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O. Introduction 

After the rational double points, perhaps the most tractable class of normal 
surface singularities is that of the minimally elliptic singularities of Laufer [7]. 
Such a singularity (V,, p) is characterized by the properties that it is Gorenstein, and 
R l n . C v -  C, where n : V ~  P is a resolution of the analytic germ of the singularity 
(V,p). Minimally elliptic singularities with reduced fundamental cycle in the 
minimal resolution fall into three broad classes: the simple elliptic singularities, 
the Dolgachev singularities Dp,q, r, and the cusp singularities. The versal defor- 
mation space of a simple elliptic singularity is well understood, by work of 
Pinkham and Looijenga; in particular, it is easy to describe which of them are 
smoothable. A considerable amount of recent work has centered on Dp,q,~ 
singularities with ~*-action ; smoothability for these has also been worked out by 
Wahl, Looijenga, and Pinkham. 

In this paper, we consider the existence of smoothings of cusp singularities. It is 
shown that the existence of a smoothing is equivalent to a purely combinatorial 
statement concerning the existence of certain configurations of rational surfaces, 
given in Sect. 2. Our motivation has been the recent work in the degenerations of 
K 3 surfaces, notably the classification of Kulikov and Persson-Pinkham. After 
some discussion of the combinatorics involved, we verify a conjective of Looijenga 
on the existence of smoothings of cusp singularities in special cases. As will no 
doubt be clear to the reader, the combinatorial problem involved in checking 
Looijenga's conjecture in the general case using our methods is rather daunting. 

Using different techniques, Henry Pinkham and the first author have verified 
Looijenga's conjecture for almost all cusps of length less than or equal to three. 
The remaining cases are shown to be smoothable in Sect. 5, so that the two 
techniques combined verify the conjecture for all cusps of length < 3. 

1 Supported in part by NSF grant MCS 81-14179 
2 Supported in part by NSF grant MCS 81-08814 
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1. Preliminaries 

Let (V,,p) be the germ of a cusp singularity. Thus,  if n : V ~ P  is the minimal  
resolution, the exceptional  divisor 

n - X ( p ) = D =  ~, D i 
i = 1  

is a cycle of  ra t ional  curves D i meet ing transversally.  By convention,  D i meets D i + 
transversal ly (where we use subscripts modr) ,  and  a cycle of  length one is an 
irreducible nodal  ra t ional  curve. We will always denote  by r [-or r(D) if necessary] 
the length of the cycle. Further ,  let 

{2_ if D 2 = - I  
m=m(D)= D 2 otherwise 

denote  the multiplicity of  (V, p), and set 

d i = - D  E for each i = 1  . . . . .  r .  

The  negative definiteness of  the intersection mat r ix  for the componen t s  of  D is then 
equivalent  to the condit ions 

(i) d i>_-2 for every i l if r ->2 
(ii) d~ > 3 for some j J  - 

or  just  : d 1 > 1 if r = 1. 
The  self-intersection D 2 can then be written 

D2 = Jdl  if r =  1 
[ Y'(d,-2) if r > 2 ,  

so that  

2 if D 2 = - 1 

re(D)= d I if r = l  and  d 1 > 2  

Z ( d i -  2) if r > 2  and D 2 < - 2. 

The  cycle of  integers (d 1 . . . . .  dr) determines the analytic type of the germ of  the 
cusp singularity (V,,p). F o r  this reason, we will abuse nota t ion  and  use the letter D 
to denote  

a) the cycle of  integers (d 1 . . . . .  d,), 
b) the divisor D, the cycle of  ra t ional  curves ~ D  i, with - D  2 = d~, and 
c) the germ of  the cusp singularity (V,,p) whose resolution is the cycle of  

curves D, 
and  we will use the cycle of  integers (d 1 . . . . .  dr) when we need to be specific. 

It  will be convenient  for some purposes  to represent  a cusp D not  by the cycle 
of  integers but  by the following : 

( ' a k )  denotesacuspDwithcomponentsD, Notation (1.1). The  2 x k matr ix  al"" 
bl...b k 

having the following self-intersections: 
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(a) There are k components D j,, .... Djk with 2 _ _  D j ,  - - a i, and a~ > 3.  

( b )  Separating D j, and D j, +, there are b i components with self-intersection - 2 ;  

bi~=O. 
Here we set  Djk§ 

(31 4 ~) is the cusp whose cycle of integers is (3, 2, 4, 4, 2, 2). If For example, 0 

r(D)--1, we will alternately use the notation ( ; 1 ) o r  ( a l ) wh e n  D=D 1 and 

D 2 = - a  l ;  here a 1__> 1. 
The following is now immediate. 

(a').Then Lemma (1.2). Let D be the cusp b~ 

(1.2.1) r(D) = ~(bi + 1), 

(1.2.2) _D2= {a a if r (D)=l  
~ ( a , - 2 )  /f r(D)>=2. 

H e n c e D 2 = - i  i f andon ly i fD i se i ther (~ )or (3b) for someb>l  

2 /f D 2-- - 1 

(1.2.3) m(D)= a 1 if r (D)=l  and a 1>2 
[ ~ ( a , - 2 )  if r(O)>2 and 0 2 < - 2 .  

ai . The dual cusp D' to D is \b,i ] , Definition (1.3). Let D be the cusp bi 

di=bi+3 and b ; = a i + l - 3  

unless r(D)= 1 or D E = - 1. 

I f D = ( ; ) w i t h a ~ 2 ' t h e n D ' = (  3 ) a 1 

IfD=(3b) withb->l, t henD '=(b ;1  ). 

