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1. Introduction

Let IP? be the projective space of dimension 3 over an algebraically closed field k of
any characteristic. We denote by X(d) the projective space of dimension

N@)= <d;3)—1

whose points correspond to all surfaces of degree d in IP?; and by S(d) the open
subset of Z(d) whose points correspond to smooth surfaces. The Noether-Lefschetz
theorem says that if d = 4, for a general point s in S(d) the corresponding surface S
has Picard group Pic(S)=Z generated by @(1). More precisely one can define for
d 24 the Noether-Lefschetz locus NL(d) C S(d) to be the set of points s correspond-
ing to surfaces S such that Pic(S) is not generated by @g(1). Then the Noether-
Lefschetz theorem asserts that NL(d) is a countable union of proper irreducible
closed subvarieties of S(d).

Let now V be an irreducible component of NL(d) whose codimension in S(d)
we will denote by c(V). Then, at least over the complex numbers, one has the
inequalities

d—3Zc(V)Ep,d), (®)

d—1
p,,(d)=< 3 )

is the geometric genus of any smooth surface of degree d in IP* (see [CGGH], [G]).
Of the two inequalities contained in (@) the one

c(V)2p,d) (®)

where

e ———————
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is very easy to understand: it simply says that it is at most p,(d) conditions on the
moduli of a surface for an integral cycle on that surface to be algebraic: we require
the vanishing on that cycle of all the integrals of the holomorphic 2-forms of the
surface. It is also natural to expect that for most cycles these conditions should be
independent, or, in other words, that for most components ¥ of NL(d) the equality
should hold in (®). For this reason we will call such components of NL(d) the
general components, calling other components special. Our purpose in this paper
is to sketch a first attempt of description of the configuration in S(d) of the general
components of the Noether-Lefschetz locus; in particular we will prove the
following density theorem:

(*) Theorem. For any d >4 the Noether-Lefschetz locus NL(d) contains infinitely
many general components; and the union of these components is Zariski dense in S(d).

The proof uses the degeneration techniques employed in [GH] to give an
algebro-geometric proof of the Noether-Lefschetz theorem. It is based on an
inductive argument (the theorem is known to be true for 4 =4, but also in this case
we give a new proof of it) both to prove the existence of infinitely many general
components of NL(d) and to show that their closures in X(d) intersect the closed set
R(d)={points of X(d) corresponding to surfaces containing a plane as a
component} in closed subvarieties of R(d) whose union is dense in R(d). Since R(d)
is not a divisor, this would not be enough for the proof of Theorem (*). But we are
in fact able to prove also that the directions in which our general components of
NL(d) approach R(d) are dense in the set of all normal directions to R(d) in Z(d). In
other words we first blow up 2(d) along R(d) (the geometry of this blow up is
described in Sect. 2 below) and then verify that the intersection of the closures of
our general components of NL(d) with the exceptional divisor are dense in the
exceptional divisor itself (this is worked out in Sects. 3, 4).

Over the complex numbers one can, of course, look for a more refined density
theorem, to the effect that NL(d) is dense in S(d) in the natural topology. This result
does hold and it is in fact a consequence of Theorem (*), as was pointed out to us by
Green. We very briefly report on Green’s idea of the proof in Sect. 5.

To conclude this introduction, we note that there are still many interesting (and
naive) questions about the Noether-Lefschetz locus for which we have no answer.
First about the general components of the Noether-Lefschetz locus: does our
inductive construction give, at least in principle, all of them? What is the Picard
group of a surface corresponding to a general point of one of our general
components? (Of course, one might ask the same question for any component of
NL(d).) One may suspect the answer to the last question should be Z?2 (and in this
direction seem to point recent results by Angelo Lopez [L]), but we have not been
able to prove it. But the most interesting questions concern, in our opinion, the
special components of NL(d). In particular, is their number finite? Is it possible to
describe and classify them in some way? It is may be worthwhile to recall, 1n
this circle of ideas, the following:

