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ROCKY MOUNTAIN
JOURNAL OF MATHEMATICS
Volume 15, Number 1, Winter 1985

GORENSTEIN TORIC THREEFOLDS WITH ISOLATED
SINGULARITIES AND CYCLIC DIVISOR CLASS GROUP

RICK MIRANDA

L Introduction. This article was motivated by the following question.
Is any 19-dimensional family of K3 surfaces realizable as a family of
divisors on a toric threefold, other than the quartics in P3 and the double
covers of P2? Since toric threefolds are described so explicitly, the hope
was to deduce and/or describe certain properties of these K3 surfaces,
especially concerning their degenerations, from purely combinatorial
considerations. A K3 surface would necessarily be an anticanonical divisor
in the toric threefold, hence we require the threefold to be Gorenstein;
moreover, since the general member of the family is smooth, the threefold
should have only isolated singularities. Finally, by Lefschetz, the Weil
Divisor Class group of the threefold injects into that of a smooth K3
surface, so that it should be cyclic, since the general K3 has cyclic Picard
group.

Unfortunately this approach does not lead to ‘new’ descriptions of
K3 surfaces. In this article, I will prove the following theorem.

THEOREM 1.1. Let X be a complete Gorenstein toric threefold with isolated
singularities and cyclic divisor class group. Then X is isomorphic to either

(a) P3, or

(b) the cone in P10 over the triple Veronese surface V = P2 embedded into
P9 via cubics (= P(1, 1, 1, 3).)

In the first case the anticanonical divisors are the quartic K3 surfaces,
and in the second case they are the double covers.

COROLLARY 1.2. Let X be a projective toric threefold such that |— Kx|
contains a nonsingular K3 surface S with Pic S >~ Z. Then X =~ P3 or
P, 1,1, 3).

ProoOF. Note that, since S € | — K|, every p € S must be a smooth point
of X. Therefore S is a Cartier divisor, so X must be Gorenstein. Since
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40 R. MIRANDA

Pic S =~ Z, the divisor class group of X must be cyclic, and therefore S
must be ample, and hence very ample ([3], p. 32). The singularities of X
must then be isolated, and theorem (1.1) applies.

In the last section I have given the classification of Gorenstein toric
surfaces with cyclic divisor class group, omitting the combinatorial
analysis. There are five such surfaces, each of which is a (singular) Del
Pezzo surface; they are of degrees 1, 2, 3, 4, and 6.

I will use the notation of [1] throughout this article concerning toric
varieties. In particular, ¢ will denote a cone in Z3, ¢’ will be its dual,
and X, will be the corresponding affine toric variety. If a, ..., a, are
integers, (aj, dp, ..., a,) will denote their greatest common divisor.

I would like to thank Bruce Crauder and Mina Teicher for several
useful conversations on this subject.

IL. The local criteria. Let ¢’ be the cone generated by the three (dual)
vectors vy = [iy, j1, k1], v2 = [iz, jo, k), and vs = [is, js, k3). Let us determine
the conditions under which the affine toric variety X,, is Gorenstein, with
only isolated singularities. By [2, Theorem 7.5], X, is Gorenstein if and
only if the three generating vectors vy, v, v3 for ¢’ lie in a plane in R3 of
the form ax + by + cz = 1, where a, b, and c are integers. Let d be the
determinant of the matrix whose rows are the v;; then this condition is
equivalent to d dividing the three quantities

4 = joks — jaka + jski — jiks + jika — joky,
lH = i3k2 - izka + i1k3 - i3k1 + izkl - ilkz, and
4 =lpjy — i3j2 + i3j1 — irjs + iyjo — bajy.

X, will have at worst an isolated singularity if the three faces of ¢ are
generated by vectors which can be (separately) extended to three bases
of Z3. Two vectors v and w can be so extended if and only if their cross-
product v x w is a primitive vector, i.e., the g.c.d. of its coordinates is

1 (see [1], 3). Therefore X, will have at worst an isolated singularity if
and only if

(joks — jska, jaki — jiks, jaka — joky) = 1,
(isky — igks, irkg — igky, isky — itky) = 1, and
(2j3 = i3ja, i3j1 — irjs, irjz — ipjy) = 1.
IIL The global criteria. Let X be a complete toric threefold with CI(X)
= Z. Then the dual fan in R3 associated to X will have 4 cones (see [3],
P. 27), and therefore it will be generated by 4 vectors vy, v,, v3 and 178

so that the four cones are each generated by three of the v;. If X is to
be Gorenstein, each of these triples must lie in a plane of the form ax +

This content downloaded from
129.82.95.71 on Fri, 22 Apr 2022 22:20:48 UTC
All use subject to https://about.jstor.org/terms



GORENSTEIN TORIC THREEFOLDS 41

by + cz = 1; we are free to change coordinates and assume that vy, v,,
and v; lie in the plane z = 1. A further change of coordinates allows us
to assume that v; = [0, 0, 1], v, = [1, O, 1], and v = [4, B, 1], with

3.1 0<A=B

Let vy = [— C, — D, — E]. The five integers A, B, C, D, and E determine
X up to isomorphism. Let ¢; be the cone generated by {v,|j # i}, and let
d; be the determinant of the matrix whose rows are the three generators of
o;. Thend, = B,dy = D,d, = BC — AD,d, = BE — D — (BC — AD),
and

3.2 d; > 0 for each i.