The following lemma is an immediate consequence of the above definition. 

Lemma (1.4). Let D be a cusp, and D' its dual. Then 
(1.4.1). The dual of D' is D 

(1.4.2) 

(1.4.3) 

r(D') = - U 2 = 

re(D) otherwise, 

_D,2 = 0 ' a__>l 
Jr(D) otherwise. 

b>__l 
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Hence D'2= - l if and only if D= (;) for some a> l 

2 /f D =  0 , _ 

(1.4.4) m(D')= r(D) otherwise. 

We next describe a certain class of surfaces of Type VII o in Kodaira's list, the 
Inoue-Hirzebruch surfaces. These are surfaces V which have the following 
properties : 

(1.5.1) (gv(-Kv)=(gv(D+D'), where D is a negative definite cycle of rational 
curves, D' is the dual cycle as in (1.3), and D and D' are disjoint. 

(1.5.2) The only curves on V are the components of D and D'. 

(1.5.3) Setting hV'q=dimHq(V, f2~), then 

i if (p, q) = (0, 0), (2, 2), (0, 1), or (2, 1) 
hP'q= D)+r(D') if (p,q)---(1,1) 

otherwise. 

(1.5.4) Every cusp D occurs on some Inoue-Hirzebruch surface. 

For  the construction, see [-4, 3]. Briefly, V is the resolution of the completion 
of a non-compact surface which is the quotient of IH • ~ by a discrete g=roup 
associated to a real quadratic irrationality ~o (IH is the upper half-plane). V has 
two dual cusp singularities whose resolutions yield the divisors D and D'. 

Finally, we recall some facts about Type III degenerations which will motivate 
the constructions of the next section. Let A be the unit disk in IE and n : X ~ A  a 
degeneration of K 3 surfaces over A. By the semi-stable reduction theorem, we may 
assume that X is smooth and X o = n-  1(0) is a reduced divisor with (local) normal 
crossings. By the theorem of Kulikov and Persson-Pinkham, if all components of 
X o are algebraic we may assume in addition that the global canonical divisor K x 
of X is trivial. In this situation, the central fibers X o have been classified, and there 
are three types [6]. In the Type III case, X 0 has the following form: 

(1.6.1) X o = ~ V  ~, and if ~ is the normalization of V~, then each ~ is a rational 
surface. If D i is the inverse image on ~ of the double curves of X o on V~, 
then D~ is a cycle of rational curves. Moreover, the dual graph F o fX o is a 
triangulation of S 2. 

(1.6.2) Die 1- g~,[ for each i. 

(1.6.3) IfDi~ is an irreducible double curve joining V/to V~ (i may equal j  if V/= V~ 
meets itself), then 

2 + (D2)~ j={O if Dij isa nodalcurve on Vior ~ 
(Dij)r 2 otherwise. 

This is usually referred to as the triple point formula. 
The main result of [1] is that (1.6.1)-(1.6.3) are the only combinatorial 

restrictions on central fibers of Type III degenerations of K 3 surfaces, i.e., we can 
always smooth a central fiber X o with the desired combinatorial description 
subject only to (1.6.1)-(1.6.3). This result is the motivation for the next section. 
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2. Deformation Theory 

After a brief description of Looijenga's results, we state the combinatorial problem 
alluded to in the introduction, and prove that its solution is equivalent to the 
existence of a smoothing of a cusp singularity. 

In the notation of Sect. 1, let V be the singular Inoue-Hirzebruch surface with 
two dual cusps D and D'; let the corresponding singular points of ~ be p and p'. 
Looijenga proves the 

Theorem (2.1) [8]. ~ has a universal deformation which is semi-universal for the 
(disconnected) germ of the surface singularities (V, p, p'). 

In particular, suppose that (~,,p) is smoothable. By choosing a deformation 
:)~-~A with X o = V which globalizes a given local smoothing of (V, p), we obtain 

- -  t a family of surfaces )~t with a unique singular point p~, t4:0;  moreover, (Xt, pt ) is 
analytically isomorphic to (V,p') and we may simultaneously resolve the 
surfaces Xt, t4=0, and V = X  0 at p'. This produces a degeneration ~ : ) ~ A  where 
)~t is the resolution ofX t for t 4= 0, and)(0 is the (partial) resolution P of ~,, with one 
singular point p and the dual cycle of rational curves D'. The surfaces X~, t 4 0 ,  
contain D' as an anticanonical cycle. It is easy to show that X~ is, in fact, a smooth 
rational surface [-8, (2.8)]. Hence: 

Corollary (2.2). I f  the cusp D is smoothable, then the dual cycle D' sits as an 
anticanonical divisor on a smooth rational surface. 

Looijenga's Conjecture (2.3) [8, (2.11)]. Conversely, if D' is an anticanonical divisor 
on a smooth rational surface, then the cusp D is smoothable. 

We now fix some notation which will be used throughout the rest of this 
section. Assume 

Xo= 
i > 0  

is a surface with (local) normal crossings satisfying: 

(2.4.1) The dual graph F o f X  o is a triangulation of S 2. 

(2.4.2) V o is an Inoue-Hirzebruch surface as in 1.5. 

(2.4.3) The normalization ~ of Vii, i>0,  is a smooth rational surface. 

(2.4.4) If D o is the double curve o fX o on V o, then D o = D is one component of the 
anticanonical divisor on V o. 

(2.4.5) For i>0,  let D i be the inverse image of the double curves o fX o on ~;  then 
(Vii, Di) is an anticanonical pair, i.e., D i is a reduced cycle of rational curves 
on Vii, and D f ~ l - K v ,  [. 