Codimension d — 3 Conjecture (see [CGGHY)): If d > 4, the only component of NLﬂd)
of codimension d— 3 is the set of points of S(d) corresponding to surfaces containing
a line.
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As a matter of fact, no component V of NL(d) of codimension strictly smaller
than 2d —7 is known if d = 5 except the one corresponding to surfaces containing a
line. There is a component of codimension 2d—7, corresponding to surfaces
containing a conic; but no one as yet has exhibited any other component of
codimension 2d — 7. So the codimension d — 3 conjecture mentioned above seems
to be only the first one of a whole chain of possible conjectures, each one included
in the other, of which the second could be the following:

Codimension 2d—7 Conjecture. If d>4, the only components of NL(d) of
codimension at most 2d — 7 are given either by the set of points of S(d) corresponding
to surfaces containing a line (a component of codimension d—3) or by the set of
points of S(d) corresponding to surfaces containing a conic (a component of
codimension 2d—17 ).

The techniques employed in the proof of Theorem (*), we believe, could prove
to be of some use also in the analysis of these conjectures.

2. Blowing up the Locus of Surfaces Containing a Plane and Pulling back
the Universal Family

In this paragraph we will provide some technical tools useful in the proof of the
density theorem. The first point is to give a geometric interpretation for the
exceptional divisor of the blow up of X(d) along the locus R(d) of surfaces
containing a plane. More precisely, we let Ry (d)CR(d) be the locus of points
corresponding to surfaces of the type S,=TUP, where T is a smooth surface of
degree d— 1 and P is a plane such that the curve C =T P is smooth. As above, we
denote by S(d) the locus of points corresponding to smooth surfaces and set U(d)
=Ry(d)uS(d) (observe that U(d) is an open neighborhood of Ry(d), i.e., a small
deformation of a surface in R(d) is either smooth or again in Ry(d)). Clearly R(d)

is smooth, of codimension
d+2
rd)= ( 5 ) -3

p:U@~U@)

in U(d). Let now

be the blow up of U(d) along R(d). We want to prove that for any point s, in Ry(d)

corresponding to a reducible surface So=TuUP the points in p~'(s,) are in a

natural way in one to one correspondence with the divisors of the complete linear

series |0(d)| on the curve C=TnP. Let us make this statement more precise.
First we notice that there is a smooth family of curves

€ CRy(d) x P?

L4

Ry(d)
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such that for any point s, corresponding to a reducible surface S, = TUP the fibre
of m over s, is just the curve C=TnP. Since % is a family of curves in IP3, we do
have the line bundle O(1) on € and we can then consider the sheaf & =, 0(d) on
Ry(d) which clearly is locally free of rank r(d). On the other hand we can also
consider another locally free sheaf of the same rank r(d) on Ry(d), namely the
normal sheaf A% of Ry(d) in U(d). Now we define a map

Q. ‘A/Ru,U_)g

of vector bundles in the following way. Let s, be, as usual, a point in Ry(d). A
normal vector to Ry(d) at s, can be assigned by giving the class, modulo Ty, s,
of a tangent vector v to 2(d) at s,. If S, is defined by the equation hg =0, where his
the linear form defining P and g the polynomial of degree d — 1 whose zero locus is
T, then v corresponds to a first order deformation of S, defined by an equation of
the type hg + ¢f =0 where ¢>=0 and f is a homogeneous polynomial of degree d.
But now the restriction of f to the curve C defined by h=g=0, gives us a sectionin
HY(C, 0/d)) which we define to be the image under ¢ of the class of v. The map ¢ is
well defined and turns out to be anisomorphism. In fact, with the above notation, v
determines the zero section in H°(C, 0{(d)) if and only if one has f =ah + bg where
a, b are forms of degrees d—1 and 1 respectively. But in this case v is a tangent
vector to Ry(d) corresponding to the first order deformation (h+ ¢b)(g +ea)=0.

Summarizing the above analysis, we can rephrase the statement about the
fibres of p in the following way:

Proposition 1. The exceptional divisor E of the blow up p: U(d)— U(d) is naturally
isomorphic to P(8).

In view of this proposition it will be natural to look at points x in E as pairs
(So, X), where S, is a reducible surface TuP with C=TnP smooth and X is a
divisor in |O(d)|.

The second and final point of this paragraph will be the smoothing, at least
over a suitable open subset of U(d), of the pull back of the universal family of
surfaces. We start in fact by considering the universal family of surfaces of degree d
in IP3

F(d)cx(d)xP?

Z(d).

