguments of Section III.) 

Let 52, = ker(l,); then 52 z Q,@ Z . mKx and 52, is isomorphic to an 
E, lattice. Moreover, regarding I, as being in (Sz, 0 Z . mK,)# we have 
f,(mK,) = -1. 

Since !2~C2Q,@Z.mK,cK$, we must have K$ =C?,@Z .K,; hence 
ml, extends to a functional 1 on K$ such that f(K,) = -1, and still 
l(xF) = m, but I(v) = 0 for v E A,- {xF}. Using the unimodularity of K’/K, 
one can see that the image M; of M, in (K’)# is exactly the set 
(IE(KI)# ( f(K)= -1). H ence there is a ( - 1 )-class E such that 1 = E”. 
The assumptions above imply that E” E A + , so that E represents a 
( - 1 )-curve. 1 

This splitting criterion can easily-be reformulated so as not to depend on 
the existence of X; one simply replaces the existence of E by the existence 
of the appropriate functional. 

Note that, given a surface X, the data {A, R, S} is not determined; R 
depends on a choice of weight one component (and a numbering of the 
components) in each fiber, and 6 depends on the choice of a (- 1)-class. 
We can to some extent normalize the data in the uniform split case: 

COROLLARY IV.4. Let X be an extremal surface with uniform split data. 
Then R c A* can be taken arbitrarily, and 6 E A* can be taken so that the 
torsion part of 6 is trivial. 

Proof. Let E be the ( - l)-curve of the previous proposition. Then after 
appropriate renumbering of A, E meets only component v0 of each 
reducible fiber. Hence 6 is as desired. To see that R may be taken arbitrarily, 
simply note that all possible R’s are conjugate under lattice automorphisms 
of A # preserving A, and these fix 6. 1 
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We can now give our partial answer to IV.1 : 

THEOREM IV.5 (a) Suppose X is extremal and has an irreducible fiber 
mC, m > 1, where C is anti-canonical. Then K’/(A) is isomorphic to a sub- 
group of PicO(C). 

(b) Let {A, R, 6} b e t&form extremal data such that the associated 
group 9 is isomorphic to a subgroup of Pit’(C) for some irreducible cubic 
curve Cc P*. Then there is a numerically elliptic surface X inducing the data 
{A, R, S>. 

Proof (a) Assume first that A #A?*. Consider the restriction 
rc: Pit(X) -+ Pit(C); note that (A) c ker(rc) so that Kl/(A) maps to Pit’(C). 
Suppose that K’/(A) does not embed into Pit’(C); then there is an inter- 
mediate lattice r between (A) and K’, T# (A), with n(f) = 0. One checks 
that for (A) # A ys, any intermediate lattice is a root lattice, and so r has 
a (-2)-class r not in (d). Riemann-Roth now implies that either r or -r 
is effective. But any effective element in Kl is a linear combination of 
( -2)-curves, so this is impossible since r 4 (A). 

Suppose finally that A = A FE. Then X is quasi-elliptic and the charac- 
teristic must be 2, so C must be of additive type, and in particular PicO(C) 
has only 2-torsion. Moreover, the data must split: otherwise the image of 
K, in K;/(A) would be twice another element, hence K, goes to zero 
under n, forcing X to be Jacobian, in which case the data is trivially split. 
Thus K’/(A)2 (Z/22)‘, where t = 8 or 9 (depending on whether X is 
Jacobian). Hence certainly Kl/(A) is isomorphic to a subgroup of Pit’(C), 
even though the induced map K’/(A) + Pit’(C) may not be injective. 

