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 TRANSACTIONS OF THE
 AMERICAN MATHEMATICAL SOCIETY
 Volume 330, Number 1, March 1992

 THE GAUSSIAN MAP FOR RATIONAL RULED SURFACES

 JEANNE DUFLOT AND RICK MIRANDA

 ABSTRACT. In this paper the Gaussian map 1: A2 HO(C, K) -* HO(C, 3K)
 of a smooth curve C lying on a minimal rational ruled surface is computed. It
 is shown that the corank of 1 is determined for almost all such curves by the
 rational surface in which it lies. Hence, except for some special cases, a curve

 cannot lie on two nonisomorphic minimal rational ruled surfaces.

 1. INTRODUCTION

 In this article we make a computation concerning the Gaussian map for
 curves lying on a minimal rational ruled surface. The reader may recall that the

 Gaussian map 'D for a curve C maps A2 HO(C, Kc) to HO(C, 3Kc), and
 is defined locally as follows. Let a and T be two global 1-forms on C. If
 p E C, choose a local coordinate z on C at p. Then dz generates the space
 of holomorphic 1 -forms locally at p as a module over the ring of holomorphic
 functions at p, and so we may write a = f(z)dz and T = g(z)dz, where f
 and g are holomorphic functions at p. With this notation the Gaussian map
 ID evaluated at a A T is given locally by

 ( A T) = [f'g - g'f (dz)3,

 which the reader may check is a well-defined element of HO(C, 3Kc), inde-
 pendent of the choice of local coordinate z.

 If C is canonically embedded in Pg-I , the Gaussian map is the map on
 global sections corresponding to the Gauss map. I.e., if G: C -- Gr( 1, g - 1) is
 the map sending a point of C to its tangent line in JPg- 1 , and p: Gr( 1, g - 1) -*
 pg(g-1)/2 is the Plucker embedding of the Grassmann variety, then the Gaussian
 map 'D is the map determined by the composition p o G. The reader should
 consult [Wi, W2, and C-H-M] for more details about the definition and basic
 properties of (D.

 The most striking property which (D has is its relationship to the deformation
 theory of the cone X over the canonical image of C in Pg- . In [Wi], J. Wahl
 proves that the cokernel of (D is exactly the (-1)-graded piece of the T1 for
 X; his theorem is that if (D is surjective, then the cone X does not smooth
 (to a K3 surface of degree 2g - 2 in 1P9). It is not hard to see that X
 being smoothable to a K3 surface is equivalent to the curve C occurring as
 a hyperplane section of a K3 surface. Since "most" curves on a K3 are very
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 448 JEANNE DUFLOT AND RICK MIRANDA

 ample (see [S-D]), we obtain the necessary condition that, loosely speaking, a
 curve with (D surjective cannot lie on a K3 surface. This is a quite interesting
 result, since the condition can be checked on the curve alone, without reference
 to any K3 surface.

 This article does not address the connection with curves on K3 surface, but
 instead is a step towards addressing the question: how does the corank (=the
 dimension of the cokernel) of 1D stratify the moduli space for curves of genus
 g, and in particular what geometric meaning can be given to curves having
 certain given values for the corank of 4D? Although we by no means get near
 to an answer to these questions, our computations are aimed in this direction.

 In ?2 of this paper we define a Gaussian map for line bundles on a surface,
 and show that if a curve C lies on a surface S, then the Gaussian map for C
 can be viewed as the restriction to C of a certain Gaussian map on S. We then
 give a lemma (Lemma 2.6) allowing one to compute the corank of the Gaussian
 map for the curve C in terms of data on the surface S.

 We intend to apply this lemma in the case that the surface is one of the min-

 imal rational ruled surfaces F, . In ?3 we make the cohomology computations
 for the relevant vector bundles on F' which are needed to apply the lemma of
 ?2.

 ?4 is the heart of the paper, where we prove the surjectivity of the Gaussian
 map on F, associated to "big enough" divisors, and precisely determine how
 "big" is necessary.

