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 ROCKY MOUNTAIN
 JOURNAL OF MATHEMATICS
 Volume 15, Number 1, Winter 1985

 GORENSTEIN TORIC THREEFOLDS WITH ISOLATED
 SINGULARITIES AND CYCLIC DIVISOR CLASS GROUP

 RICK MIRANDA

 I. Introduction. This article was motivated by the following question.
 Is any 19-dimensional family of K3 surfaces realizable as a family of
 divisors on a toric threefold, other than the quartics in P3 and the double
 covers of P2? Since toric threefolds are described so explicitly, the hope
 was to deduce and/or describe certain properties of these K3 surfaces,
 especially concerning their degenerations, from purely combinatorial
 considerations. A K3 surface would necessarily be an anticanonical divisor
 in the toric threefold, hence we require the threefold to be Gorenstein;
 moreover, since the general member of the family is smooth, the threefold
 should have only isolated singularities. Finally, by Lefschetz, the Weil
 Divisor Class group of the threefold injects into that of a smooth K3
 surface, so that it should be cyclic, since the general K3 has cyclic Picard
 group.

 Unfortunately this approach does not lead to 'new' descriptions of
 K3 surfaces. In this article, I will prove the following theorem.

 Theorem 1.1. Let X be a complete Gorenstein toric threefold with isolated
 singularities and cyclic divisor class group . Then X is isomorphic to either

 (a) P3, or
 (b) the cone in P10 over the triple Veronese surface V ^ P2 embedded into

 P9 via cubics (= P(l, 1, 1, 3).)

 In the first case the anticanonical divisors are the quartic K3 surfaces,
 and in the second case they are the double covers.

 Corollary 1.2. Let X be a projective toric threefold such that | - Kx'
 contains a nonsingular K3 surface S with Pic S = Z. Then X ^ P3 or
 P(l, 1, 1, 3).

 Proof. Note that, since Se | - Kx I, every p e S must be a smooth point
 of X. Therefore S is a Cartier divisor, so X must be Gorenstein. Since
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 40 R. MIRANDA

 Pic S s Z, the divisor class group of X must be cyclic, and therefore S
 must be ample, and hence very ample ([3], p. 32). The singularities of X
 must then be isolated, and theorem (1.1) applies.

 In the last section I have given the classification of Gorenstein toric
 surfaces with cyclic divisor class group, omitting the combinatorial
 analysis. There are five such surfaces, each of which is a (singular) Del
 Pezzo surface; they are of degrees 1, 2, 3, 4, and 6.
 I will use the notation of [1] throughout this article concerning toric
 varieties. In particular, o will denote a cone in Z3, a' will be its dual,
 and Xa, will be the corresponding affine toric variety. If al5 . . . , an are
 integers, (al5 a2 , . . . , an) will denote their greatest common divisor.

 I would like to thank Bruce Crauder and Mina Teicher for several
 useful conversations on this subject.

 II. The local criteria. Let a' be the cone generated by the three (dual)
 vectors vx = [iWi, &iL v2 = [i2, 7*2> and v3 = [i3,y3, fc3]. Let us determine
 the conditions under which the affine toric variety Xa, is Gorenstein, with
 only isolated singularities. By [2, Theorem 7.5], Xa, is Gorenstein if and
 only if the three generating vectors vh v2, v3 for ď lie in a plane in R3 of
 the form ax + by + cz = 1, where a , b , and c are integers. Let d be the
 determinant of the matrix whose rows are the vř ; then this condition is
 equivalent to d dividing the three quantities

 4 = 7*2^3 73^2 + ./3^1 7l*3 + 7*1^2 7*2^1>

 /2 = *3fc2 - *2^3 + *1^3 *3^1 + *2^1 ~ and

 4 = *2/3 - Ì3J2 + hJi " hh + *'i72 - hji-

 Xa, will have at worst an isolated singularity if the three faces of a are
 generated by vectors which can be (separately) extended to three bases
 of Z3. Two vectors v and w can be so extended if and only if their cross-
 product v X w is a primitive vector, i.e., the g.c.d. of its coordinates is
 1 (see [1], 3). Therefore Xa, will have at worst an isolated singularity if
 and only if

 (72^3 ~~ 73^2? 73*1 - 71^3, 7I^2 72^1) = I*

 (h^2 ~~ hkfr h^z i 2k i ~ '1^2) = 1? and
 O2J3 ~~ hJ2-> hJi - hh> hJ'2 ~ hJi) = 1-

 m. The global criteria. Let Z be a complete toric threefold with Cl(X)
 = Z. Then the dual fan in R3 associated to X will have 4 cones (see [3],
 p. 27), and therefore it will be generated by 4 vectors vb v2, v3 and v4,
 so that the four cones are each generated by three of the If X is to
 be Gorenstein, each of these triples must lie in a plane of the form ax +
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 GORENSTEIN TORIC THREEFOLDS 41

 by + cz = 1 ; we are free to change coordinates and assume that vlf v2,
 and v3 lie in the plane z = 1. A further change of coordinates allows us
 to assume that = [0, 0, 1], v2 = [1, 0, 1], and v3 = [A, B , 1], with

 (3.1) 0 < A š B.

