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TRANSACTIONS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 330, Number 1, March 1992

THE GAUSSIAN MAP FOR RATIONAL RULED SURFACES

JEANNE DUFLOT AND RICK MIRANDA

ABSTRACT. In this paper the Gaussian map ®: A2 HO(C, K) — H°(C, 3K)
of a smooth curve C lying on a minimal rational ruled surface is computed. It
is shown that the corank of ® is determined for almost all such curves by the
rational surface in which it lies. Hence, except for some special cases, a curve
cannot lie on two nonisomorphic minimal rational ruled surfaces.

1. INTRODUCTION

In this article we make a computation concerning the Gaussian map for
curves lying on a minimal rational ruled surface. The reader may recall that the
Gaussian map ® for a curve C maps A\>HO(C, K¢) to HY(C, 3K¢), and
is defined locally as follows. Let ¢ and 7 be two global 1-forms on C. If
p € C, choose a local coordinate z on C at p. Then dz generates the space
of holomorphic 1-forms locally at p as a module over the ring of holomorphic
functions at p, and so we may write 0 = f(z)dz and 7 = g(z)dz, where f
and g are holomorphic functions at p . With this notation the Gaussian map
® evaluated at g A 7 is given locally by

Do AT)=[g-8'f1-(dz)*,

which the reader may check is a well-defined element of H°(C, 3K¢), inde-
pendent of the choice of local coordinate z.

If C is canonically embedded in P#-!, the Gaussian map is the map on
global sections corresponding to the Gauss map. l.e., if G:C — Gr(1, g—1) is
the map sending a point of C to its tangent line in P#~! and p:Gr(1, g—1) —
P&(e—1)/2 js the Pliicker embedding of the Grassmann variety, then the Gaussian
map P is the map determined by the composition p o G. The reader should
consult [W1, W2, and C-H-M] for more details about the definition and basic
properties of @.

The most striking property which @ has is its relationship to the deformation
theory of the cone X over the canonical image of C in P8~!, In [W1], J. Wahl
proves that the cokernel of ® is exactly the (—1)-graded piece of the 7! for
X ; his theorem is that if @ is surjective, then the cone X does not smooth
(to a K3 surface of degree 2g — 2 in P¥). It is not hard to see that X
being smoothable to a K3 surface is equivalent to the curve C occurring as
a hyperplane section of a K3 surface. Since “most” curves on a K3 are very
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448 JEANNE DUFLOT AND RICK MIRANDA

ample (see [S-D]), we obtain the necessary condition that, loosely speaking, a
curve with @ surjective cannot lie on a K3 surface. This is a quite interesting
result, since the condition can be checked on the curve alone, without reference
to any K3 surface.

This article does not address the connection with curves on K3 surface, but
instead is a step towards addressing the question: how does the corank (=the
dimension of the cokernel) of @ stratify the moduli space for curves of genus
g, and in particular what geometric meaning can be given to curves having
certain given values for the corank of ®? Although we by no means get near
to an answer to these questions, our computations are aimed in this direction.

In §2 of this paper we define a Gaussian map for line bundles on a surface,
and show that if a curve C lies on a surface S, then the Gaussian map for C
can be viewed as the restriction to C of a certain Gaussian map on S. We then
give a lemma (Lemma 2.6) allowing one to compute the corank of the Gaussian
map for the curve C in terms of data on the surface S.

We intend to apply this lemma in the case that the surface is one of the min-
imal rational ruled surfaces F,. In §3 we make the cohomology computations
for the relevant vector bundles on F, which are needed to apply the lemma of
§2. '

§4 is the heart of the paper, where we prove the surjectivity of the Gaussian
map on F, associated to “big enough” divisors, and precisely determine how
“big” is necessary.

In §5 we draw the corollaries of our computations for curves lying on these
I, ’s. Firstly we are able to exhibit curves of a fixed genus with various coranks
for their Gaussian maps. It was proved in [C-H-M] that the general curve of
genus g = 10 or g > 12 has a surjective Gaussian map: the corank is 0. In
[W1] and in [B-M] it is proved that if a curve lies on a K3 surface, then the
Gaussian map cannot be surjective: the corank is at least one. The maximum
corank for a curve of genus g is 3g — 2, which is achieved by any hyperelliptic
curve (see [W2 or C-M2]). Various other computations have been made in
[C-M1 and C-M2], for curves of low genus, trigonal and elliptic-hyperelliptic
curves, for certain cyclic covers of P!, and for certain curves on Del Pezzo
surfaces. In [M], the second author has exhibited stable curves for which the
Gaussian map has corank one. However we view this article as being the first
attempt to systematically achieve a range of coranks.