 In ?5 we draw the corollaries of our computations for curves lying on these
 F' 's. Firstly we are able to exhibit curves of a fixed genus with various coranks
 for their Gaussian maps. It was proved in [C-H-M] that the general curve of
 genus g = 10 or g > 12 has a surjective Gaussian map: the corank is 0. In
 [W1] and in [B-M] it is proved that if a curve lies on a K3 surface, then the
 Gaussian map cannot be surjective: the corank is at least one. The maximum
 corank for a curve of genus g is 3g - 2, which is achieved by any hyperelliptic
 curve (see [W2 or C-M2]). Various other computations have been made in
 [C-Mi and C-M2], for curves of low genus, trigonal and elliptic-hyperelliptic
 curves, for certain cyclic covers of PIl, and for certain curves on Del Pezzo
 surfaces. In [M], the second author has exhibited stable curves for which the
 Gaussian map has corank one. However we view this article as being the first
 attempt to systematically achieve a range of coranks.

 Our second application is the following:

 (1.1) Theorem. Let C be a nonhyperelliptic, nontrigonal, and non- 4-gonal curve.
 Then C can be embedded into at most one Fn with n > 3.

 This seems surprising to the authors, and we do not know if any result along
 these lines has been proved before. From the point of view of projective ge-

 ometry, the surfaces Fn are realized as the rational normal scrolls Sa,b of
 dimension 2 in pa+b+ 1; here n = Ia - b . Therefore the above theorem states
 that if a curve lies on two scrolls Sa, b1 and Sa2 ,b2I with both Ia - b II and
 la2 - b21 at least 3, then la, - bil = la2 - b21.

 Of course, for high enough genus, the general curve lies on no Fn', so from
 that point of view Theorem (1.1) is simply a refinement of this relatively easy
 statement. Using that approach, we see that a curve lying on an Fn must be
 special, and the above theorem can be recast to say that if a curve is so special
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 THE GAUSSIAN MAP 449

 that it lies on two different ones (with the indices at least 3), then it has to have
 a map to JPi of degree 4 or less.

 2. A LEMMA CONCERNING THE GAUSSIAN MAP FOR A CURVE ON A SURFACE

 Let S be a smooth surface and C c S a smooth curve on S. If L is a line
 bundle on C, the Gaussian map for L on C is the map

 $C,L.A H(C, L) -* HO(C, L2 XQ)

 given in terms of a local coordinate z on C and a trivialization of L by
 sending f(z) A g(z) to [f' - gf']dz. This definition can be extended to the
 surface S and a line bundle M on S, giving a map

 q$S,M:.HO(S, M) -, H(S, M2 ?Q1)

 defined in almost the same way: if {z, w} are local coordinates on S, then
 f(z, w)Ag(z, w) is sent to fdg- gdf.

 One obtains the "canonical" Gaussian map for a curve C by taking the line
 bundle L to be the canonical bundle QI of C; this will be denoted simply by Xc~: A2 HO(C, Qc) HO(C, (l )?3).

 If we take the line bundle M on S to be Q5 0 &s(C) = 9S(Ks + C), then
 by the adjunction formula, MIc = Q and we have a commutative diagram

 A2HO(S, &s9(Ks + C)) -m4 H?(S, 69s(2Ks + 2C) XQ)
 atl

 (2.1) Res HO(C, Qs2(2Ks + 2C)lc)

 A2HO(C, c) HO(C, (il)?3)
 where the vertical map Res on the left is simply restiction to C, and the vertical
 maps a and ,B on the right are defined as follows.

 By tensoring the sequence

 O -- &S (- C) --s &S --c &C ?

 with 6s(2Ks + 2C) 0 QV, we obtain the sequence

 (2.2) 0 -- Ql(2Ks + C) -- Ql(2Ks + 2C) -* Qs(2Ks + 2C)Ic -?0,

 which gives the map a: H?(S, V(2Ks + 2C)) - H?(C, V(2Ks + 2C) Ic) . The
 dual of the normal bundle sequence for C in S is

 O -- NC-/15 Qsc K2Qc -- 2' 0

 and after tensoring this with 6s(2Ks + 2C)Ic = (Q1,)2, and recalling that
 NCIs = YS (C)Ic, we have the sequence

 (2.3) 0 -* 6's(2Ks + C)Ic -Q K'(2Ks + 2C)Ic (Qc)?3 0,

 which gives the map ,B: H?(C, Q4(2Ks + 2C)Ic) -* H?(C, (QI)?3).
 The diagram (2.1) is adapted from a similar diagram occurring in [B-M, ?2].

 The idea of calculating 0 for a curve C by using a Gaussian map on a variety
 containing C already occurs in [WI, ?6].
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 450 JEANNE DUFLOT AND RICK MIRANDA

 Note that Res is actually A2 res, where res: HO(S, &s(Ks+C)) -* HO(C, K4)
 is also restriction to C. This map res comes from the short exact sequence

 O -- s(Ks) &s(Ks + C) Qc+ K2 --
 and therefore if S is a regular (q = 0) surface, we have H1 (S, 6s(Ks)) = 0
 and both res and Res are surjective. This proves the following.