Since we have the morphism p : U(d)— U(d) C Z(d) we can pull this family back via
p. Now, while #(d) is smooth, the total space % (d)* of this new family will not be;
but the singularities of #(d)* are easy to describe. First we observe that the
cartesian square

¢——¢F
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defines a smooth family of curves on E. Clearly there is a divisor 2 in € with the
property that for each point x in E corresponding to a pair (S,, X) where X is a
divisor on the curve #~'(x)=n"*(p(x)), Z restricts to X on 7~ }(x). Moreover we
see that there is a commutative diagram

G — F(d)*|;

7

E——E

with y a closed embedding. Then &', the image of & via 7, is exactly the singular
locus of Z(d)* (see, for instance, the analysis of Sect. 2 in [GH]). Now, in order to
get rid of the singularities of % (d)* we would like to blow it up along &'. Before this,
andin order to make things simpler, we first consider the maximal open subset 4 of
U(d) such that ANE is the open subset E,, of E over which @' — E is étale (these are
just the points such that the divisor X consist of d(d — 1) distinct points). We also
denote by & the pull back of #(d)* over A and by D the pull back of &’ over A.
Finally now, following again the analysis of [GH], we can see that:

(i) thesingularlocus of & is exactly D, and the tangent cones to & at the points
of D are rank four quadrics;

(i) blowing up & along D we get a smooth variety # and a commutative
diagram

F—F

||

A—> A,

(i) moreover the exceptional divisor D in % can be realized, via the map
DD, as a rank 4 quadric bundle over D. Precisely if x is a point of E,,
corresponding to a pair (S, X), where So=TUP and X =p,+...4+Ppya-1) i
divisor on C=TnP formed by d(d— 1) distinct points in the linear series |O(d),
then the fibre of # >4 at x consists of a surface reducible in d(d—1)+2
components T, P, Q,, ..., Qyq- 1, Here T, P are the blow ups of 7, P respectively at
the points py, ..., pyu—1,and Qy, ..., Q- 1 are rank 4 quadrics; moreover T and P
are glued along the strict transform (on both of them) of the curve C, and each
quadric Q, is glued to T and P along the exceptional divisors of the blow ups at p;
which are, on the quadric, two lines of different rulings;

(iv) there exists a blow down & —% of # along D such that % is smooth, and a
commutative diagram

F—%

|

A— A

such that, for any point x of E, (we use the same notation as above), the fibre S, of
% A over x is reducible in the two surfaces T and P, glued along the curve C and
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its strict transform on P (which, abusing notation, we shall again denote by C); in
other words, the effect of the map & — % is to blow down, in any fibre, the rulings of
the quadrics Q; containing the exceptional divisors of the surface T. The picture of
the fiber of ¥ over a point of E, is thus.

The end result of this process is thus a simultaneous small resolution of the
singular points of the original family.

In conclusion we need to say a few words about some line bundles on 4. First
notice that A — E, is isomorphic, via the restriction of p to 4, to S(d), so we shall
actually identify 4 — E, with S(d). Moreover the restriction of ¥— A4 to A— E can
also be identified with the restriction of the universal family % (d)— X(d) over S(d).
Therefore the existence of the line bundle € z 4(1) and the smoothness of 4 yield the
existence of a line bundle % extending the restriction of 0 z (1) over S(d).

Of course & is not unique because it is defined up to elements of the subgroup
2 of Pic(%) of line bundles with trivial restriction to the fibres of ¥— A. But the
construction of ¥ makes it clear that we can make it unique by imposing the
condition that for any point x of E, whose fibre in ¥ — A is the surface S, = TUP, ¥
restricts on TU P to the line bundle %, which is (1) on T and Op(1), the pull back
to P of @p(1), on P. On the other hand 2 is easy to describe: it contains Pic(4),
viewed in a natural way as a subgroup of Pic(%), and is generated by Pic(4) and the
line bundle .#" on % corresponding to the divisor described by all components T
corresponding to surfaces of degree d—1 in the reducible fibres of ¥—4.
Equivalently, .#" is the dual of the line bundle associated to the divisor formed by
the components P corresponding to planes in the reducible fibers of ¥ A. Note
now that by the first description of 4", for any point x of E,, the restriction A’ of /'
to S, = TuP restricts to the line bundle O3(C) = Op(d— 1)@ Op(—E; — ... — Egu-1)
(here by E; we mean the exceptional divisor of P corresponding to the point p;), and
by the second description of 4" it restricts to the line bundle ¢ — C)= O —1) on
T. Thus, if we twist the restriction A4, of A" to §,=TUP with %, we get the line
bundle which is trivial on T and coincides with Op(d)@Op(—E; — ... — E4q- 1) 08
P.So for any x in E, the line bundles %, and ¥, generate a subgroup %, of Pic(S.)
that, by what we have seen above and the analysis in [GH], consists just of the line
bundles on S, that can be deformed onto nearby smooth surfaces to a multiple of
the (hyper)plane bundle.