Our second application is the following:

(1.1) Theorem. Let C be a nonhyperelliptic, nontrigonal, and non- 4-gonal curve.
Then C can be embedded into at most one F, with n > 3.

This seems surprising to the authors, and we do not know if any result along
these lines has been proved before. From the point of view of projective ge-
ometry, the surfaces F, are realized as the rational normal scrolls S, , of
dimension 2 in P4+b+1; here n = |a — b|. Therefore the above theorem states
that if a curve lies on two scrolls S, , and S,, ;, , with both |a; — b;| and
|ay — by| at least 3, then |a; — by| = |ay — by .

Of course, for high enough genus, the general curve lies on no F,, so from
that point of view Theorem (1.1) is simply a refinement of this relatively easy
statement. Using that approach, we see that a curve lying on an F,, must be
special, and the above theorem can be recast to say that if a curve is so special
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THE GAUSSIAN MAP 449

that it lies on two different ones (with the indices at least 3), then it has to have
amap to P! of degree 4 or less.

2. A LEMMA CONCERNING THE GAUSSIAN MAP FOR A CURVE ON A SURFACE

Let S be a smooth surface and C C S a smooth curve on S. If L is a line
bundle on C, the Gaussian map for L on C is the map

gc..: \ HC, L) - HY(C, L* ® QL)

given in terms of a local coordinate z on C and a trivialization of L by
sending f(z) A g(z) to [f' — gf')dz. This definition can be extended to the
surface S and a line bundle M on S, giving a map

o N HO(S, M) — HY(S, M*® Q})

defined in almost the same way: if {z, w} are local coordinates on S, then
f(z,w)Ag(z,w) issentto f-dg—g-df.

One obtains the “canonical” Gaussian map for a curve C by taking the line
bundle L to be the canonical bundle QL of C; this will be denoted simply by
¢c: N HO(C, Q) — HY(C, (Q4)®3).

If we take the line bundle M on S to be Q% ® @5(C) = Fs(Ks + C), then
by the adjunction formula, M|c = Q. and we have a commutative diagram

A HOS, Os(Ks +C)) B4 HOS, O5(2Ks +2C) @ QL)

al
(2.1 Res H°(C, QL(2Ks +2C)|c)
Bl
N HY(C, QL) 25 HO(C, (QL)®%),

where the vertical map Res on the left is simply restiction to C, and the vertical
maps a and B on the right are defined as follows.
By tensoring the sequence

0-5(—-C)—>COs — Cc —0
with @5(2Ks + 2C) ® QL , we obtain the sequence
(22) 00— QL2Ks+ C) —» QL(2Ks + 2C) — QL(2Ks + 2C)|¢c — 0,

which gives the map o: HO(S, QL(2Ks+2C)) —» HY(C, QL(2Ks+2C)|c) . The
dual of the normal bundle sequence for C in S is

0—>NE/ls—vQé|C—>QIC—vO,

and after tensoring this with 5(2Ks + 2C)|c = (QL)®?, and recalling that
Ncs = Os(C)|c , we have the sequence

(2.3) 0 - F5(2Ks + C)|c = Q§(2Ks +2C)|c — (QL)®* - 0,

which gives the map B: H(C, QL(2Ks + 2C)|c) — H(C, (Q})®3%).

The diagram (2.1) is adapted from a similar diagram occurring in [B-M, §2].
The idea of calculating @ for a curve C by using a Gaussian map on a variety
containing C already occurs in [W1, §6].
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450 JEANNE DUFLOT AND RICK MIRANDA

Note that Res is actually A”res, where res: HO(S , @s(Ks+C)) — H(C, QL)
is also restriction to C . This map res comes from the short exact sequence

0 — Is(Ks) — Ts(Ks + C) - Q¢ — 0,

and therefore if S is a regular (¢ = 0) surface, we have H!(S, @s(Ks)) = 0
and both res and Res are surjective. This proves the following.