(2.4.6) The irreducible double curves D u of X 0 satisfy the triple point formula 
(1.6.3). 

The main result of this section is then : 

Theorem (2.5). A surface X o as in (2.4) exists if and only if the cusp singularity D is 
smoothable. 
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The main point of the proof will be to show that the existence ofX o as in (2.4) 
implies that the variety with (local) normal crossings X o is smoothable, in such a 
way that the total space of the smoothing X is itself smooth. This part of the proof 
will consist almost entirely of references to I' 1], where the corresponding statement 
is proved when all components Vii ofX o are rational. Since our variety X o has one 
component V o which is an Inoue-Hirzebruch surface, some vary minor modifi- 
cations in the argument must be made. We will only write down the objects 
involved in the proof and state the special lemmas needed in our case, indicating 
where necessary the differences in the analysis. 

Let TOo and T:~ ~ be the cotangent sheaves of Lichtenbaum-Schlessinger and 
Jr~ lrx~o their global counterparts. In our case, 

T, i = Exti(t2J(o , (9Xo) and i _ i 1 xo 31"Xo - Ext (f2Xo, (9Xo) 

where 12~( o is the sheaf of K/ihler differentials on X o. 
A variety with local normal crossings X o with singular locus Q __cX o is said to 

be d-semi-stable if Tx~o = (gQ. For a surface, this condition implies the triple point 
formula, which is topological in nature, but has more subtle analytic consequences 
as well. 

Lemma (2.6). I f  an X o exists as in (2.4), then an X o exists, with the same 
Hirzebruch-Inoue component and double curve Do, which is d-semi-stable. 

Proof  Identical to that of (5.14) of [1]. 

I fX o is a d-semi-stable surface, and n :)~o---,Xo is the normalization map, then 
by [1], (3.2) and (3.5), there is an intrinsically defined subsheaf 

A~o c_- n.~?~o (log(~) 

(where 0 is the normalization of Q) and a resolution 

O--rf2~o/ZXo--* A~o-~n, (f o ~ n ,  (9 ~ O  

(where ~r= T is the set of the triple points of X0). Here ZXo is the torsion part 
of f2~o, and the natural map 

el 1 
a o axo/Txo 

is an isomorphism. The role of A~c o in deformation theory is explained by the 
following exact sequences. Choose a generating section CeH~ ) and, via Lie 
bracket, consider the map I", r : T~xo~ Txlo �9 Then 

o -* S xo TL -* ~ 

is exact, where Sxo =A~o. 

Lemma (2.7). With X o as in (2.4), and d-semi-stable, H~ A~o)=0. 

Proof  Identical to that of (5.9) of [1], starting with V o and the negative definite 
cycle D O of double curves on it in place of the non-hexagonal component used in 
(5.9) of [1]. 
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Lemma (2.8). 

(2.8.1) Hz(T~ 

(2.8.2) The natural map ~o-~H~ is surjective. 

(2.8.3) The natural map Sl(T~174176 is surjective. 

Proof First, using the resolution [1, (1.5)] 

1 1 1 O-~DXo/~xo~n, D~o~n, ~(2-~O 

and H~ ~2~)=0 (1.5.3), we obtain H~ By Serre duality, HZ(T~xo) is 
dual to H~174 where O~Xo is the dualizing sheaf. But, by contruction, 

n*~~ = ~Vo(- D') 
and 

n*COXo[V=(gv, for i > 0 ,  
and hence 

H~ | C= H~ 

for any torsion-free sheaf F. Thus H2(T~ implying (2.8.1). The Ext spectral 
sequence immediately gives (2.8.2). As for (2.8.3), as in (5.9) of [-1], we must show 
that H2(Sxo)=0, or equivalently, H~174 Again, this is immediate from 
the vanishing of H~ Q.E.D. 

Lemma (2.9). There exists a smooth threefold X and a proper flat map 7r : X ~ A  
such that zr-1(0)=X o (as schemes). 

Proof The proof of (5.10) of [1] applies, essentially unchanged. 

Remark (2.10). The general fiber X t of n is a rational surface. 
The existence part of (2.5) now follows froma lemma due to Sheperd-Barron 

[9]: 

Lemma (2.11). The divisor ~ V i of X is contractible, and, if X denotes the 
i~1 

contraction, there is a commutative diagram 

X , ~  

\ /  
A 

Moreover, the map ~ : X ~ A  is fiat, and exhibits a smoothing of F'o (which is V o 
contracted along D o = D). 

Remark (2.12). This lemma follows from the consideration of the map f : X o ~  D o 
defined by: flvo is the contraction of D, and fly,, i>0,  is the map sending V~ to the 
singular point p of D o. One checks that Rif,(gxo=O for i>0,  and uses standard 
results from deformation theory. 

For the converse part of (2.5), assume that the cusp D is smoothable. Let ~'o be 
the Inoue-Hirzebruch surface containing D, with D contracted to the cusp 
singularity p. By (2.1), there is a flat family ~ : J f ~ A  with Xt smooth and 
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~'o = ~-  1(0) �9 By blowing up the singular point p of Vo in X and by making the 
necessary base changes, arrange rc : X ~ A  semi-stable, with one component o f X  o 
being the resolution V o of Vo. One can run through the argument of Kulikov and 
Persson-Pinkham, applied to the components of X o which occur with strictly 
maximal multiplicity in K x ; the point here is that the proper transform V o of Vo is 
a resolution of a minimally elliptic singularity with reduced fundamental cycle in 
the minimal resolution, and hence can never occur with strictly maximal 
multiplicity. Thus, by Kulikov's analysis, we may assume X 0 satisfies (2.4.2)-(2.4.6). 