It is worth recalling here that the main point of the proof of the Noether-
Lefschetz theorem in [GH] consists of showing that, for a general point x in Eo, %x
coincides with Pic(S,). For any x € E, we shall call any line bundles on S, not in the
group &, extra line bundles on S..
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3. Construction of General Components of the Noether-Lefschetz Locus (I)

In this paragraph and the next we will as promised construct infinitely many
components of NL(d) having codimension p,(d) in S(d) and show that they are
Zariski dense. The construction consists of two steps, as follows:

Step 1. We describe an infinite collection of subvarieties of E, of codimension at
most p,(d) in E,, each of which is a “good candidate” to be a component of the
intersection of E, with a general component of NL(d), in the sense that if V; is one
of these subvarieties then the general fibre of ¥ — A over V, possesses at least one
extra line bundle. Moreover we will see by induction that these subvarieties are
dense in E,.

Step 2. We prove that for each subvariety of codimension p(d) found in step 1 the
extra line bundle mentioned above can actually be deformed to some nearby
smooth fibres of ¥— A.

To begin with step 1, let W be a component of NL(d—1)if d=5, and let W be
S(3) if d=4; let # be the restriction of the universal family #(d—1) over W. Then
we may find a finite covering W'— W such that on the pull back #” of #" to W’
there is a line bundle & whose restriction to each fibre of #”'— W’ is a line bundle
not a power of the hyperplane bundle. Since there is a natural surjective
morphism E,—S(d—1) we can take the inverse image Ey of W. Then via the
cartesian square

Ey.—Ey

|

W — W

we define the variety Ey. whose points naturally correspond to triples (Sy, X, &)
where, with the usual notation, Sq=TUP, X =p; +...+Ppyu-1, is a divisor on
C=TnP formed by d(d— 1) distinct points in |0(d)|, and &, is a line bundle on S,
not equal to Og (k) for any k. Finally we will consider the étale covering Fy.— Ey.
of degree d(d—1)! whose fibres over points like (So, X, &,) consist of all triples
(Sos (Pigs -+ s Pigia_ 1, ) o) With (g, .-y iga—1y) any permutation of (1,...,d(d—1)).

Now, for any vector a=(x;,...,0q-y) in Z*~Y such that a;+0 for any
i=1,...,d(d—1),and any integer h deﬁne Fy Ao, h) to be the variety consisting of all
triples (S, (P15 ---» Paa— 1)) €o) such that

Ocloypy + ... +%ya— 1)Paa- 1));(go)®h®@c§

Let F}, (a, h) be an irreducible component of Fy.(e, h). Then pushing Fy (a, h)
down to E,, we find a closed subvariety E (o, h) of the same dimension of Fi-(a, h).
Moreover it is clear that for any point x=(S,, X, &;) in Ey(a, h), the surface S,=T
UP has some extra line bundles: precisely, for any point (Sq, (py, .-+, Paa- 1)) 6’0) of
Fy, (a h) mapping to (S, X, &), we have the extra line bundle &, that restricts to
(€)®" on T and to Op(e,E;+...+%-1)Eau-1) OB P. We will denote by
¢(Ey{a, b)) the codimension of Ey{a, h) in E,.
Now we come to the main result in this paragraph:
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Proposition 2. For infinitely many vectors a in Z*“~ 1) and integers h there exist
components Fy.(a, h) of Fy(a, h) with

c(Ew(a, b)) =c(W)+(d—2)(d—3)/2. (+)
Moreover the union of the corresponding Ey/(a, h) is Zariski dense in Ey.
Proof. To begin with, we notice that (+) is equivalent to
c(Fyla, h)=(d—-2)(d—-3)/2, (++)