(2.4) Lemma. If S is a regular surface, then the rank of the Gaussian map ¢c¢
for C is equal to the rank of the composition B o ao ¢s a, where a, B, and
M are as above.

Let us turn our attention to the maps « and S . Note that from the long exact
sequence for the sequence (2.2), we have that if H'(S, Q}(2Ks+C)) =0, then
a is surjective; this will be true if C is “ample enough” on S. If in addition
H*(S, QL(2Ks + C)) =0 and H!(S, Q}(2Ks + 2C)) = 0, then we must also
have H'(C, QL(2K + 2C)|c) = 0. In this case then the cokernel of g is
isomorphic to H!(C, @s(2Ks + C)|c) , using the long exact sequence for (2.3).

By considering the sequence

(2.5) 0 — Fs(2Ks) = Os(2Ks + C) —» Os(2Ks + C)|c — 0,

we see that if H(S, @s(2Ks + C)) and H(S, @s(2Ks + C)) are also both
zero, then H!(C, @s(2Ks + C)|c) & H?*(@s(2Ks)), which by Serre duality is
isomorphic to H°(S, @s(—Ks)). This is of course independent of C, and
allows us to deduce the rank of B, given the other assumptions. We have
therefore proved the following.

(2.6) Lemma. With the notations above, assume that

(a) S is a regular surface,

(b) H' and H? of QL(2Ks + C) are zero,

(c) HY(QL(2Ks +2C)) is zero,

(d) H' and H? of s(2Ks + C) are zero, and

(e) the Gaussian map ¢s p is surjective, where M = s(Ks + C).
Then the corank of the Gaussian map ¢¢ for C is dimc H(S, Os(—K)).

This dimension A%(S, @s(—K)) is the antigeometric genus (or possibly the
geometric antigenus) of S (the geometric genus being A%(S, @s(+K))) .

The rest of this paper is concerned with verifying the hypotheses of the above
lemma when C is a “sufficiently ample” curve on one of the minimal rational
ruled surfaces F, . These surfaces are certainly regular; they are rational. More-
over, they are all minimal surfaces except F;, which is the blowup of P? at
one point.

3. THE COHOMOLOGY OF CERTAIN BUNDLES ON [,

In this section, we calculate H°(F,, @ (D)) and H°(F,, Q!(D)) for any di-
visor D on F,. We shall use the following local description of F, in the
computations.

The surface F, is covered by the following four charts, each of which is
isomorphic to affine 2-space:

U, , with affine coordinates (x, u);

U, , with affine coordinates (x, v);
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THE GAUSSIAN MAP 451

Us , with affine coordinates (¥, w); and
U, , with affine coordinates (y, z).
The relationships between the variables are:

(3.1) u=1/v, z=1/w, x=1/y, and u=1/zy".

In these coordinates, the map n:F, — P! giving F, as a P!-bundle over P!
is w(x,u) =n(x,v)=x; a(y,w)=mn(y, z) =1/y (where 1/0 means the
point at infinity). We denote by F the fiber over infinity; then F does not
appear in U; or U, and is given locally by y = 0 in U; and U;. Let the
section s of 7 be given by s(x) = (x, 0) in U, (if x # oo0) and s(o0) = (0, 0)
in Uy ; we set s(P') = B. Thus, B does not appear in U; or Us, and is given
locallyby v =0 in U; and z=0 in U,.

If f is a meromorphic section of a vector bundle on F,, then f is in fact
regular if and only if f|y, and f|y, are regular, since these two charts cover
all but two points in F, .

The last fact that we need before we do the computations in this section is
that the Picard group of F, is freely generated by the classes of the fiber F and
the section B; every divisor D on F, is linearly equivalent to rB+sF for some
integers r and s (see Hartshorne [H] or Griffiths-Harris [G-H]). Hence our task
is to compute H'(F,, rB +sF) and H'(F,, Q'(rB+sF)) for i=0,1, and
2,forall n>0, and forall r and s.

(3.2) Lemma.

(3.2.1) HY(F,,@(rB + sF)) is zero if either r or s is negative.