Now the dual graph F triangulates a closed surface. Let e(F) be the Euler 
number. Recalling that X t is rational and q(Vo) = 1, an easy argument shows that 

1 = Z(Cx) = •((PXo) = e (F) -  1, 

so that e(F)=2 and F triangulates S 2, so that X o satisfies (2.4.1) also. Q.E.D. 

Remark (2.13). If D sits on a rational surface as an anticanonical divisor (which 
will not always be the case), we can play the same game as above with the 
appropriate rational surface S replacing the Inoue-Hirzebruch surface V o. In this 
case, the smoothings will be K 3 surfaces. 

The following lemma shows that, in (2.4), it suffices to construct the disjoint 
collection of surfaces {Vi}, subject to the appropriate combinatorial restrictions. 

Lemma (2.14). Let {V//} be a collection of smooth surfaces, {Dij } a collection of 
smooth curves on Vi and {q~ij : Dij~Dji} a collection of isomorphisms satisfying: 
(2.14.0) Di= U Dij is a divisor with normal crossings, 

J 

(2.14.1) q~ 1 = r 

(2.14.2) Pljk E Dijt~Dik r162 qglj(Pijk)E Djit~Djk , 

(2.14.3) ~oikOCpu(pUk)= ~O~k(Puk ). 

Then there is a unique structure of a variety with normal crossings on the 
topological space 

which is compatible with the inclusions ~ c=X o. A similar statement is true if the qglj 
are arranged to give, topologically, only local normal crossings. 

Proof. We shall only sketch the proof of this elementary statement. As the 
question is local, assume X o =  ~ u ~  and let n: I_[ ~ = ) ( o ' X o  be the obvious 
map. With Du, Pug as in (2.14), we define a subsheaf 

(gXo c_c_ n, (_9~o 

by the recipe: if sections of n.C~? o at p are of the form f = ( f l , f 2 , f 3 ) ,  
f eC)Xo, p "~" f~oq~ (x)=f,(x),  xeD,~ (r,s~{i,j,k}). 

Alternatively, the  sections of (gXo are continuous functions on X 0 which are 
holomorphic on V~. We leave to the reader the local calculation which identifies 
the ringed space (Xo,(OXo) locally with the germ of {(zpz2,z3)e~3;  
zlz2z3=O }. Q.E.D. 
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Combining (2.5) with (2.14), we obtain the following corollary to (2.5): 

Proposition (2.15). Let D = D 1 +.. .  + D r be a smoothable cusp, with - ( D  2) > 3 and 
- ! D i ) 2 >  2 for some j # l .  Then C = C I + . . . + C  r is smoothable, where 

(C i )=(D i ), i>2.  (C1)=(D1)+ 1 and 2 2 

Proof By the argument for the converse half of (2.5), there is a semistable 
degeneration n :X-~A with X o = n - l ( 0 )  as in (2.4) for the cusp D. Let V o be the 
Inoue surface and V t the component o f X  o meeting V o along D r Replace V o by 
V o = the  Inoue surface for C, and V~ by 1/1 blown up at a smooth point o fD  1 ~ 1/1 
(with obvious modifications if V~ = Vo). If V/= V/for i #0 ,  1, then the collection {V/} 
yields the correct combinatorial configuration for the cusp C in (2.5). Q.E.D. 

Note that (2.15) is not an adjacency relation between cusps. It would be 
amusing to verify directly that the dual of C sits as an anticanonical divisor on a 
rational surface. 

3. Charge 

Let V be a smooth surface, and let D be a reduced effective cycle of rational curves 
on V. (D need not be negative definite here.) Let r(D) be the number of irreducible 
components of D ; r(D) > 1 and r(D) = 1 when D is a single irreducible nodal curve. 

Definition (3.1). 
is the quantity 

If we write 

Let V and D be as above. The charge of(V, D), denoted by Q(V, D), 

Q(V, D) = 1 2 -  D 2 - r(D). 

then 

r(D) 

D= ~ D ~ ,  
j = l  

Q(V,D)=I l l - D 2  
r(D) 

[ 1 2 -  E [(DE) +3] 
j = l  

if r(D)= 1 

if r (D)>2.  

We will mainly be concerned with the case where V is rational and D is an 
anticanonical divisor of V, i.e., (V, D) is an anticanonical pair. In this case 

Q(v, D ) :  1 2 -  K 2 -  r(O). 

Notice that Q(V, D) depends only upon r(D) and the DE's, so that if we represent 
the divisor D by the cycle of integers (d 1 .. . . .  dr), where r = r(O) and dj = - D E, then 
Q(ED) depends only on the cycle of integers. We will sometimes use Q(D) for 
Q(V, D) when no confusion can result. 

It will be useful to understand the anticanonical pairs (V,D) where V is a 
minimal model IP 2 or IF s ; the proof of the following lemma is left to the reader. 
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Lemma (3.2). Let (ED) be an anticanonical pair, with V isomorphic to IP 2 or IF N. 
Then (V,D) is one of  the following" 

v ( -  d, . . . . .  - dr) Q(v, D) 

IP 2 (1, 1, 1) 0 
IP 2 (1, 4) 1 
IP 2 (9) 2 
IF N ( - N , 0 , N , 0 )  0 
IF N ( - N , 0 , N + 2 )  1 
IF N ( - N , N + 4 )  2 
IF o, IF 2 (2, 2) 2 
IF, (1, 3) 2 
IF, (1,0, 1) 1 
leo, IF1, IF 2 (8) 3 

The behavior of Q under blowups and blowdowns is given by the following 
two elementary lemmas. 