where ¢(Fy (e, h)) is the codimension of Fy,(a, h) in Fy,.. So first of all we have to
prove that, for infinitely many e, Fy (o, h) has a component of codimension
(d—2)(d—3)/2in Fy,.. Moreover we observe that there is a natural morphism F,.
— Ry/(d), where Ry/(d) is the closed subvariety of Ry(d) given as the inverse image of
W via the natural map Ry(d)— S(d—1). Then it is sufficient to show that there are
infinitely many o and 4 for which there is an open subset ¥, of Ry,(d) such that, for
any point in ¥, the fibre over that point of any component of Fy.(a, h) has
codimension (d—2)(d —3)/2 in the corresponding fibre of Fy,.. But now this is a
consequence of the following:

Claim. Let C be a smooth plane curve of degree d— 1. Let 2 C|0(d)| be the open
subset of divisors consisting of d(d — 1) distinct points, and let % be the (d(d — 1))! -
sheeted étale covering of 2 whose points correspond to the orderings of the
divisors De 2. For any vector a=(aty, ..., 04—y, in Z**~ Y such that o, +...
+ 044-1)=1let @, be the morphism

0 Y —PicV(C)
defined by
PP15 -+ Paa— 1) =Oclo1py + ... + %y 1yPaa-1)) -

Then for infinitely many vectors & the map ¢, has maximal rank g=g(C)
=(d—2)(d—3)/2 everywhere in %.

Assume for a moment the claim and let us see how the proposition follows. Let
in fact S, = T'UP be a point of R(d) and let C = T P. By the claim we know there
is some (and in fact infinitely many) p such that g has maximal rank in %. Choose
one such B and, for any integer h and line bundle L on C with L®*~ (0, consider the
composite map

# — Pic™(C)— Pic™(C),

where the first map is g and the second map takes &|c®L to (&|c)®"; this map is
just @, (independently of L, of course). By the density of torsion points on the
Jacobian of C, there exist infinitely many h and Lsuch that &|-® Lis in the image of
@, and hence infinitely many h such that (& |c)®* is in the image of ¢, We can thus
find infinitely many positive integers h such that @.'((6)®") is nonempty of pure
codimension g(C) in % ; and moreover the union, as h varies, of these inverse
images is dense in #. This procedure can now be repeated for any point of Ryld)
and accordingly we find infinitely many components of Fy,{a, h) for which (+ +)
holds and whose union is dense in F,.. The corresponding components EyA(2% h)
are therefore dense in Ey,.
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Finally we prove the claim, and for simplicity, we do this only over the complex
numbers, the proof requiring for any algebraically closed field only slight
modifications. Let (p,, ..., Psq- 1)) be a point in %. We denote by r=d(d —1)—g the
dimension of % and by x=(x, ..., x,) coordinates on % centered at (p,, ..., Pga- 1))-
If w;,...,0, is a basis of the holomorphic differentials of C then for any
a=(ay, ..., 04q—1)) the local expression of ¢, is

ad-1)  pix)
Qu(X)= (, Y oo | oo, ),
i=1 P
where we may identify Pic®(C) with J(C) and p is any given point of C. Let us now
denote by A the d(d —1) x g matrix (@ {p;)) and by B the r x d(d — 1) jacobian matrix
(P15 .-s Paa-1))/0(xy, ..., X,). Note that B has maximal rank r and A, which is just
the Brill-Noether matrix of (py,...,ps4-1) has maximal rank g as well (no
holomorphic differential on C vanishes at all the p;). Let D(ax) be the d(d — 1)-square
diagonal matrix with entries ay,...,a4,-). Then the differential of ¢, at
(P15 ---» Paa—1)) is the product B - D(ar) - A and we want to show that we can chose a
in infinitely many ways so to have this be of maximal rank g. In order to do this, let
us consider a typical minor of order g of the product matrix M(e)=B - D(a) - A, say
the minor M(a) determined by using rows j,, ..., j,. This minor may be written as