(3.2.2) If r and s are nonnegative, then H°(F,, @(rB + sF)) is the linear
span of {x'uw/|i >0,0< j<r,0<i+nj<s}. Notethat this is a set of
independent monomials.

(3.2.3) HO(F,, Q'(rB + sF)) is zero if either r or s is negative.

(3.2.4) If r and s are nonnegative, then H(F,, Q!(rB + sF)) is the linear
span of the union of the following three disjoint sets whose elements are linearly
independent:

& = {x*uldx|0<k, 0<k+nl<s-2, 0<[<r},
Y ={x'wdul0<i, 0<i+n(j+1)<s—-1, 0<j<r-2},
and
{xs= 1=y~ (nudx — xdu)|[l <I<r—1and 1 +nl <s} ifn>0,
- { {x’wdul0<j<r-2} ifn=0.
Note that & (the dx terms) isempty if 0<s <1, Z (the du terms) is empty

if0<s<nor0<r<1,and # (the mixed terms) is emptyif 0<r<1 or
ifn>0and 0<s<n.

Proof. Since neither B nor F meet the chart U, an element of
HO(F,,&(rB + sF))

(when restricted to U;) is a regular function f on U; and therefore is a
polynomial f(x, u) in the variables x and u, since U, is isomorphic to AZ.
Using (3.1) to transform f(x, u) to the chart U, , we obtain f(1/y, 1/y"z);
for this to be in HO(F,, @(rB + sF)), its poles must be bounded by rB + sF .
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452 JEANNE DUFLOT AND RICK MIRANDA

Therefore z'y* f(y~!, z~ly~") must be a polynomial function on Uy, ; indeed,
this H° may be identified with the space

{f(x,u) eClx, u]|z’y f(1]y, 1/y"2) € Clx, u]}.
If either r or s is negative, this forces f to be zero, proving (3.2.1).

Assume now that r and s are nonnegative. We may also assume that f is
a monomial: if f is a polynomial, then f satisfies the above condition if and
only if all of its nonzero terms do. Let then f(x, u) = x'u/ for i > 0 and
j>0. Then z'yS(y~i)(y~"z~')/ is a polynomial if and only if i+nj < s and
Jj < r; this proves (3.2.2).

An element of HO(F,, Q!(rB + sF)) (when restricted to U;) is a differ-
ential form w = f(x, u)dx + g(x, u)du where f and g are regular, and
therefore polynomial, functions; transforming w to the U, chart, we obtain
w=A(y, z)dy + B(y, z)dz, where

A(y, 2)=-y2f(1y, 1/y"z) —ny="*Dz7lg(1]y, 1/y"2),
and
B(y,z)=-y "z %g(1/y, 1/y"2).
The form w is in HO(F,, Q!(rB + sF)) iff z'yS[A(y, z)dy + B(y, z)dz] is a
regular 1-form; which is true if and only if z"y*A(y, z) and z"y*B(y, z) are
polynomials. Since f and g are polynomials, if either r or s is negative, w
cannot be regular; this proves (3.2.3).

To prove (3.2.4), assume that r and s are nonnegative. We can now check
that the 1-forms in the sets 2 and % are in HO(F,, Q!(rB + sF)) by using
the criterion above.

In particular, for w = x¥u'dx, we have f = x*u! and g = 0, s0o 4 =
—y~k-nl=2z-1 and B = 0; thus w is in the space if and only if r —/ and
s — k — nl — 2 are both nonnegative. This yields the set 2.

For w = x'w/du, f =0 and g = x‘u/, so that 4 = —py—""i-1-niz-1-j
and B = —y~"~i="iz=2-J; thus w is in the space if and only if r — 1 —j and
s—i—1-n(j+1) are nonnegative. This leads to the set % .

In general, the function G(y, z) = z'y’B(y, z) = —z"~2yS"g(y~ 1, z~ly~")
is a polynomial if and only if g € H)(F,, (r —2)B + (s — n) f) , by the analysis
above. Therefore g is in the span of {x'u/|i >0, 0<j<r-2,0<i+nj<
s —n}, by (3.2.2). Note that this set contains all of the monomial coefficients
in the set % .