 (2.4) Lemma. If S is a regular surface, then the rank of the Gaussian map q$c
 for C is equal to the rank of the composition ,B o a o qs, M, where a, /3, and
 M are as above.

 Let us turn our attention to the maps a and ,B. Note that from the long exact

 sequence for the sequence (2.2), we have that if H1 (S, K'(2Ks + C)) = 0, then
 a is surjective; this will be true if C is "ample enough" on S. If in addition

 H2(S, K2(2Ks + C)) = 0 and H1(S, KV(2Ks + 2C)) = 0, then we must also
 have H1(C, QV(2K + 2C)IC) = 0. In this case then the cokernel of ,B is
 isomorphic to HI(C, 6s(2Ks + C)Ic), using the long exact sequence for (2.3).

 By considering the sequence

 (2.5) O -6 S(2K s) -S(2Ks + C) - &S(2Ks + C)Ic - O,

 we see that if H1 (S, &s(2Ks + C)) and H2(S, &s(2Ks + C)) are also both
 zero, then H1(C, &s(2Ks + C)c) - H2(&s(2Ks)), which by Serre duality is
 isomorphic to HO(S, &s(-Ks)). This is of course independent of C, and
 allows us to deduce the rank of /B, given the other assumptions. We have
 therefore proved the following.

 (2.6) Lemma. With the notations above, assume that
 (a) S is a regular surface,

 (b) H1 and H2 of Q2(2Ks + C) are zero,
 (c) H1 (Q'(2Ks + 2C)) is zero,
 (d) H1 and H2 of 6s(2Ks + C) are zero, and

 (e) the Gaussian map Os, M is surjective, where M = 6s(Ks + C).
 Then the corank of the Gaussian map q$c for C is dime HO(S, Ys(-K)).

 This dimension h?(S, 6s(-K)) is the antigeometric genus (or possibly the
 geometric antigenus) of S (the geometric genus being h?(S, 9s(+K))) .

 The rest of this paper is concerned with verifying the hypotheses of the above
 lemma when C is a "sufficiently ample" curve on one of the minimal rational

 ruled surfaces Fn . These surfaces are certainly regular; they are rational. More-
 over, they are all minimal surfaces except IF,, which is the blowup of p2 at
 one point.

 3. THE COHOMOLOGY OF CERTAIN BUNDLES ON Fn

 In this section, we calculate HO(FnI' ((D)) and HO(IFn , Ql (D)) for any di-
 visor D on Fn'. We shall use the following local description of Fn in the
 computations.

 The surface Fn is covered by the following four charts, each of which is
 isomorphic to affine 2-space:

 U1 , with affine coordinates (x, u);
 U2, with affine coordinates (x, v);
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 THE GAUSSIAN MAP 451

 U3, with affine coordinates (y, w); and
 U4, with affine coordinates (y, z) .
 The relationships between the variables are:

 (3.1) u= 1/v, z= 1/w, x= 1/y, and u= l/zy'.

 In these coordinates, the map 7r: Fn ` Pil giving Fn as a 1Pi-bundle over JPi
 is 7r(x, u) = 7r(x, v) = x; 7t(y, w) = 7t(y, z) = l/y (where 1/0 means the
 point at infinity). We denote by F the fiber over infinity; then F does not
 appear in Ui or U2 and is given locally by y = 0 in U3 and U4. Let the
 section s of 7r be given by s(x) = (x, 0) in U2 (if x $ ox) and s(oo) = (0, 0)
 in U4; we set s(1P1) = B. Thus, B does not appear in U1 or U3, and is given
 locally by v = O in U2 and z = O in U4.

 If f is a meromorphic section of a vector bundle on Fn , then f is in fact

 regular if and only if flu, and f lu4 are regular, since these two charts cover
 all but two points in Fn .

 The last fact that we need before we do the computations in this section is
 that the Picard group of Fn is freely generated by the classes of the fiber F and
 the section B; every divisor D on Fn is linearly equivalent to rB+sF for some
 integers r and s (see Hartshorne [H] or Griffiths-Harris [G-H]). Hence our task
 is to compute Hi(Fn , rB + sF) and Hi(IFn , Ql (rB + sF)) for i = 0, 1, and
 2, for all n > 0, and for all r and s.