(b) As in the discussion at the beginning of the section, the data 
{A, R, S} determines an inclusion id: (A) + M and a quotient rc: M -+ 9, 
with ker(rc) = Im(i,). Choose a set of simple roots ro, . . . . r8 of the E, lattice 
A4 with respect to which A is a set of positive roots. Now IC: M + 9 induces 
f: M + PicO(C), since by hypothesis 3 c PicO(C). Pick a smooth point q1 of 
C and inductively define (qi ) 2<i<9} by o,(qi)~~~(qi-,)Of(-r,_j); 
set 9 = C!&(ql + q2 + q3)@ f(r8). Now 9 is very ample, giving an embed- 
ding of C into P*. Blowing up the images of the ql, . . . . q9 we obtain a 
numerically elliptic surface X such that g: Pit(X) + Pit(C) restricts to 
KI z A4 asf: Now A is a set of positive roots of K’ which generates ker(x) 
so A is indeed the set of (-2)-curves. Using the enumeration of A as given 
in the data {A, R, S}, X induces the same R and 6 by construction. 1 

V. EXAMPLES 

EXAMPLE V.l. The simplest example is of a surface X with an E, fiber 
F. If F is multiple then X has precisely one exceptional curve. If F is not 
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a multiple fiber but the fibration on X has multiplicity m 3 1, then the 
number of exceptional curves on X is the coefficient a, of the t” term of 
the Talor series of [(1-t6)(1-t5)(1-f4)2(1-f3)2(1-f2)2(l-t)]~1. 
So, for example, a, = 1, a2 = 3, a3 = 5, and a6 = 27. These results follow 
immediately from Theorem 0.1, and the existence of an X for every m 3 1 
follows from Theorem IV.5. 

EXAMPLE V.2. If X is an extremal surface with A = E,, A,, D,, 
E,@A,, or AT@ A,, then there is only one possible R to use, so having 
a ( - 1 )-class represented by some known 6 E A #/(A * ), the number of 
( - 1)-curves on X is already determined. On the other hand, suppose F = 
E6@ A, and 6 = (3, p)@ (3, /?). Using the two possible R’s in this case we 
find that there are either 68 or 66 exceptional curves on X. Both situations 
occur by Theorem IV.5. 

EXAMPLE V.3. To give an example in greater detail, suppose X has 
reducible fibers F and G of types D, and A3 and that X has an exceptional 
curve E such that (in the notation of Lemma 11.1) E” = (o,+ u2 + u,)@ 
(o,)~A$@d,#. Then by Table II.4 we have [E” ] = (4, fi3) @ ( 1, b’) E 
(A:)@ (AT;). In this example the A, fiber must, by 11.7, be the multiple one, 
and the multiplicity is 4. There are two possible R’s to use here, one 
generated by ( p, B), the other by ( p, /?“). In the formula of Theorem 111.1, 
the term corresponding to the fiber A, is the coefficient of t’ in HF(g) for 
various g’s; this coefficient is 1 for all g, and therefore Theorem 0.1 
simplifies to 

lb1 = 1 (coefficient of t4 in H,, (torsion part of [E A ] + r,,)) 
t-tR 

= i (coefficient of t4 in H,,( 1’)) 
i=O 

= 18 + 12 + 16 + 12 = 58, independently of which R is chosen. 

EXAMPLE V.4. The cases D4 @ Ap4 and A 7” are remarkable for only 
occurring for quasi-elliptic fibrations and only in characteristic 2. If X is a 
non-Jacobian quasi-elliptic surface with either of these two configurations 
of reducible fibers then the multiplicity of the fibration is 2. If the multiple 
fiber is irreducible, then by Section IV, KI/@,T(F) splits and hence we 
can compute I&’ by choosing 6 = 0 and choosing R arbitrarily. The result 
is I&‘= 133 if A=D4@Ay4 and I&I =481 if A=Ay’, and both actually 
occur. If the multiple fiber is reducible (a situation which definitely does 
occur for both configurations [HL]), then we get the following results by 
checking all possible choices of 6 and R. For D, @A y4, with D, multiple, 
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(81 is either 40 or 41. If one of the A,‘s is multiple, then l&j is 72 or 81. 
For Ay8, we get 270 or 297. Whether all of these actually occur we do not 
know. 