Assuming that G(y, z) is a polynomial, then

YAy, z)= -2y 2y, 27y ) + nzy Gy, 2)
is a polynomial if and only if
Hy,z) =2y fy~", z7ly™") - nzG(y, 2)
is a polynomial multiple of y. In particular this implies that K(y, z) =
Z'ys~lf(y~1, z7'y~™) must be a polynomial. This forces f to lie in
HO(F,,rB + (s — 1)F), and therefore f is in the span of {x*u/|k > 0,
0<I<r,0<k+nl<s-1}, by (3.2.2). Note that this set contains all

of the monomial coefficients in the set 2.
It therefore suffices to understand when @ = fdx + gdu is in

HY(F,, Q' (rB + sF))
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THE GAUSSIAN MAP 453

for f in the span of the monomials {x*u/|k >0, 0<I/<r, k+nl=s-1}
and g in the span of the monomials {x’y/|i >0, 0<j<r-2, i+nj=s—n}.
With this reduction we may then write

fx,wy= > ax' and gx,u)= Y bxUtD,

0<i<r, 0<j<r-2
ni<s—1 n(j+1)<s
In this case
YAy, z)== > @z ly'-n Y bizrilyTl,
0<I<r, 0<j<r-2
ni<s—1 n(j+1)<s
and .
Z'y°'B(y, z) = — Z bjz" =72,
0<j<r-2
n(j+1)<s

Hence there are no further conditions imposed by requiring z"y*B to be a
polynomial. The expression z"y*A4 is a polynomial if and only if it is zero,
since it is clearly a polynomial in z divided by y. This is zero if and only
if am + nby_; = 0 for all m. In particular, since the index on the b’s only
goes from 0'to r — 2, we must have gy = a, = 0, and a basis for the solutions
to these conditions is given by the set .# . This completes the proof of the
lemma. O

By counting the monomials allowed in H%(F,, rB+sF) using (3.2.2), and by
counting the elements in the sets 2°, % , and .# , one arrives at the following.

(3.3) Corollary.

(3.3.1) Assume that either r >0 and s > nr,

or r=—1 and s is arbitrary,

or n=0,r>-1,and s> -1;

then dim¢ H(F,, rB+sF)=(r+1)(s+ 1) —nr(r+1)/2.
(3.3.2) Assume that either r>1 and s > nr+2,

or n=0,r>1,and s>1;

then dimc HY(F,, Q!(rB + sF)) = 2rs —nr* — 2.

These computations of 4°’s allow us to compute the 42’s in many cases,
using Serre duality. The canonical class of F, is Ky, = —2B — (n + 2)F,
so that A%(F,, rB + sF) = h%(F,, (—r — 2)B — (s + n + 2)F). In addition,
h*(F,, Q'(rB + sF)) = h%(F,, Ky, ® T(—rB — sF)), where T is the tangent
sheaf of F,, the dual to Q!. However on a surface, K ® T = Q! so that
h*(F,, Q(rB + sF)) = h°(F,, Q!(-rB — sF)) . In particular, using (3.2.1) and
(3.2.3), we obtain the following.

(3.4) Corollary.

(34.1) If r>—1 or s>-n—1, then H*F,,rB+sF)=0.
(3.4.2) If r>1 or s> 1, then H*(F,, Q'(rB + sF)) =0.

Now using the Riemann-Roch theorem for line bundles and rank 2 vector
bundles on F, we can determine the 4! ’s in the cases of interest.

We need to know the intersection numbers for divisors on F, ; this is deter-
mined by the basic intersections B:B=-n, B-F=1,and F-F =0.
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454 JEANNE DUFLOT AND RICK MIRANDA

The Riemann-Roch theorem for line bundles tells us that
x(D) = h°(F,, D) — h'(F,, D) + h*(F,, D) = D(D — K)/2+ 1 + p,,
and since the arithmetic genus of any F, is zero we see that
X(rB + sF) = [(—nr? 4+ 2rs) + (=2nr + 25 4+ nr + 2r) + 2]/2
=(r+1)(s+1)—nr(r+1)/2.
Therefore using Corollaries (3.3.1) and (3.4.1), we see the following.

(3.5) Lemma. If r >0 and s> nr,orif n=0, r> -1, and s > —1, then
H\(F,, rB+sF)=0.

Finally, consider the sheaf Q!(rB+sF), which is a locally free sheaf of rank
2.