 (3.2) Lemma.
 (3.2.1) HO(FnF, 6(rB + sF)) is zero if either r or s is negative.
 (3.2.2) If r and s are nonnegative, then HO(IFn, 6(rB + sF)) is the linear

 span of {xiu'li > O, 0 < j < r, 0 < i + nj < s}. Note that this is a set of
 independent monomials.

 (3.2.3) HO(Fn , Q I (rB + sF)) is zero if either r or s is negative.
 (3.2.4) If r and s are nonnegative, then HO(IFn , QV (rB + sF)) is the linear

 span of the union of the following three disjoint sets whose elements are linearly
 independent:

 ! = ={xkuldxlO<k, O<k+nl<s-2, O?l< r},

 D=- {x'ujdulO i, O i+n(j+ 1) s-1, O?j?r-2},

 and

 , {f {xs- l -nlul-l(nudx-xdu)I1 <l<r- land 1+nl<s} if n>O,

 {xsuJduIO < j < r- 2} if n =0.

 Note that 2' (the dx terms) is empty if 0 < s < 1, S! (the du terms) is empty
 if O<s?n or O<r? 1, and X (the mixed terms) is empty if O<r 1 or
 if n > 0 and 0 <s <n.

 Proof. Since neither B nor F meet the chart U1, an element of

 HO(Fn, &(rB + sF))

 (when restricted to U1) is a regular function f on U1 and therefore is a
 polynomial f(x, u) in the variables x and u, since U1 is isomorphic to A2.
 Using (3.1) to transform f(x, u) to the chart U4, we obtain f(1/y, 1/ynz);
 for this to be in HO(Fn , 69(rB + sF)), its poles must be bounded by rB + sF .
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 452 JEANNE DUFLOT AND RICK MIRANDA

 Therefore zrysf(y- , z- ly-n) must be a polynomial function on U4; indeed,
 this HO may be identified with the space

 {f(x, u) E C[x, u]Izrysf(1/y, 1/ynz) E C[x, u]}.
 If either r or s is negative, this forces f to be zero, proving (3.2.1).

 Assume now that r and s are nonnegative. We may also assume that f is
 a monomial: if f is a polynomial, then f satisfies the above condition if and
 only if all of its nonzero terms do. Let then f(x, u) = xiuj for i > 0 and
 j > 0. Then zrys(y-i)(y-nz-l)j is a polynomial if and only if i + nj < s and
 j < r; this proves (3.2.2).

 An element of HO (FnF, KV (rB + sF)) (when restricted to Ui) is a differ-
 ential form co = f(x, u)dx + g(x, u)du where f and g are regular, and
 therefore polynomial, functions; transforming co to the U4 chart, we obtain
 co = A(y, z)dy + B(y, z)dz, where

 A(y, z) = -y-2f(1/y, l/ynz) - ny-(n+l)z-lg(l/y, llynz),

 and

 B(y, z) = yf-n z-2g(1/y, 1/ynz).

 The form co is in HO(Fn, Q1 (rB + sF)) iff zrys[A(y, z)dy + B(y, z)dz] is a
 regular 1-form; which is true if and only if zrysA(y, z) and zrysB(y, z) are
 polynomials. Since f and g are polynomials, if either r or s is negative, co
 cannot be regular; this proves (3.2.3).

 To prove (3.2.4), assume that r and s are nonnegative. We can now check

 that the 1-forms in the sets 2' and S( are in HO(FnF, KV (rB + sF)) by using
 the criterion above.

 In particular, for co xkuldx, we have f = Xkul and g = 0, so A =
 _y-k-nl-2z-1 and B = 0; thus co is in the space if and only if r - 1 and
 s - k - nl - 2 are both nonnegative. This yields the set Z'.

 For co = xiujdu, f = 0 and g = xiuj, so that A = -ny-n-i-1-njZ-1-j
 and B = y-n i-niz-2-j; thus w is in the space if and only if r - 1 - j and
 s - i - 1 - n(j + 1) are nonnegative. This leads to the set W'.

 In general, the function G(y, z) = zrysB(y, z) = _zr-2 ys-nfg(y-l z-iyYn)
 is a polynomial if and only if g E HO(FnF, (r - 2)B + (s - n)f), by the analysis
 above. Therefore g is in the span of {xiu'Ii > O, O < j < r-2, 0 < i+nj <
 s - n}, by (3.2.2). Note that this set contains all of the monomial coefficients
 in the set W'.