Lemma (3.3). Let (V,D) be an anticanonical pair, let p be a point on D, and let 
~ " ~'~ V be the blowup at p, with exceptional divisor E. 

(3.3.1) If. p is a smooth point of D, and [) is theproper transform of D on 1/,, then 
(V, D) is an anticanonical pair, and Q(V, D)= Q(V, D)+ 1. 

(3.3.2) If. p is a double point of D, and I) is the proper transform of D on V, then 
(V,D+E) is an anticanonical pair, and Q( V, D + E) = Q( V, D). 

Lemma (3.4). Let (V,, D) be an anticanonical pair. Let E be an exceptional curve 
on V, let rc : V ~  P be the blowdown of E, and let D = It,(D). Then either 

(3.4.1) E is not a component of  D, there is a unique component D j of D which meets 

E once transversally, and Q(V, D)= Q(I/, D ) - 1  or 

(3.4.2) E is a component of D and Q(V,D)=Q(ED). 

Moreover, in both cases (V, D) is an anticanonical pair. 

The proofs of the above are trivial consequences of the definition of Q, the 
blowup formula for the canonical bundle, and the equation 

E . K v =  - 1 

where E is an exceptional curve on V; we leave them to the reader. 

Lemma (3.5). Let (V,D) be an anticanonical pair. Then 

Q(V,D)>O. 

Proof By Lemma (3.3), the charge Q cannot decrease upon blowing up;  so it 
suffices to prove the result when V is a minimal model IP 2 or IF N. For  this the 
classification of Lemma (3.2) suffices. Q.E.D. 
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A glance at the list of Lemma (3.2) shows that if V is a minimal model, and 
(V, D) is an anticanonical pair, then 0 < Q(V, D)< 3; hence, by Lemma (3.3), if (V, D) 
is an arbitrary anticanonical pair, then Q(V,D) is approximately equal to the 
number of blowups made at smooth points of the anticanonical cycles between V 
and a minimal model. This can be made more precise; we will only need the 
following relatively crude estimate: 

Lemma (3.6). Let (V,D) be an anticanonical pair, and let E 1 . . . . .  E k be a pairwise 
disjoint set of k exceptional curves on V which are not components of D. Then 
Q(V, D) > k. 

Proof Since the E[s are all disjoint, they can all be blown down, to obtain an 
anticanonical pair (V,D). By Lemma (3.4), Q(V,D)=Q(V,D)-k ,  and by Lemma 
(3.5), Q(V,D)>O. This gives the result. Q.E.D. 

The following is the principle of "conservation of charge" for Type III 
degenerations of K3 surfaces. Let X ~ A  be such a degeneration, and write the 
special fiber X o as 

Xo= Zv,. 
i 

Let ~ be the normalization of V i, let D i be the double curve ofX o on V~, and let/9i 
be the inverse image of D i on V//. [The pairs (V/, Di) and (~, Di) are equal unless V i 
has self-intersection in X.] Then, by (1.6.1) and (1.6.2), each (V~,Di) is an anti- 
canonical pair. 

Proposition (3.7). Let X ~ A be a Type III degeneration of K3 surfaces as above. 
Then 

Proof Let v be the 
double curves Dij, 
number vertices, e 
graph F o fX 0, we 
components of/)i. 

Moreover, since F 

~, Q(~,/),) = 24. 
/ 

number of components V/of X o, e be the number of irreducible 
and f be the number of triple points of X o. Since v is the 
the number of edges, and f the number of faces of the dual 
have v - e  + f = 2 by Euler's formula. Let r i be the number of 
Then ~ r i= 2e since each double curve lies on two surfaces. 

i 

is a triangulation, 2e = 3f. Now compute: 

i = l  

/)i) = ~ (12- K~,- ri) 
i = 1  

= [Dij k + 33 
i s u c h  t h a t  i s u c h  t h a t  k = 1 

r i = l  r i > 2  

= 1 2 v -  .~.1)~- 3 ~ ri+ 2m, 
t , j  i 

where m is the number of components V i with ri= 1. 
The quantity .~./)~ counts both terms/)~ and/)j~ 

l , J  
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and so 

by (1.6.3). Hence 

Remarks (3.8). 
(3.8.1) 

.~./}/~ = Z /}/~ +/)/~ = - 2 e + 2 m  
t ,  3 d o u b l e  c u r v e s  

DijCXo 

Q(V//, Di) = 12v + 2 e -  3(2e) 
i 

= 1 2 v -  4e 

=12(2+e- f ) -4e 
= 2 4 + 8 e -  12f 

=24 .  Q.E.D. 

If one component V o o fX o is a Hirzebruch-Inoue surface, and X o is as in 
(2.4), then the same calculation as above shows that in this case 

Z Q(~,/)i) = 24 
i 

also. In particular, if Q(Vo, Do) is high, then severe restrictions are placed on the 
other components V/, by Lemma (3.6). 

(3.8.2) A calculation similar to the above can be made for a Type III de- 
generation of any to=0 surface. The result is' 

Q(~, f i ) =  12e(r). 
i 

where e(F) is the topological Euler characteristic of the dual graph F. 

(3.8.3) Using only Euler's formula, one can easily prove the formula 

Z ( 6 -  rl) = 12 
i 

for a Type III degeneration as above, which can sometimes be useful. 