The Riemann-Roch theorem for a rank 2 bundle & over a surface S tells
us that

x(&) = 2x(Ts) — Ksc1 /2 + (2 — 202)/2,

where the ¢;’s are the Chern classes of & .
In our case, (@) =1, and if & = Q!(D), then

ci=K+2D and c;=4+K-D+D-D.
We then compute
x(Q'(D)) =2 - (K +2D)K + L{(K* + 4DK + 4D* - 8 — 2KD — 2D?)
=D?*-2.

If D=rB+sF,then D?—2 = 2rs — nr* — 2; this gives the following, using
Corollaries (3.3.2) and (3.4.2).

(3.6) Lemma. If r>1 and s>nr+2,0rif n=0, r>1, and s > 1, then
HY(F,, Q' (rB+sF))=0.

4. THE SURJECTIVITY OF THE GAUSSIAN MAP FOR LINE BUNDLES ON F,

In this section we compute the Gaussian map
2
@, p: \" H'(F,, &#(D)) » H'(F,, Q'(2D)),

for a divisor D = rB + sF on F,; and determine conditions on r,s and n
which give surjectivity of this map.

We immediately assume that r and s are nonnegative since our earlier cal-
culations show that ®, p is an isomorphism between trivial groups if either r
or s is negative.

As we have calculated earlier,

domain®, p = A\ ({x'w/[i>0, 0<j<r, 0<i+nj<s}).
Also, range®, p = (Z) + (%) + (#), where

& = {x*uldx|0<k, 0<k+nl<2s—2, 0<1<2r},
% ={x'wdul0<i, 0<i+n(j+1)<2s-1, 0<j<2r-2},

This content downloaded from 129.82.95.71 on Sat, 23 Apr 2022 00:08:00 UTC
All use subject to https://about.jstor.org/terms



THE GAUSSIAN MAP 455

and
’ - { {x®-1=nlyl-Ynydx — xdu)|]1 <1 <2r—1and 1+nl <2s} ifn>0,
{x¥ul-"dull <1<2r-1} ifn=0.
' It is easy to see that the formula for ® = ®, p on the pure monomial wedges
is
(4.1)  O(x*uf Ax"u®) = (y — o) (x" " uPHdx) + (6 — B)(x"Hufto du).
We first prove
(4.2) Lemma. If s > nr, then # Cim®, p.
Proof. Let 1<1/<2r—1,and s> nr. Let
1 if/isodd,
- { 2 if / is even.
Then
q)[(1/c)(xs—n((1+c)/2)u(l+c)/2 A xs—n((l—c)/Z)u(l—c)/2)]
— nx2s—nl——luldx _ x2s—nlu1—1du-

Since 1+nl<142nr—n<2s+1—-n,if n>0 orif n =0, we have “hit”
the typical element of .# ; hence at this point we need only check that the above
input to @ is in fact in the domain. Certainly (/+c¢)/2 >0, and s—n(/+c)/2 >
s—n(l+c)/2>s—nr>0, so all exponents are positive. Moreover, it is clear
that (/ +£c¢)/2 <r. It remains to check that [s —n(/ £c)/2]+n[(l £c¢)/2] <s;
but it equals s! 0O

Next we consider 2.

(4.3) Lemma. If s>nr+1, then 2 Cim®, p.

Proof. Suppose & # @; then s > 1. Fix xkuldx e 2 ;then k>0, 0</<
2r,and 0<k+nl<2s-2.

Set b =min{/, r} and ¢ = max{0, k + n/ + 1 — s} ; note that b and c are
both nonnegative.

Set o = max{c —nb, 0} and f =b. Then

D[(1/2)(xuf A xk—etlyl=Fy — (1/2)(x*'ub A x*—u!=B)] = x*uldx.

Again the problem is to verify that the element in the square brackets is
indeed in the domain of ®, p.

Let us first check that all of the exponents above are nonnegative. It is clear
that o and B are at least 0; also g </, so that / — 8 > 0. We need only
check that o < k, which istrue if a =0. If a > 0, then a = ¢ — nb, so that
¢ > 0; therefore c=k+nl+1—-s.Soa=c—-nb=k+1-s if b=1; and
a=c—nb=k+n(l-r)—(s—1) if b=r.If b=1, thensince s > 1, we have
k—a=s5—12>0;if b=r,thensince /[ <2r, k—a=s+1-n(l-r)>s+1—-nr,
which is nonnegative by assumption. Notice also that / — g <r.