 Assuming that G(y, z) is a polynomial, then

 zrysA(y, z) = _zr ys-2 f(y-l z-1yYn) + nzy-1G(y, z)

 is a polynomial if and only if

 H(y, z) = zrys-lf(y-1 z-yn) - nzG(y, z)

 is a polynomial multiple of y. In particular this implies that K(y, z) =
 zryS-lf(y-l, z-1y-n) must be a polynomial. This forces f to lie in
 HO(Fn, rB + (s - 1)F), and therefore f is in the span of {xkullk > O,
 0 < / < r, 0 < k + ni < s - 1}, by (3.2.2). Note that this set contains all
 of the monomial coefficients in the set '.

 It therefore suffices to understand when Cc = fdx + gdu is in
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 for f in the span of the monomials {xkulIk>O, O<<r, k+nl=s- 1}
 and g in the span of the monomials {x yiii > 0, 0 < j < r-2, i+nj = s-n}.

 With this reduction we may then write

 f(x, u)= alxs-nl-lul and g(x, u)= bjxs-n(j+l)uj.
 O<l<r, O<j<r-2
 nl<s- 1 n(j+1)<s

 In this case

 zrysA(y, z) z lz azr-ly-l n Z bjzr-j-1y-
 O<l<r, O<j<r-2
 nl<s- 1 n(j+1 )<s

 and
 ZrysB(y, Z)= b z

 O<j<r-2
 n(j+l)<s

 Hence there are no further conditions imposed by requiring ZrysB to be a
 polynomial. The expression zrysA is a polynomial if and only if it is zero,
 since it is clearly a polynomial in z divided by y. This is zero if and only
 if am + nbm-i = 0 for all m. In particular, since the index on the b's only
 goes from O to r - 2, we must have ao = ar = 0, and a basis for the solutions
 to these conditions is given by the set X4. This completes the proof of the
 lemma. 0

 By counting the monomials allowed in HO(IFn , rB+sF) using (3.2.2), and by
 counting the elements in the sets 2, D', and Xf, one arrives at the following.

 (3.3) Corollary.

 (3.3.1) Assume that either r > 0 and s > nr,
 or r =-1 and s is arbitrary,
 or n =0, r > -1, and s > -1;
 then dimc HO(IFn, rB + sF) = (r + 1)(s + 1) - nr(r + 1)/2.

 (3.3.2) Assume that either r > 1 and s > nr + 2,
 or n=O, r> 1, and s> 1;
 then dimc HO(IFn S Ql (rB + sF)) = 2rs - nr2 - 2.

 These computations of h?'s allow us to compute the h2 's in many cases,
 using Serre duality. The canonical class of Fn is KFn = -2B - (n + 2)F,
 so that h2(IFn, rB + sF) = h0(IFn, (-r - 2)B - (s + n + 2)F). In addition,
 h2(Fn, Q1 (rB + sF)) = h0(IFn KFn (0 T(-rB - sF)), where T is the tangent
 sheaf of FnF, the dual to Q1 . However on a surface, K ? T _ QV, so that
 h2(IFn , KV (rB + sF)) = h0(FnF, Q(-rB - sF)) . In particular, using (3.2.1) and
 (3.2.3), we obtain the following.

 (3.4) Corollary.

 (3.4.1) If r>-1 ors>-n-1,then H2(IFn,rB+sF)=O.
 (3.4.2) If r > 1 or s > 1, then H2(Fn , K (rB + sF)) = O.

 Now using the Riemann-Roch theorem for line bundles and rank 2 vector

 bundles on IFn we can determine the hI 's in the cases of interest.
 We need to know the intersection numbers for divisors on FnF; this is deter-

 mined by the basic intersections B B =-n, B * F = 1, and F * F = 0 .
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 454 JEANNE DUFLOT AND RICK MIRANDA

 The Riemann-Roch theorem for line bundles tells us that

 X(D) = hO(IF, D) -h1(Fn, D) +h2 (h2 , D) = D(D-K)/2 + 1 +Pa,
 and since the arithmetic genus of any F' is zero we see that

 X(rB + sF) = [(-nr2 + 2rs) + (-2nr + 2s + nr + 2r) + 2]/2

 = (r + 1)(s + 1) - nr(r + 1)/2.

 Therefore using Corollaries (3.3.1) and (3.4.1), we see the following.

 (3.5) Lemma. If r > 0 and s > nr, or if n = 0, r > -1, and s > -1, then

 HI(Fn, rB+sF) =0.
 Finally, consider the sheaf K1 (rB + sF), which is a locally free sheaf of rank

 2.