 Let v4 = [- C, - A - E'. The five integers A, B , C, D , and 2T determine
 X up to isomorphism. Let be the cone generated by {vj'j # /}, and let
 di be the determinant of the matrix whose rows are the three generators of
 a-. Then d4 = B, d3 = D , d2 = BC - AD , d1 = BE - D - (BC - AD),
 and

 (3.2) di > 0 for each /.

 X will have only isolated singularities if and only if the six vectors
 Vx X v2 = [0, 1, 0], vx X v3 = [-B, A , 0], vx x v4 = [£>, - C, 0], v2 x v3 =
 [- B, A - 1, B], v2 x v4 = [Z>, E - C, - Z>], and v3 x v4 = [Z> - AE,
 ^4^ - C, BC - are primitive; this is equivalent to

 04, B) = (A - 1, Ą = (C, D) = (E- C, /))

 = (D-BE,AE-C,BC- AD) = 1.

 A' will be Gorenstein if and only if each X 07 is Gorenstein ; for i = 4,
 this is automatic by our normalization. For the other three cases, the
 divisibility conditions are that

 d3 = D must divide E H- 1

 (3.4) d2 = BC - AD must divide B(E + 1) and A(E + 1), and

 di = BE - D - (BC - AD) must divide B(E + 1),

 (A - 1 )(E 4- 1), and BC - + B + D.

 Thus complete Gorenstein toric threefolds X with isolated singularities
 and cyclic divisor class group are classified by quintuples of integers
 (A B C D E) satisfying (3. 1)- (3.4). Certain quintuples yield isomorphic
 toric threefolds, however, and I will first find all quintuple solutions and
 then analyze the isomorphism types.

 IV. The quintuple solutions.

 Proposition 4.1. The only quintuples (A B C D E) satisfying (3.1)-(3.4)
 are (1 1 2 1 3), (1 1 2 1 5), (1 1 4 1 5), (1 1 4 3 5), and (2311 1).

 Proof. By (3.4) we may write E H- 1 ^~FD for some E > 0, so that
 E = FD - 1. Since (A,B) = (A - 1, B) = 1, the rest of (3.4) reduces to
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 42 R. MIRANDA

 BC - AD must divide FD,

 (4.2) BFD - B - D - (BC - AD) must divide FD, and

 BFD - B - D - (BC - AD) must divide BC - AD + B +D.

 However, BC - AD + B + D = B(FD) - (BFD - B - D - (BC - AD)),
 so that this last condition is implied by the previous one. Let H =
 (B, D). Since (C, D) = 1, (BC - AD, D) = H so that BC - AD ' FD o
 (BC - AD)/H I F. Write F = G(BC - AD)JH. The only remaining
 divisibility condition is now that / = BGD(BC - AD)/H - B - D -
 (BC - AD) must divide GD(BC - AD)/H. But (D/H, I) = (D/H,
 B + BC) = 1 since (D, C + 1) = (D, C + 1 - FD) = (D, C - E) = 1,
 so that the above reduces to I ' G(BC - AD). Now

 (I, BC - AD) = (B + D, BC - AD)

 = (B + D, (A + C)D, BC - AD) since

 (A + C)D = (B + D)C - (BC - AD)

 = (B + D - BFD, (A + C- AFD)D, BC - AD

 since BC - AD'FD

 = (D - BE, (AE - C)D, BC - AD)

 = (D - BE, D, BC - AD) since

 (D - BE, AE - C,BC- AD) = 1

 = (BE, D, BC)

 = (BFD - B, D, BC)

 = (B, D) = H,

 so I'G(BC - AD) if and only if I/H'G.
 Let X = B1H, y = D¡H, and z = (BC - AD)jH. Then x, y, and z are

 all strictly positive, pairwise relatively prime, and GHxyz - x - y - z
 must divide G. Hence GHxyz - x - y - z Ś G, which implies xyz ģ
 x + y + z + 1. The only solution to this last inequality are the triples
 {1, 1, n ^ 1}, {1, 2, 2}, {1, 2, 3}, and {1, 2, 4}; since they must be pairwise
 relatively prime, we are left with {x, y, z} = (1, 1, n ^ 1} or {1, 2, 3}.

 The case (1, 1, n}. We now seek solutions to 0 < GHn - 2 - n'G.
 These are (GHn) =(4 1 1), (6 1 1), (1 4 1), (2 2 1), (1 2 3), (2 1 3),
 (3 2 1), (4 1 2) and (2 1 4). There are three subcases to consider.

 The case x = y = 1, z = n. In this case B = D = H, and since D is
 relatively prime to C and C + 1, H must be odd. This leaves the five
 solutions (G H n) = ( 4 1 1), (6 1 1), (2 1 3), (4 1 2), and (2 1 4). Hence
 H = B = D = 1, forcing A = 1. (3.3) forces (E - 1, C - 1) = 1;
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 GORENSTEIN TORIC THREEFOLDS 43

 however E - 1 = G(C - 1) - 2 so C must be even, and n = z = C - 1
 must be odd, leaving the three solutions (G H n) = ( 4 1 1), (6 1 1), and
 (2 1 3). These give the quintuple (A B C D E) = (1 1 2 1 3), (1 1 2 1 5),
 and (114 15) respectively.