EXAMPLE V.5. We now consider an example “from scratch.” Let C be 
a smooth conic in the plane, and let L,, L,, and L, be three distinct 
tangent lines to C. Consider the pencil generated by 3C and 2(L, + L, + 
L,); it has nine base points, three each at the tangent points. Upon 
resolving the base points of the pencil one obtains an elliptic libration with 
one singular fiber of type E, (the transform of 3C) and one of type A, (the 
transform of the three lines). The A, fiber has multiplicity 2, and we see 
three exceptional curves immediately: the last blowup at each tangent point 
produces a ( - 1 )-curve. In this case Theorem 0.1 applies, and says that 
161 = (Q& . (QA,), = (9/G). (l/,/5) = 3. Therefore there are no other 
exceptional curves. This example illustrates 0.1, has a multiple reducible 
fiber, and we can “see” every curve with negative self-intersection on the 
surface. 

EXAMPLE V.6. Our final example also starts from scratch, but is a bit 
more ambitious than the previous example. Let C be a smooth plane cubic, 
with a flex point p (taken to be the origin of the group law on C), and the 
three nontrivial points q,, q2, and q3 of order 2. (The odd numbering is so 
that a fiber will be labeled properly at the end.) Let L be the flex line 
at p. Let v,, v2, and v3 be the tangents to C at q,, q2, and qx, and let uq 
be the line through the qi. Note that v,, u2, and u3 all pass through p. 
Consider the pencil of sextics generated by 2C and 2u, + 2v, + u2 + v3. 
There are nine base points to the pencil, two each at q2, q3, and p, and 
three at q7. Let us resolve the pencil rather explicitly. 

First blow up the order two points qi: this produces u5 over q7, v. over 
q2, and u1 over q3. Now blow up p twice: this produces first a curve us, 
then a curve B. At this point the pencil is generated by 2C (writing C, etc. 
for the proper transform) and 2v, + 2u, + v2 + u3 + 2v, + u0 + vi + 2v,. 
There is left one base point at each qi; blowing up q, to produce E, q2 to 
produce R,, and q3 to produce R, resolves the pencil and gives an elliptic 
tibration over Pi with a double fiber (2C) and one D, fiber (the uls). We 
see live exceptional curves: L, B, E, R,, and R,. The components of the D, 
fiber are labeled properly to use the notations of Section II. 

With F= D,, T,-s B/2H x Z/2B, and the image of [E^ ] in T, is 
[oh - 20,] = g, = 1 (Table 11.4). For amusement, the other exceptional 
curves have the following images in T,-: L H 1, B H 1, R2 H y, and R, H y. 
Since R, - E E K’, [(R? -E) A ] is in R; this is the element y, so R must be 
{ 1, y} (the other choice would be { 1, fir}). Since d[E”].,=2, we have 
(Q( = (coefficient of t* in H,,( 1)) + (coefficient of t* in H,,(y)) = 7 + 2 = 9. 
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Where are the other four? This is not so clear at the outset, but some 
calculations show that the classes 

G,=v,+2R,-L-K,, G,=v,+2R,-L-K,, 

G,=L-v,-K,, G4=L-v,-Kx 

all represent exceptional curves. G, is the proper transform of a conic in P2 
tangent to C to order 4 at q7, and tangent to C to order 2 at q3. Similarly, 
G, is the proper transform of a conic tangent to C to order 4 at q, and to 
order 2 at q2. 

There is an order 2 automorphism of X, “reflecting” the D, fiber about 
its middle component v6. G, and G, are the images of G, and G, under this 
involution. An alternate description of G, and G, is to blow the surface 
down to P2 in a different way, by blowing down E, R,, R,, L, v4, v2, v3, 
v7, and v,; then G, and G, descend to tonics similarly situated as G, and 
G, were using the original way to blow down. In this original way, G, is 
the proper transform of a quartic in P2, which: has a tacnode at p, with 
tangent line L, meeting C four times at p; meets C four times at q,; has a 
double point at q2; and is tangent to C at q3. G, is similar, exchanging the 
roles of q2 and q3. 

PM1 

CCSI 

CDYI 

lHL1 

CL1 

CMPI 
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