 The Riemann-Roch theorem for a rank 2 bundle ' over a surface S tells
 us that

 X(t) = 2X(&s) - Ksci/2 + (C2 - 2c2)/2,
 where the ci's are the Chern classes of F.

 In our case, x(a) = 1, and if F = Q1(D), then

 cl=K+2D and C2=4+K.D+D.D.

 We then compute

 X(Q1(D)) 2 (K + 2D)K + I (K2+ 4DK + 4D 2- 8-2KD-2D2)

 =-D2 2.

 If D = rB + sF, then D2 - 2 = 2rs - nr2 - 2; this gives the following, using
 Corollaries (3.3.2) and (3.4.2).

 (3.6)Lemma. If r> 1 and s>nr+2, orif n=0, r> 1, and s> 1;then
 HI (lFn, Q (rB + sF)) = O .

 4. THE SURJECTIVITY OF THE GAUSSIAN MAP FOR LINE BUNDLES ON Fn

 In this section we compute the Gaussian map

 ?n,D: A 2HO (Fn S (&(D)) -- HO (Fn, Q (2D)),

 for a divisor D = rB + sF on Fn'; and determine conditions on r, s and n
 which give surjectivity of this map.

 We immediately assume that r and s are nonnegative since our earlier cal-

 culations show that (Dn,D is an isomorphism between trivial groups if either r
 or s is negative.

 As we have calculated earlier,

 domain4n,D =A (x ?uJli>0, 0?1 j r, 0? i+nj ?s}).

 Also, range 4n,D = (k) + (/) + (X~f), where

 ? = {xkuldxlO < k, < k+nl < 2s-2, 0 <1<2r},

 W= {xiuduj0<i, 0? i+n(j+1)<2s- 1, 0<j?2r-2},
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 and

 ,f{x2I sx2l- -nlull (nudx-xdu)I1?<<2r-1and1+nl<2s} ifn>O,

 |x {2s u1-du1l <1<2r-l1} if n=O.
 It is easy to see that the formula for ID = (Dn,D on the pure monomial wedges

 is

 (4.1) 4D(x'uO A x7u) = (y - a) (Xa-1uO+dx) + (( - _,)(X+auf+"-'du).
 We first prove

 (4.2) Lemma. If s > nr, thenA C im4 n,D
 Proof. Let 1<1<2r-1,and s>nr. Let

 f 1 if l is odd,

 C - . 2 if l is even.

 Then

 4D[( 1/c) (xS-n((l+c)/2) U(l+C)/2 A Xs-n((l -c)/2) u(l-c)/2)]

 = nx2s-nl- uldx - x2s-nlul- 1 du.

 Since 1 +nl < 1 +2nr-n < 2s+ 1 -n, if n > O or if n = O, we have "hit"
 the typical element of If; hence at this point we need only check that the above
 input to 1D is in fact in the domain. Certainly (l+c)/2 > 0, and s-n(l+ c)/2 >
 s - n(l + c)/2 > s - nr > 0, so all exponents are positive. Moreover, it is clear
 that (1 ? c)/2 < r. It remains to check that [s - n(l + c)/2] + n[(l + c)/2] < s;
 but it equals s! 0

 Next we consider '.

 (4.3) Lemma. If s > nr + 1, then 2' C im4Dn,D .

 Proof. Suppose Z :$ 0; then s > 1 . Fix xkuldx E X; then k > O, 0 < I <
 2r,and O<k+nl<2s-2.

 Set b = min{l, r} and c = max{O, k + nl + 1 - s}; note that b and c are
 both nonnegative.

 Set a = max{c- nb, O} and f, = b. Then

 4D[(1/2)(xau,8 A xka+lulfl) - (1/2)(xa+Iu6 A xk-aul-fl)] = xkuldx.

 Again the problem is to verify that the element in the square brackets is
 indeed in the domain of Dn, D D

 Let us first check that all of the exponents above are nonnegative. It is clear
 that a and ,B are at least 0; also f, < 1, so that 1 -fl > 0. We need only
 check that a < k, which is true if a = O. If a > O, then a = c - nb, so that
 c>O;therefore c=k+nl+1-s. So a=c-nb=k+1-s if b=l;and
 a=c-nb=k+n(l-r)-(s-1) if b=r. If b=l,thensince s> 1,wehave
 k-a = s- 1 > O; if b = r, then since l < 2r, k-a = s+ 1 -n(l-r) > s+ 1 -nr,
 which is nonnegative by assumption. Notice also that 1 - ,B < r.