4. Cusps with Rational Duals 

In this section, we will primarily be concerned with the case where D is a negative 
definite cycle of rational curves on a surface V, i.e., D is the resolution of a cusp 
singularity. 

Lemlna (4.1). 

(al),then (4.1.1) Let D be the cusp bi 

Q(V,D)={ll+al if r(D)= 1 
1 2 + ~ ( a , - b , - 3 )  f r (D)>2.  

i 
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(4.1.2) I f  D' is the dual to D, then 

1 3 - a  

Q(V',D')= 12+b 

12 + S(b i - ai + 3) 

Hence in all cases we have Q(D)+ Q(D')= 24. 

is 

if D=bl 

Proof These statements follow immediately from Lemma (1.2), Definition (1.3), 
Lemma (1.4), and the Definition (3.1) of Q(D). Q.E.D. 

Remark (4.2). The above formula Q + Q '=  24 and the formula of Proposition (3.7) 
suggest that there may be a relationship between the combinatorics of an X o as in 
(2.4) (with one compact a Hirzebruch-Inoue surface with the cusp D) and the dual 
cusp D'. Looijenga's conjecture (2.3) is only qualitative ; one might hope tor some 
more precise correlation, given Theorem (2.5). 

Lemma (4.3). Let (V,D) be an anticanonical pair, and assume that D is negative 
definite, so that D is the resolution of a cusp singularity. Then Q(V,D)>3. 

Proof Since V is a rational surface, the rank of the Neron-Severi group NS(V) of 
V is 1 0 - K  2 = 1 0 - D  2. Since D is negative definite, and NS(V) contains a positive 
class, we must have r(O)< r a n k N S ( V ) - 1 ,  or 9 - D  2 -  r(O)>0. Hence Q(V, D)= 12 
- D 2 - - r ( D ) ~ 3 .  Q.E.D. 

Definition (4.4). Let D be a cusp. We say that D is rational if there exists a rational 
surface V on which D is an anticanonical divisor, i.e., such that (V,D) is an 
anticanonical pair. If D is a cusp such that the dual D' to D is rational, we say that 
D has a rational dual. 

Theorem (4.5). 1) I f  D has a rational dual, Q(D)_-21. 
2) Conversely, let D be a cusp with r(D) ~ 3 and Q(D) ~= 21. Then D has a rational 

dual, except in the following cases : (4, 11), (7, 8), (2, 4, 12), (2, 8, 8), (3, 3, 12), (3, 4, 11), 
(3, 7, 8), (4, 4, 10), (4, 6, 8), (4, 7, 7), (5, 5, 8). 

We break the proof of (4.5) up into several steps. 

Lemma (4.6). I f  D has a rational dual, then Q(D)<21. 

Proof Combine (4.1.2) with Lemma (4.3). Q.E.D. 

Remark. This lemma follows from a theorem of Wahl [11], where the condition 
Q(D) < 21 is restated as m(D) < r(D) + 9. 

We will now classify those cusps D with r(D) < 3 which have rational duals. We 
begin with the r = 1 case. 

Proposition (4.7). Let D be a cusp with r(D)= 1. Then D has a rational dual if and 
only if Q(D) < 21. 
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Proof. Since r(D)= 1, D = (  a] for some a > l .  In this case Q(D)=l l+a ,  so Q(D) 
\ v /  

<21 when a <  10. Assumea<lO. I fa=l ,D'=( lo) ,whichisc lear lyrat ional :  blow 
k V !  

up 10 smooth points on a nodal cubic in IP 2 to obtain (V',D'). If a>2 ,  then 

o,=(3). ocons ru tarationalsur a e 'w,t o'asananti a o icaldiv sor,a , 
take a nodal cubic C in the plane and blow up the node a -  1 times ; this produces a 
cycle of a curves C O .... .  C,_~, where C o is the proper transform of C and 
C1 .. . . .  Ca - 1 are the a -  1 exceptional curves. We have (Co 2) = 7 -  a, (C~) = - 1, and 
(C~)= - 2  for i>2.  Finally, blow up one smooth point on C 1 and 1 0 - a  smooth 

. ( 3 )  
points on C o . This gives with the proper transform of C O having self- 

a 1 ' 

intersection - 3 .  Q.E.D. 

The situation with cusps of length two is not so simple: 

Proposition (4.8). Let D be a cusp with r(D)= 2. 
(i) I f  Q(D)< 20, then D has a rational dual. 

(ii) I f  Q(D)=21, then D is one of the followin 9 cusps: (2, 13), (3, 12), (4, 11), 
(5, 10), (6, 9), (7, 8). 

(iii) The cusps (2, 13), (3, 12), (5, 10), and (6,9) have rational duals. 
(iv) The cusps (4, 11) and (7, 8) do not have rational duals. 

First notice that r(D)=2 if and only if D i s  either ( ~ ) o r  ~\U(al u] a~2)" If Proof. 

D = ( ~ ) ,  then Q(D)=8+a; if D=  (O1 a2)0 , then Q(D)=6+al+a 2. This proves 

(ii). (o) (4) 
Assume D = 1 ' with 4_< a-< 13. Then D' = . To produce an anticanoni- 

a 3 
cal pair (V', D'), we argue as in the proof of the previous proposition. Take C to be 
a nodal cubic in 1P 2, and blow up the node a - 3  times. This gives a cycle 
Co, C ~ ... . .  Ca_ 3, with C O the proper transform of C, (Co2)=9-a, (C~)- - -  1, and 
( C ~ ) = - 2 ,  for i>2.  Now blow up one smooth point on C 1 and 1 3 - a  points 
on C o, to get D'. 