To finish the proof, we must show that « + nff < s—1, and that kK —a +
n(l-p)<s-1.

Case 1. a =0 (i.e., ¢ < nb). Then a+nf = nb < nr <s-—1. Also,
k+nl+1—-s<c<nb=nf,sothat k—a+n(l—p)<s-1.
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Case 2. a > 0 (ie., a = c—nb and nb < ¢). In this case a + nf =
c—nb+nb=c,andsince c>0, c=k+nl+1—s. Since k+nl <2s-2,
we have ¢ < s — 1, finishing the proof. O

Finally, we consider % .

(4.4) Lemma. If s>nr+1, then % Cim®, p.

Proof. Let x'w/due? ,sothat i>0, 0<j<2r—-2and 0<i+n(j+1)<
25 — 1. Also, we may assume that r > 1 and s > 1, else Z is empty.
Notice that if i =0, then

Q((1/( + 1))(1 Awh) ifj<r-1,
O((1/(j - 2r + 1))@ Aw=+1)) if j>r— 1.

Since s > nr + 1, the indicated wedges are in the domain of ®, p. We may
therefore assume that i > 1 from now on. Our analysis breaks into four cases:
I) 0<j<r-1and i<s;
(II) 0<j<r-1andi<s;
M) r<j<2r—2and nr<i+n(j+1)-s;
(IV) r<j<2r—2and i+n(jj+1)—s<nr

ufdu={

Case (I): 0<j<r-1 and i <s. One may calculate that
O((i — 2)(/ ' A XY — () (xu/ T A X)) = (25 + 2)x'udu,
and see that the indicated wedges are in the domain of ®.
Case (II): 0<j<r-1 and i >s. The formula
D((2s — 2n(j + 1) — i = 2)(xHHnU+TD= p xs=nU+Dyi+1)
_ ((2S _ 2’1(] + 1) _ l-)(xi+n(j+l)—s+l Axs—n(j+l)—luj+l))
=(=2j - 2)x'w/du
works; the hypothesis that i > s is only used to assure that the exponents of x
in the first terms of the two wedges are nonnegative.
Case (III): r<j<2r—2 and i+n(j+1)—s < nr. The formula
D((i — 2)(u" AX' W) — (D) (xu” A XL TTHY)
= (4r —2j — 2)x'w/du
works.
Case (IV): r<j<2r—2 and i+n(j+1)—s>nr. Then
@((25‘ +2nr — 2n(] + 1) —i- 2)(xi+n(j+l)—s—nrur A xs+nr—n(j+l)uj—-r+1)
_ (2S 4 2nr — 2n(j + 1) _ i)(xi+n(j+l)—s—nr+1ur Axs+nr—n(j+l)—luj—r+l))
= (4r—2j - 2)x'u/du

works.
This completes the proof of Lemma (4.4). O

Lemmas (4.2)—(4.4) prove the following main result of this section.
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(4.5) Theorem. If r > 0 and s > nr+ 1, then ®, ,'D is surjective, where D =
rB+sF.

5. APPLICATIONS

Our first task is to find the smooth curves C on F, which satisfy the condi-
tions of Lemma (2.6). Since F, is rational, it is regular, so (a) of Lemma (2.6)
is satisfied.

Assume that C is linearly equivalent to pB + gF for some integers p and
g . Since Ky, = —2B — (n+ 2)F , we see that

K+C=(p-2)B+(g—n-2)F,
2K+C=(p-4B+(g—2n—-4)F, and
2K +2C=(2p—-4)B+ (29 —2n—4)F.
Therefore, by using (3.4.2) and Lemma (3.6), we see that
if (p—4)>1and (g—2n—-4)>n(p—-4)+2,orif n=0 and
(5.1 both p and g are at least 5, then H' and H? of Q!(2K +C)
both vanish, so that (b) of (2.6) is satisfied.
By using (3.6), we have

if ( 2p—4)>1and (29—-2n-4)>n(2p—4)+2,0rif n=0
(5.2) and both p and g are at least 3, then H! of Q!(2K + 2C)
vanishes, so that (c) of (2.6) is satisfied.