 To finish the proof, we must show that a + n,B < s - 1, and that k - a +
 n(l-f3)<s- 1.

 Case 1. a = 0 (i.e., c < nb). Then a +nf = nb < nr < s - 1. Also,
 k+nl+ 1-s< c < nb = n/B, so that k-a+n(l-f,) <s-1.
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 Case 2. a > 0 (i.e., a = c - nb and nb < c). In this case a +n3 =
 c-nb+nb=c,andsince c>0, c=k+nl+1-s. Since k+nl<2s-2,
 we have c < s - 1, finishing the proof. O

 Finally, we consider W'.

 (4.4) Lemma. If s > nr + 1, then Z/ C im4(n,D .
 Proof. Let xiujdu E , so that i > 0, 0 < j < 2r - 2 and 0 < i + n(j + 1) <
 2s - 1 . Also, we may assume that r > 1 and s > 1, else Z/ is empty.

 Notice that if i = 0, then

 ujdu = J 4(((l/(j + 1))(1 A Ui+1)) if j < r -1,
 1 4?((l/(j-2r+ 1))(ur A U-r+l)) if j S r- 1.

 Since s > nr + 1, the indicated wedges are in the domain of J?n,D . We may
 therefore assume that i > 1 from now on. Our analysis breaks into four cases:

 (I) O<jIr-1 and i<s;
 (II) O<j<r-1 and i<s;
 (III) r<j<2r-2 and nr<i+n(j+1)-s;
 (IV) r<j<2r-2 and i+n(j+1)-s<nr.

 Case (I): 0 < j < r - 1 and i < s. One may calculate that

 (D((i - 2)(uj+l A x') - (i)(xuJ+1 A xi-')) = (2j + 2)xiujdu

 and see that the indicated wedges are in the domain of 4(.
 Case (II): 0 < j < r- 1 and i > s. The formula

 ?((2s - 2n(j + 1) - i - 2)(xi+n(j+l)-s A Xs-n(j+l)Uj+l)
 - ((2s - 2n(j + 1) - i)(Xi+n(j+l)-s+l A Xs-n(j+l)-lUj+l

 = (-2j - 2)xiujdu

 works; the hypothesis that i > s is only used to assure that the exponents of x
 in the first terms of the two wedges are nonnegative.

 Case (III): r < j < 2r - 2 and i + n(j + 1) - s < nr. The formula

 - ((i-2)(Ur A XiUj-r+l) - (i)(XUr A xil- uj-r+l))
 = (4r - 2j - 2)xiujdu

 works.

 Case (IV): r < j < 2r - 2 and i + n(j + 1) - s > nr. Then

 c1((2s + 2nr - 2n(j + 1) - i - 2)(Xi+n(j+l)-s-nrUr A Xs+nr-n(j+l)Uj-r+l)

 - (2s + 2nr - 2n(] + 1) - j)(Xi+n(j+l)-s-nr+lUr AXs+nr-n(j+l)-lUj-r+l))

 = (4r - 2j - 2)xiujdu

 works.

 This completes the proof of Lemma (4.4). 0

 Lemmas (4.2)-(4.4) prove the following main result of this section.
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 (4.5) Theorem. If r > 0 and s > nr + 1, then 4Dn,D is surjective, where D =
 rB + sF.

 5. APPLICATIONS

 Our first task is to find the smooth curves C on Fn which satisfy the condi-
 tions of Lemma (2.6). Since Fn is rational, it is regular, so (a) of Lemma (2.6)
 is satisfied.

 Assume that C is linearly equivalent to pB + qF for some integers p and
 q . Since KFn = -2B - (n + 2)F, we see that

 K + C (p - 2)B + (q - n - 2)F,

 2K + C-(p - 4)B + (q - 2n - 4)F, and

 2K + 2C (2p - 4)B + (2q - 2n - 4)F.

 Therefore, by using (3.4.2) and Lemma (3.6), we see that

 if (p-4) > 1 and (q-2n-4) > n(p-4)+2, orif n =0 and
 (5.1) both p and q are at least 5, then Hi and H2 of Q1(2K+ C)

 both vanish, so that (b) of (2.6) issatisfied.

 By using (3.6), we have

 if (2p-4) > 1 and (2q-2n-4) > n(2p-4)+2, orif n = 0
 (5.2) and both p and q are at least 3, then Hi of Q1(2K + 2C)

 vanishes, so that (c) of (2.6) is satisfied.