Mj(d)=Z(Bj,i'Ai-ail- e 'aig),

where A, is the minor of A determined by the rows of index iy, ..., i,, B; ;is the minor
B using the rows of index j,,...,j, and columns of index i,,...,i, and the
summation is taken over all multi-indicesi=(iy, ...,i,) of order g of (1, ..., d(d —1)).
Now M (&) can be regarded as a homogeneous polynomial of degree g in a. This is
certainly not divisible by I— ) Za(d ) o; unless

Bi,i.Ai=0

for any multi-index i=(iy, ...,i,). But this is not the case. In fact, there are multi-
indices iy, ..., i, for which 4;+0, and this means that the points p; , ..., p;, impose
independent conditions on the canonical series. Since |0(d)| contains the
canonical series, they give independent conditions to |0(d)| too, which in turn
vields B; ;0. So for all a’s except those satisfying a nontrivial polynomial
equation M,(e)=0 the map ¢, has rank g at (py, ..., Pau-1)); the claim follows by
the quasi-compactness of U in the Zariski topology.

Step 1 is thus concluded. We remark here that, by the maximality of W in the
above construction, the subvarieties Ey(a, h) of E, we find are in fact components
of the locus of x € E, such that the surface S, has extra line bundles. Also, before
Passing to step 2 we want to observe that, although we have, in the above, taken W
to be a component of NL(d—1), we could as well have taken W to be equal to
8(d—1), getting with a few slight changes similar results. Of course, we are going to
use in what follows only components for which c(W)=p,(d—1), and since

p(d)=pd—1)+(d—-2)([d—3)2

we find p,(d)-codimensional subvarieties Ey/{at, h) of E.
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4. Construction of General Components of the Noether-Lefschetz Locus (II)
and Proof of the Density Theorem

Step 2 essentially consists in proving a rather simple deformation theoretic result
for the surfaces corresponding to points of the subvarieties Ey(a,h) of E,
introduced in Sect. 3. As we have seen, for any x in Ey(a, ), the surface S has the
extra line bundle &,. Notice now that the line bundle ./, =(%,)®*®.#; has ample
restrictions to both components of S,. For any integer n we will denote by & the
line bundle &,®.#2" on S,. It is then very easy to see that there exists an integer N
such that for any n= N and for any x in Ey(e, h), one has:
(i) hX(S,, EY=h'(S,,67)=0; and

(ii) the general curve I in |67} is a reduced, local complete intersection on S,.

Moreover if, as usual, 4} g_denotes the normal bundle of I' in S,, we have, by
virtue of (i):

(iii) hl(r’ ‘/VI", Sx) = hZ(Sxa @Sx) = pg(d) .

Now we recall that we have a family ¥ — A, that x € E (o, h) C 4, and that S, is
the fibre of ¥ — 4 over x. Therefore we can look at I as a closed subscheme of & and
we can consider the dimension h(I') of the Hilbert scheme parametrizing closed
subschemes of 4 at the point corresponding to I'. What we shall need is an estimate
for h(I'). Precisely we want to prove the:

Proposition 3. h(I') 2 N(d)+h°(T', A1s.) —p,(d).
Proof. Consider the exact sequence of sheaves
0-> AN 5.2 AT,62N5,,s®0r—>0

and the induced map
fAHY(T, Nr,e)=H'(T, N5, 4®0r).

Then, since I' is locally a complete intersection, H'(I', A7, ¢) is known to be an
obstruction space for the functor Hilb, of infinitesimal deformations of I" in % (see
[S]); but we can see more, namely that Ker f is an obstruction space for Hilb, and
this will yield
h()Zh%I', ¥}, 4)—dim Ker f
whence the proposition, by (iii) above, since clearly
Hs.,8®0r = 0™

and dim A = N(d). In order to prove that Ker f is an obstruction space for Hilb we
argue as follows. For any Artin ring 4, and for any deformation 4, of I' in ¢
parametrized by A, there is an obstruction map

O(Ao) . Eth(AO, k)“)Hl(r, -/‘/‘r’g)

(see [S], prop. (8.4)), and our assertion will follow if the composition of 0(4) with f
is zero.