If D = (~), D' = (~), which can be obtained from ~2 by blowing up 13 smooth 

points on a nodal cubic. 

Assume now that D =  (o~ a2) so t h a t D ' = (  3 3 ),andQ(D)__<20, 
0 ' a l - 3  a 2 - 3  

so that a 1 + a 2 <= 14. Assume first that al and a 2 are both at least 4. Start with IF 3 
and the anticanonical square 

C 2 

C 3 0 0 C 1 

-3 
C O 



Smoothing Cusp Singularities 199 

Blow up a ~ -  4 times at p and a 2 -  4 times at q to produce 

C 2 
' 1 1  - a 1 - a 2 

l 

-_17 
-3 

where the two fibers of the original ruling in this anticanonical cycle have lengths 
a I - 3  and a 2 - 3 .  (If either a i is equal to 4, no blowups are made and the fiber is 
smooth.) Now blow up one point on each of the ( -  D-curves in the fibers [or two 
points on the (0)-curve if al--4] and also blow up the proper transform of the 
original positive section C 2 1 4 - a  a - a  2 times at smooth points. This produces 
( V', D'). 

Assume secondly that a 1 = 3 and 4 < a 2 < 12. Start with IF 3 and the anticanoni- 
cal triangle 

c 2 

c 1 

c o 

Blow up a 2 - 4  times at p as above to produce 

Finally, blow up one point on each of the ( - 1 )  curves in the displayed fiber [or 
two points on the (0)-curve if a 2 ----4] and also blow up the proper transform of C 2 
1 2 - a  z times. This produces (V', D'). Notice that this construction also exhibits a 

rational dual for the Q = 21 cusp(~ 1~). 

Finally, assume a l = a 2 =  3. ThenD'=(30 30) and can be obtained from the 

anticanonical pair (IP 2, line + conic) by blowing up smooth points. 
This proves (i). 
To finish the proof of (iii), we must exhibit the rationality of the duals of 

(50 10)and(;0 ~)" For these we will simply draw the surface V'on which D' sits, 

with the exceptional curves required to blow the surface down to a minimal model. 



200 R. Friedman and R. Miranda 

-1 -2 
. . . . . . . . .  

-1 
D,~-t: . . . . . . . . . .  E 3 ! 

-'L~ O~L-~ 
E 2 . . . .  :L--:2- i Dil Di u~|-2 

-2 

r ! t ! t t t 

Blow d o w n  E t, E2, E3, D3,/)4-, D5, D6, D s , / ) 9 ,  a n d  Dlo to o b t a i n  

(6 0 

2 

0 0 

-2 

o n  IF 2 . 

-2 

-1 -2 " 
E I . . . . . . . . . . . .  

-2 

o~ 
o~ 

i 

DIO 

oll 
o( 
-3 

-1 
D~ "=2 . . . . . . . . . .  E2 

D~ --2 

D~ --2 

D~ --2 
D~ --2 

--2 - i  
D~ . . . . . . . . . . . . .  E 3 

-3 

-z D~ D~ 

-2 D~ o~ 

-1 -2T , D~ 
h . . . . . . . . . . . .  ~h0 

D~ / 
-3)~ Di 0~ 

-2 

-1 
. . . . . . . . . . . . . . . .  E 3 
-2 

-2 
= 

-2 

-2 

"-2 -1 
. . . . . . . . . . . . . . . .  E 2 

Blow down E 1, E2, E3, 
t D~, D~, D~, D 6, D 7, D~, and 

! 

DlO to obtain 

0 0 

-3 

on IF 3 

Blow down El, E2, E3, 
r t / D~, D~, D 5, D 6, D8, D9, and 

r 

Dlo to o b t a i n  

o o on w 2 . 

-2 
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This proves (iii). 
Unfortunately, our proof of (iv) is rather ad hoc. Let us first take up the case of 

the (4 0 110)cusp, whose dual is the cusp (31 38): 

C2 , C3 , C4 , C5 , C6 , C7 , C8 , C9 
-2 ' -2 ' -2 ' -2 ' -2 ' -2 ~ -2 ' -2 

-3 C 1 -3 

-2 
Cli 

C10 

Assume this cusp is rational. Then there exists an exceptional curve E on the 
surface V; visibly E is not a component of the cusp, so E meets a unique C i 
transversally in one point. Let us analyze the possibilities for Ci. 

If E meets C~ or C10, then blowing down E produces a rational cusp with 
Q = 2; this is impossible, by Lemma (4.3). 

If E meets C 11, blowing down E and then Cll  produces a cycle of 10 ( -2 ) -  
curves. This is not minimal, so there must be a second exceptional curve F meeting 
one of the 10 curves. Then one can blow down F and 9 of the 10 ( -  2)-curves ; 
however, this produces a nodal curve C with (C2)=10. Since CeI-KI, the 
resulting rational surface has K2=  10, a contradiction. 

Hence E must meet C 2, C 3, ..., or C 9 ; by symmetry we may assume C meets 
C2, C 3, C 4, or C 5. We may further assume that E meets C j, 2 < j  < 5, and that there 
is no exceptional curve on the surface meeting Ci, for 2 < i <j. If so, we may blow 
down E, Cj, Ci+ 1,..., C9, producing a cycle consisting of the images of the curves 
Clo, C11, C1, C2,..-, Cj_ i. This is a non-minimal cycle by Lemma (3.2); however, 
by assumption, there are no exceptional curves meeting C 2 ... . .  C j_ ~ and by the 
previous argument, there are none meeting C~, Clo, or C 11. This contradiction 

proves that (31 38) is not rational. 