X will have only isolated singularities if and only if the six vectors
v X v2=[0,1,0},v; X v=[—B, 4,0],v; x vy =[D, —C,0}, vy X v3=
[-B,A— 1, B), v x vy=[D, E— C, —D), and v3 x vy = [D — BE,
AE — C, BC — AD] are primitive; this is equivalent to

(3.3)
= (D — BE, AE — C, BC — AD) = 1.

X will be Gorenstein if and only if each Xo; is Gorenstein; for i = 4,
this is automatic by our normalization. For the other three cases, the
divisibility conditions are that

dy = D must divide E + 1
(3.4) d; = BC — AD must divide B(E + 1) and A(E + 1), and
dy = BE — D — (BC — AD) must divide B(E + 1),
(4 - 1)E + 1),and BC — AD + B + D.
Thus complete Gorenstein toric threefolds X with isolated singularities
and cyclic divisor class group are classified by quintuples of integers
(A B C D E) satisfying (3.1)~(3.4). Certain quintuples yield isomorphic

toric threefolds, however, and I will first find all quintuple solutions and
then analyze the isomorphism types.

IV. The quintuple solutions.

PROPOSITION 4.1. The only quintuples (A B C D E) satisfying (3.1)-(3.4)
are(11213),(11215),(11415),(11435),and(23111).

PrOOF. By (3.4) we may write £ + 1"="FD for some F > 0, so that
E = FD — 1. Since (4,B) = (A — 1, B) = 1, the rest of (3.4) reduces to
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42 R. MIRANDA

BC — AD must divide FD,
(4.2) BFD — B — D — (BC — AD) must divide FD, and
BFD — B — D — (BC — AD) mustdivide BC — AD + B +D.

However, BC — AD + B+ D = B(FD) — (BFD — B — D — (BC — AD)),
so that this last condition is implied by the previous one. Let H =
(B, D). Since (C, D) = 1, (BC — AD, D) = H so that BC — AD | FD <
(BC — AD)/H | F. Write F = G(BC — AD)/H. The only remaining
divisibility condition is now that I = BGD(BC — AD)JH — B — D —
(BC — AD) must divide GD(BC — AD)/H. But (D/H, I) = (D/H,
B+ BC)=1since(D,C+1)=(D,C+1—-FD)=(D,C—-E)=1,
so that the above reduces to 7 | G(BC — AD). Now

(I, BC — AD) = (B + D, BC — AD)
= (B+ D,(4 + C)D, BC — AD) since
(A+ C)D = (B + D)C — (BC — AD)
= (B+ D — BFD,(A + C — AFD)D, BC — AD
since BC — AD|FD
= (D — BE, (AE — C)D, BC — AD)
= (D — BE, D, BC — AD) since
(D — BE,AE — C, BC — AD) =1
= (BE, D, BC)
= (BFD — B, D, BC)
= (B’ D) = H,
so I|G(BC — AD) if and only if I/H|G.

Let x = B/H, y = D|H, and z = (BC — AD)/H. Then x, y, and z are
all strictly positive, pairwise relatively prime, and GHxyz — x — y — z
must divide G. Hence GHxyz — x — y — z £ G, which implies xyz £
x + y + z + 1. The only solution to this last inequality are the triples
{I,1,n 2 1}, {1, 2,2}, {1,2, 3}, and {1, 2, 4}; since they must be pairwise
relatively prime, we are left with {x, y, z} = {1, 1, n 2 1} or {1, 2, 3}.

The case {1, 1, n}. We now seek solutions to 0 < GHn — 2 — n|G.
These are (GHn) =(411), 611), (141), 221), (123), 213),
(321),(412)and (2 14). There are three subcases to consider.

The case x =y = 1, z = n. In this case B = D = H, and since D is
relatively prime to C and C + 1, H must be odd. This leaves the five
solutions (GHn) =(411),(611),(213),(412), and (2 1 4). Hence
H=B=D-=1, forcing A =1. (3.3) forces (E—1, C—1)=1;
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GORENSTEIN TORIC THREEFOLDS 43

however E— 1 = G(C — 1) — 2so Cmustbeeven,andn =z =C — 1
must be odd, leaving the three solutions (G Hn) = (411), (61 1), and
(2 1 3). These give the quintuple (A BCDE)=(11213),(11215),
and (1 1 4 1 5) respectively.