To prove this we first quote a general fact, which says in effect that if we have 2
flat family of projective varieties n: & —B and a connected subvariety ¥,C X 0
=n"1(b,) of a fiber of the family, any flat deformation of Y, in the total space & will
continue to lie in a fiber of =, even infinitesimally. Specifically, this is the
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Lemma. Letn:% —Band Y,C X, beasabove. Letn: % — B’ be a flat deformation of
Y,in&,i.e., asubscheme %W CZ x B’ such that the composition n of the inclusion with
the projection to B’ is flat, and such that n~'(b,)=Y,. Then there is a unique
morphism @ : B'— B such that the inclusion ¥ ¢ & x B’ factors though the inclusion &
x gB'.

Proof. The basic observation here is simply that, since Y, is reduced, projective and
connected and # is flat, we have

N:02)=0p .
Now, we may assume that B=SpecA4 and B’ =Spec A4’ are affine. The composition
Y% xB->%—>B
of the inclusion with projection to 4 and thence to B induces a map
A=I(B,0g)—T(¥,04)=T(B,0g)=A’

which yields the desired map from B’ to B.
(We would like to thank Angelo Vistoli for pointing out the simple proof of this
fact).

In the present circumstances, this lemma says that our deformation 44 0of I'in %
will induce a deformation 4; of S, in ¢ parametrized by A,; and so we get another
obstruction map

o(4p): Exty( Ao, k)~ H'(S, A5, 9).-
From the exact sequence
0> N5 (=) N5, 4= N5, 4®0r—0
we also obtain the map
g:H' Sy N5, ) > H'(I', N5,,s®0))

and it is a matter of local computation (see [S], prop. (4.8)) to check that the
composition of o(4,) with f is equal to the composition of o(4;) with g. But since
s, ¢=0s_, one has

H'(S, H5,.0)2H'(S,, 05 )=(0)

and this proves the assertion.
As an immediate consequence of Proposition 3 we have the

Corollary 4. If c(W)=p,(d—1) then there exists some component V of NL(d) such
that c(V)=p,(d) and VNE contains Ey/(a, h) as a component ( the closure of Vis, of
course, taken in A).

Proof. Let x be a general point of Ey{a, h), let I' be as above and let # be a
component of maximal dimension of the Hilbert scheme of curves in ¢ containing
the point corresponding to I'. Clearly there is a morphism F: 5 — 4 that is proper;
since the surfaces in question are regular, the fibres of F consist of a disjoint union
ofa finite number of projective spaces corresponding to linear systems on the fibres
of 4 4. (Indeed, by (i) above, these linear systems can be all assumed to be of the
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same dimension h%(I", A7 5 ): by upper semi-continuity, for nearby curves I; lying
on nearby surfaces S, we have h'(S,, O(I}))=h*(S, O(I;))=0 and it follows that
h°(S,, O(I))=h°(S,, O(I')). Then F(#)is a closed subset of 4 and, by Proposition 3,
we have

dim F(#)2 N(d)—p,(d). (*)
Notice now that F(s#) contains Ey(a, h) and
dim Ey(a, h)=N(d)—p,(d)—1. (*%)

Now, all the points of F(5#) correspond to surfaces that support extra line bundles.
On the other hand, as we have already remarked at the end of Sect. 3, Ey(x, h)is a
component of the locus in Eq of points corresponding to such surfaces; so
clearly Ey(a, h) is a component of F(#)NE, From before, we have that the
codimension of Ey(a,h) in E, is equal to p,(d). It follows from this that the
codimension of F(s) in A is at least equal to this; since by (*) the codimension of
F()is at most p,(d) we may conclude that the codimension of F(5#)in A is exactly
equal to p,(d).

It remains to see that F(s¢) is indeed a component of the Noether-Lefschetz
locus NL(d). But if it were not, the component V containing it would have to
intersect E, in a subvariety including a component that contained Ey(a, h) and had
larger dimension than Ey(a, h), but was still contained in the locus corresponding
to surfaces S, with extra line bundles; and this contradicts the fact that E (., h)is a
component of this locus.

We are now in position to complete the:

Proof of the Density Theorem. For d=4 the theorem directly follows from
Corollary 4 and the last assertion of Proposition 2, since in this case W = $(3) and
c(W)=p,(3)=0. For d>4 one can use induction, and the theorem is proved in the
same manner applying Corollary 4 and Proposition 2.