By using (3.4.1) and (3.5), we see that

if (p—4)>0 and (9g—2n—4) > n(p—4),orif n =0 and both
(5.3) p and q are at least 3, then H' and H? of 2K + C vanishes,
so that (d) of (2.6) is satisfied.

Finally, by Theorem (4.5), we have

if p>2 and (g—n-2) > n(p—2)+1, then the Gaussian map
® for K + C is surjective; hence (e) of (2.6) is satisfied.

Putting these all together, we obtain the following

(5.4)

(5.5) Theorem. Let C be a smooth curve on ¥, , linearly equivalent to pB+qF .
Assume that p > 5, and that

if n=0 then q > 5,

ifn=1 then q>p+4, and

ifn=2 then q>2p+2.
Then the dimension of the cokernel of the Gaussian map for C is

9 ifn<3,
{ n+6 ifn>3.
Proof. Note that since C is a smooth curve, we must have g > np (if ¢ < np
then every effective divisor linearly equivalent to pB +¢qF meets B negatively,
and so must contain B as a component). This inequality, along with the stated
assumptions about p and ¢, imply that the hypotheses of (5.1)-(5.4) are all
true, so that all of the hypotheses of Lemma (2.6) hold. Therefore the corank
of the Gaussian map for C is h%(F,, &#(-K)) = h%(F,, &(2B + (n + 2)F)),
whichis 9if n<2 andis n+6 if n>3. O
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Our first application of the above theorem is to exhibit curves with a fixed
genus, with various different coranks for their Gaussian maps. Note that by
using the genus formula, one easily sees that the genus g of a smooth curve on
F, linearly equivalentto pB+qF is g=(p—1)[g—1—n(p + 2)/2].

Therefore, if one fixes g, any solutions (n, p, g) to the above equation
with p > 5 and g > np will prove the existence of a smooth curve of genus
g with corank (®) given by the theorem: 9 if n» < 3 and »n + 6 otherwise.
(The condition g > np ensures that there are smooth curves in [pB + gF| by
Bertini’s Theorem.)

For example, if g is divisible by 4, say g = 4h, then p =5 is possible; we
then must have 2g —2—7n =2h,or g = h+1—7Tm, with n = 2m, then
qg>np ifandonlyif h+1—7m > 10m, or m < (h+ 1)/3. This achieves
even coranks 10, 12, 14, ..., 2[(h+1)/3]+6. In particular, if g = 100, then
h =25, so that even coranks from 10 through 22 are possible.

If g is divisible by 5, say g = Sk, then p = 6 is possible; in this case
q=k+1+44n, so that we must have k+1+4n>6n,or n<(k+1)/2. In
particular, if g = 100, we have k = 20; then the coranks 9, 10, ..., 16 are
achieved.

The maximum corank for the Gaussian map of a curve of genus g is achieved
by a hyperelliptic curve (see [W2], or [C-M2]), and is 3g — 2. We observe that
in the above examples, we do not get very near to this bound; our results seem to
obtain examples of “low” corank (although at least 9). It would be interesting to
know, for a fixed genus, what coranks can occur: one conjecture is that anything
between 0 and 3g — 2 is possible (for g > 12).

Our second application is perhaps more interesting, and may have a wider
audience. It follows by remarking that the corank of the Gaussian map for a
curve as in Theorem (5.5) is independent of the curve, and only depends on the
surface. Therefore, a curve (with certain restrictions) can lie on at most one
F, . This seems a surprising result to the authors.

To be precise, recall that a curve is k-gonal if there exists a degree k map
from the curve to P!. A hyperelliptic curve is 2-gonal, and a trigonal curve is
3-gonal. We will say that a curve is non-k-gonal if such a map does not exist.

(5.6) Theorem. Let C be a nonhyperelliptic, nontrigonal, and non- 4-gonal curve.
Then C be embedded into at most one ¥, with n> 3.

Proof. The hypotheses on C imply that when C is embedded into F, , it must
be linearly equivalent to pB+qF , where p > 5. If n is at least 3, then C and
n satisfy the hypotheses of Theorem (5.5); hence n is determined (it must be
6 less than the corank of the Gaussian map for C). O
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