The case x =z=1, y=n2z2. Here B=H = BC — AD and
D = nH. Again D must be odd, leaving only the solution (G H n) =
(2 1 3), giving the quintuple (4 BCD E)=(1143)5).

The case y=z=1, x=n2=2. Here D= H = BC - AD and
B = nH. Since (4, B) = (4 — 1, B) = 1, Bis odd, leaving only the solu-
tion (G Hn) = (21 3), giving the quintuple (A BCDE)=(23111).

The case {x, y, z} = {1, 2, 3}. We now seek solutions to 0 < 6GH — 6|
G or 6(GH — 1)|G; since (G, GH — 1) = 1, this implies 6|G. Write
G = 6K;then the above is equivalent to 6K — 1|K, which has no solutions.

V. The proof of theorem 1.1. I will collect the solutions obtained in the
previous section in Table (5.1).

Quintuple solutions (ABCDE) to (3.1)—(3.4)

A B C D E d d ds d,

1 1 2 1 3 1 1 1 1

1 1 2 1 5 3 1 1 1

1 1 4 1 5 1 3 1 1

1 1 4 3 5 1 1 3 1

2 3 1 1 1 1 1 1 3
Table 5.1

The solution (1121 3) gives the toric threefold P3, since v, =
—(v1 + v3 + vy) in this case (see [1], §5.3). The other solutions each have
exactly one cone with determinant 3, and the reader can check that they
are in the same orbit under the action of GL(3, Z); hence they give
one other threefold. Since the cone over the triple veronese surface is a
Gorenstein toric threefold with one isolated singularity (at the vertex),
and with cyclic divisor class group, this solution must lead to it. (This
may of course be checked directly, also.)

VI. Gorenstein toric surfaces with cyclic Picard groups. In this section
I will state the classification of proper Gorenstein toric surfaces with
cyclic Picard group. The analysis is similar to that for three folds, only
easier, and will be omitted. Let X be such a surface. The fan for X is gen-
erated by three vectors in Z2, which can be normalized to be v, = [1, 0],
v, = [4, B}, vs = [— C, — D], with

This content downloaded from
129.82.95.71 on Fri, 22 Apr 2022 22:20:48 UTC
All use subject to https://about.jstor.org/terms



44 R. MIRANDA

6.1) 0<A4=<B D>0,and BC > AD.
The Gorenstein condition is again a divisibility one: it is
d; = B must divide 4 — 1,
(6.2) dy = BC — AD must divide B + D and 4 + C, and
d; = D must divide C + 1.

(The d; are the determinants of the three cones.)
By switching the cones, if necessary, we may also assume that

(6.3) 1=2d;£dy £dsie,l £BC-AD £ D £ B.
There are exactly five solutions to (6.1)(6.3), given in Table (6.4).

Solutions to (6.1) —(6.3)

A B C D d; d, ds

1 1 2 1 1 1 1

1 2 1 1 1 1 2

1 3 1 2 2 1 3

1 4 1 2 2 2 4

1 3 2 3 3 3 3
Table 6.4

These five numerical solutions give five non-isomorphic surfaces. The
solution (112 1) gives the plane P2 The solution (121 1) gives the
quadric cone in P3. The solution (1 3 1 2) gives a surface whose resolution
is a three-fold blowup of P2 with an anticanonical divisor a cycle of
smooth rational curves with self-intersections 0, 1, —2, —1, —2, —2;
the anticanonical map collapses the —2 curves to realize the surface as a
sextic surface in P6 with one A, singularity and one 4, singularity. The
solution (1 4 1 2) gives a surface whose resolution is a five-fold blowup of
P2 with an anticanonical divisor a cycle of smooth rational curves with
self-intersections 0, —2, —1, —2, —2, —2, —1, —2; the anticanonical
map realizes the toric surface as a quartic in P4, with two 4, singularities
and one Aj singularity. The final solution (1 3 2 3) gives a surface whose
resolution is a six-fold blowup of P2 with an anticanonical divisor a cycle
of smooth rational curves with self-intersections — 1, —2, —2, — 1, =2,
-2, —1, =2, —2; the anti-canonical map realizes this toric surface as
the cubic surface w3 = xyz in P3 which has three A4, singularities.

In the surface case, the isolated singularity condition is automatic,
since every toric surface is normal. As seen in the threefold analysis, this
condition (which forces variables to be relatively prime) when coupled
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GORENSTEIN TORIC THREEFOLDS 45

with the Gorenstein condition (which forces certain variables to divide
others) is very strong. I conjecture that in dimensions n greater than
three, the only proper Gorenstein toric varieties with isolated singularities
and cyclic divisor class group are the projective n-space P», and the cone
in P(®%™7) over the n-fold veronese embedding of P! into P(% )1,
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