Before concluding this section it is may be worth remarking the role played by
the condition c¢(W)=p,(d — 1), which essentially comes into the picture only at the
very end of the argument, namely in Corollary 4, in order to deform the extra line
bundle off the locus of reducible surfaces. The question remains (and an answer
would be interesting in order to understand the special components of the
Noether-Lefschetz locus) for which W’s with ¢(W) < p,(d —1) and which (suitably
defined!) Ey(a, h) a similar deformation theoretic result may be proved.

5. The Density in the Natural Topology over the Complex Numbers
(Following Green)

As we said in the introduction, Green pointed out how the existence of just one
component of codimension p,(d) of NL(d) yields, over the complex numbers, th’e
density of NL(d) in S(d) in the natural topology. Now we will briefly sketch Green's
argument.

First we recall the existence of a real vector bundle J = »#%(d) on S(d) whos¢
fibre at a point s corresponding to a surface S is the real vector space H(S, R), and
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likewise of a complex vector bundle #¢=# @ C with fiber H*(S, C) at s (# and
H are the real and complex vector bundles associated to the local system R*n, Z,
where : #(d)—S(d) is the universal surface as above). Note that the bundles #
and ¢ are flat, so that in particular #% has the structure of holomorphic vector
bundle. # has a subbundle #*:'(d) of corank 2p,(d) whose fibre at a point s
corresponding to a surface S is H* }(S)nH*(S,R) and 5 has subbundles #¢:/ for
each i+j=2, with fibers H"#(S); in terms of the holomorphic structure on 3 the
subbundles ¢/ are not in general holomorphic, but the subbundles 2 and
Fl=HO DA " are.

Now choose an open subset (in the natural topology) U of S(d) over which 5#
and #g may be trivialized so that IP(#],)= U x IP and IP(#g,y)= U x Pg, where IP
and Pg are a real and complex projective space of dimension h*(S,IR)—1
respectively. Moreover we have maps Gy, :P(#)')-»P and Gy ¢:PP(Fy)—~Pc
that are linear and injective on each fibre; and by the above remark Gy ¢ is in fact
holomorphic. Suppose that U intersects some general component of NL(d). We
then make the

Basic Claim. The image of Gy contains some nonempty open subset U of IP.

Proof. We prove first the corresponding statement for Gy ¢, namely that the image
of Gy ¢ contains a nonempty open subset % of IP¢ meeting IPCIP¢. To see this,
observe that the hypothesis that U meets a general component of NL(d) means
that there are rational points y in IP¢ such that the fibre of G ¢ over them has
complex codimension equal to dimPg. Since Gy ¢ is holomorphic it follows that
the image of Gy ¢ contains a neighborhood of y.

The claim now follows if we observe that a point yeP=IP(H*(S,R))CP¢
=IP(H*(S, €)) that lies in the image of the map G, ¢—1i.e., that lies in the subspace
H"Y(S)@H®%(S)C H*(S, C) for some surface S corresponding to a point in U —
must also lie in the conjugate subspace H }(S)® H? °(S)C H*(S, €) and hence in
H'(S), that is, in the image of G, The image of G, thus contains the intersection
U of AU with PCP.

Given the Claim, we see that the inverse image Qy, in P(#'" '(d),y) via Gy, of the
rational points of IP (not corresponding to the class of the hyperplane section) is
dense in the natural topology, and so is the image of Q; in U under the map
P(s#*-1(d) ;) U. But this image is nothing else than NL(d), so NL(d)nU is dense
in U in the natural topology.

In order to complete the argument it is sufficient to show that for any point x in
S(d) there is an open neighborhood U of x in the natural topology such that 5#%(d)
can be trivialized over U and the (consequently defined) map G : IP(#" 1(d),,,)—»ll’
is of maximal rank somewhere. In order to see the sufficiency, we simply observe
that if we take an open cover {U,};. 5 of S(d) such that 5#*(d) can be trivialized over
U;forany ie.#, and such that the transition functions are constant non degenerate
h*(S,R) x h*(S,R) square matrices with coefficients in Z (the structure group of
#*(d) can be always reduced to GL(h*(S,R), Z)), the analytic subsets G(Ui) over
which Gy, fails to be of maximal rank patch together defining an analytic subset
G of IP(s#!:1(d)). This is proper because, as we have seen, G(Ui) is whenever U,
intersects a general component of NL(d) and if any one G(Ui) is proper they must
all be.
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