 The case x = z = l, y = n ^ 2. Here B = H = BC - AD and
 D = nH. Again D must be odd, leaving only the solution (G H ri) =
 (2 1 3), giving the quintuple (A B C D E) = (1 1 4 3 5).

 The case y = z = 1, x = n ^ 2. Here D = H = BC - AD and
 B = tiH. Since (A, B) = (A - 1, B) = 1, B is odd, leaving only the solu-
 tion (G H ri) = (2 1 3), giving the quintuple (A B C D E) = (2 3 1 1 1).

 The case {*, y,zj = {1,2, 3}. We now seek solutions to 0 < 6 G H - 6|
 G or 6 (GH - 1)|G; since (G, GH - 1) = 1, this implies 6| G. Write
 G = 6K; then the above is equivalent to 6 K - 1 'K, which has no solutions.

 V. The proof of theorem 1.1. 1 will collect the solutions obtained in the
 previous section in Table (5.1).

 Quintuple solutions (ABCDE) to (3.1) - (3.4)

 A B C D E dļ d2 d3 dļ
 112 13 1111
 112 15 3 111
 114 15 13 11
 1 1 4 3 5 1 1 3 1
 2 3 1111113

 Table 5.1

 The solution (112 13) gives the toric threefold P3, since v4 =
 -(vi + v2 + v3) in this case (see [1], §5.3). The other solutions each have
 exactly one cone with determinant 3, and the reader can check that they
 are in the same orbit under the action of GL(3, Z); hence they give
 one other threefold. Since the cone over the triple veronese surface is a
 Gorenstein toric threefold with one isolated singularity (at the vertex),
 and with cyclic divisor class group, this solution must lead to it. (This
 may of course be checked directly, also.)

 VI. Gorenstein toric surfaces with cyclic Picard groups. In this section
 I will state the classification of proper Gorenstein toric surfaces with
 cyclic Picard group. The analysis is similar to that for three folds, only
 easier, and will be omitted. Let X be such a surface. The fan for X is gen-
 erated by three vectors in Z2, which can be normalized to be vx = [1, 0],
 v2 = [A, B ], v3 = [- C, -D], with
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 44 R. MIRANDA

 (6.1) 0 < A Ś B, D > 0, and BC > AD.

 The Gorenstein condition is again a divisibility one : it is

 d3 = B must divide A - I,

 (6.2) d2 = BC - AD must divide B + D and A + C, and

 d' = D must divide C + 1.

 (The d¡ are the determinants of the three cones.)
 By switching the cones, if necessary, we may also assume that

 (6.3) l ś d2^d1 ģ d3, i.e., 1 g BC-AD g D ś B.

 There are exactly five solutions to (6.1)-(6.3), given in Table (6.4).

 Solutions to (6.1) - (6.3)

 A B C D d' d% d$
 1 Ī 2 i i i ī
 12 11112
 13 12 2 1 3
 1 4 1 2 2 2 4
 1 3 2 3 3 3 3

 Table 6.4

 These five numerical solutions give five non-isomorphic surfaces. The
 solution (112 1) gives the plane P2. The solution (12 11) gives the
 quadric cone in P3. The solution (13 12) gives a surface whose resolution
 is a three-fold blowup of P2 with an anticanonical divisor a cycle of
 smooth rational curves with self-intersections 0, 1, -2, -1, -2, -2;
 the anticanonical map collapses the -2 curves to realize the surface as a
 sextic surface in P6 with one Aļ singularity and one A2 singularity. The
 solution (14 12) gives a surface whose resolution is a five-fold blowup of
 P2 with an anticanonical divisor a cycle of smooth rational curves with
 self-intersections 0, -2, -1, -2, -2, -2, -1, -2; the anticanonical
 map realizes the toric surface as a quartic in P4, with two Ax singularities
 and one A3 singularity. The final solution (1 3 2 3) gives a surface whose
 resolution is a six-fold blowup of P2 with an anticanonical divisor a cycle
 of smooth rational curves with self-intersections -1, -2, -2, -1, -2,
 -2, -1, -2, -2; the anti-canonical map realizes this toric surface as
 the cubic surface w3 = xyz in P3 which has three A2 singularities.

 In the surface case, the isolated singularity condition is automatic,
 since every toric surface is normal. As seen in the threefold analysis, this
 condition (which forces variables to be relatively prime) when coupled
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 GORENSTEIN TORIC THREEFOLDS 45

 with the Gorenstein condition (which forces certain variables to divide
 others) is very strong. I conjecture that in dimensions n greater than
 three, the only proper Gorenstein toric varieties with isolated singularities
 and cyclic divisor class group are the projective w-space Pn, and the cone
 in PiV) over the w-fold veronese embedding of Pw_1 into P^V1)-1.
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