 By using (3.4.1) and (3.5), we see that

 if (p -4) > 0 and (q -2n -4) > n(p-4), or if n = 0 and both
 (5.3) p and q are at least 3, then H1 and H2 of 2K + C vanishes,

 so that (d) of (2.6) is satisfied.

 Finally, by Theorem (4.5), we have

 if p > 2 and (q - n - 2) > n(p - 2) + 1, then the Gaussian map
 (5.4) 1 for K + C is surjective; hence (e) of (2.6) is satisfied.

 Putting these all together, we obtain the following

 (5.5) Theorem. Let C be a smooth curve on 1n , linearly equivalent to pB+qF.
 Assume that p > 5, and that

 if n = 0 then q > 5,
 if n=1 then q>p+4,and
 if n=2 then q>2p+2.

 Then the dimension of the cokernel of the Gaussian map for C is

 { 9 if n < 3,

 n+6 if n > 3.

 Proof. Note that since C is a smooth curve, we must have q > np (if q < np
 then every effective divisor linearly equivalent to pB + qF meets B negatively,
 and so must contain B as a component). This inequality, along with the stated
 assumptions about p and q, imply that the hypotheses of (5.1)-(5.4) are all
 true, so that all of the hypotheses of Lemma (2.6) hold. Therefore the corank
 of the Gaussian map for C is h0(IFn, 9(-K)) = h0(Fn, 9(2B + (n + 2)F)),
 whichis 9if n <2 andis n+6 if n > 3. 0
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 Our first application of the above theorem is to exhibit curves with a fixed
 genus, with various different coranks for their Gaussian maps. Note that by
 using the genus formula, one easily sees that the genus g of a smooth curve on
 Fn linearly equivalent to pB + qF is g = (p - 1)[q - 1 - n(p + 2)/2].

 Therefore, if one fixes g, any solutions (n, p, q) to the above equation
 with p > 5 and q > np will prove the existence of a smooth curve of genus
 g with corank (1) given by the theorem: 9 if n < 3 and n + 6 otherwise.

 (The condition q > np ensures that there are smooth curves in IpB + qFI by
 Bertini's Theorem.)

 For example, if g is divisible by 4, say g = 4h, then p = 5 is possible; we
 then must have 2q - 2 - 7n = 2h, or q = h + 1 - 7m, with n = 2m, then
 q > np if and only if h+ 1 -7m> 10m, or m < (h+ 1)/3. This achieves
 even coranks 10, 12, 14, .. ., 2[(h + 1)/3] + 6. In particular, if g = 100, then
 h = 25, so that even coranks from 10 through 22 are possible.

 If g is divisible by 5, say g = 5k, then p = 6 is possible; in this case
 q = k + 1 + 4n, so that we must have k + 1 + 4n > 6n, or n < (k + 1)/2. In
 particular, if g = 100, we have k = 20; then the coranks 9, 10, ..., 16 are
 achieved.

 The maximum corank for the Gaussian map of a curve of genus g is achieved
 by a hyperelliptic curve (see [W2], or [C-M2]), and is 3g - 2. We observe that
 in the above examples, we do not get very near to this bound; our results seem to
 obtain examples of "low" corank (although at least 9). It would be interesting to
 know, for a fixed genus, what coranks can occur: one conjecture is that anything
 between 0 and 3g - 2 is possible (for g > 12).

 Our second application is perhaps more interesting, and may have a wider
 audience. It follows by remarking that the corank of the Gaussian map for a
 curve as in Theorem (5.5) is independent of the curve, and only depends on the
 surface. Therefore, a curve (with certain restrictions) can lie on at most one
 Fn . This seems a surprising result to the authors.

 To be precise, recall that a curve is k-gonal if there exists a degree k map
 from the curve to PI . A hyperelliptic curve is 2-gonal, and a trigonal curve is
 3-gonal. We will say that a curve is non-k-gonal if such a map does not exist.

 (5.6) Theorem. Let C be a nonhyperelliptic, nontrigonal, and non- 4-gonal curve.
 Then C be embedded into at most one Fn with n > 3.

 Proof. The hypotheses on C imply that when C is embedded into Fn , it must
 be linearly equivalent to pB + qF, where p > 5. If n is at least 3, then C and
 n satisfy the hypotheses of Theorem (5.5); hence n is determined (it must be
 6 less than the corank of the Gaussian map for C). a
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