Finally, assume that (7 0 80)has a rational dual, i.e., that (3 4 35)is rational" 

C 2 ., C 3 , C4 , C5 C 6 

C I -~3_2' -2 -2 ' -2 ' -2 -2 -2 -2 -3 IC7 

Cl I ', C10 I C9 C8 

Let E be an exceptional curve on the surface V which contains ( i  35);as 
above, E must meet some component C i of the cusp. 

If E meets C 1 or C 7, blowing down E produces a cusp with Q = 2, contradicting 
Lemma (4.3). 

If E meets C 8, then C 7 + 3C a + 2C 9 + Clo + 3E form a fiber of a ruling on V, for 
which C 6 and C 11 must be sections. Hence C 1, C 2, C 3, C 4, and C 5 are components 
of a fiber of this ruling. They do not support a complete fiber, so there is a second 
exceptional curve F on V meeting one of these five curves. By the above, F meets 
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C 2, C3, C4, or C 5. If  F meets C2, then C 1 + 3C 2 -I- 2C 3 d- C 4 -I- 3F is a full fiber, not  
containing C5, a contradict ion.  If  F meets  C 3, C 2 + 2C 3 + C 4 -{- 2F  is a full fiber, 
and if F meets C4, C 3 + 2 C 4 + C 5 + 2 F  is a full fiber, which are contradict ions.  
Hence  F must  meet  C 5. But now C 1, C 2, C a, C 4, C 5, and  F still do not  suppor t  a 
complete  fiber, so there must  be a third except ional  curve G; by the above,  G mus t  
also meet  C5. Now F + G + C s is a full fiber, a contradict ion.  Hence E does not  
meet  Ca, and  by symmetry ,  E does not  meet  Clx either. 

I f E  meets C 9, then C a + 2C 9 + Clo + 2E form a fiber of  a ruling on V, for which 
C v and  C1~ are sections. Hence  C1, C2, C a, C 4, C5, and  C 6 are componen t s  of  a 
fiber of  this ruling. They  do not  suppor t  a full fiber, so there is an except ional  
curve F, which by the previous a rgumen t  cannot  meet  C r Using an analysis as 
above,  one can easily see that  if F meets C 2, C a, C 4, or  C 5, there is a full fiber 
suppor ted  on only a p roper  subset of  the componen t s  ; hence F must  meet  C 6. But, 
as above,  C1, C2, C3, C4, C5, C6, and  F still do not  suppor t  a full fiber, so there is a 
third exceptional  curve G, which mus t  then meet  C 6. N o w  F + G + C 6 forms a full 
fiber, a contradict ion.  Hence E cannot  meet  C 9 or, by symmetry ,  Clo. 

N o w  the a rgument  proceeds as for the previous cusp. We m a y  assume tha t  E 
meets C j, with 2 _-<j_-< 4, and  that  there is no exceptional  curve meeting C:,  C 8, C 9, 
Clo, C 1 . . . . .  Cj_ 1. If  so, we m a y  b low down C~, Cj+ 1 . . . . .  C 6 to produce  a cycle 
consisting of  C 7, C 8, C 9, C10, C 1 . . . . .  Cj_ 1; by L e m m a  (3.2), this cycle is not  
minimal ,  but  by assumpt ion  there are no exceptional  curves. This contradic t ion 

that  (~ ~ ) i s  not ra t ional  and completes  the p roof  of  Propos i t ion  proves  
\ -  

(4.8). Q.E.D. 

Finally, we have the following result for cusps of  length three. Its p roo f  is 
similar to that  of  the previous proposi t ion,  and  we leave it to the reader. 

Proposition (4.9). Let D be a cusp with r(D)= 3. 
(i) I f  Q(D)N 20, then D has a rational dual. 

(ii) I f  Q(D)=21,  then D has a rational dual if and only if  D is one of  the 
following: (2,2, 14), (2,3,13), (2,5,11), (2,6,10), (2,7,9), (3,5, 10), (3,6,9), (4,5,9), 
(5,6,7), (6,6,6). 

(iii) The Q = 21, r= 3 cusps which do not have rational duals are the following: 
(2,4,12), (2,8,8), (3,3, 12), (3,4, 11), (3,7,8), (4,4,10), (4,6,8), (4, 7,7), (5,5,8). 

5. The Special Fibers of Smoothings of Cusps of Small Length 

In this section, we will exhibit smooth ings  of  all the cusp singularities of  length one 
and  two which have rat ional  duals, verifying Looi jenga 's  conjecture in these cases. 
We will also be able to smooth  some cusps of  length three. The  me thod  will be that  
outl ined in Sect. 2; we will const ruct  a Type  I I I  degenerat ion of  ra t ional  surfaces 
whose special fiber contains one c o m p o n e n t  (the Inoue  surface) which has the 
resolut ion of  the cusp to be smoo thed  on it, as the double  curve. 

I f  V i is a c o m p o n e n t  o f  the special fiber X o of  a given Type  I I I  degenerat ion,  we 
will write Q(Vi) for Q(Vt.Di) as in (3.7). 



S m o o t h i n g  C u s p  Singular i t ies  203 

The Smoothings of Length one Cusps 

By Propos i t ion  (4.7), if r(D)= 1, then D has a rat ional  dual if and  only if (0 2) 
> -  10. Set a=--(DE). For  1 < a < 9 ,  use the following special fiber Xo:  

+a 

V I -1 I 

The c o m p o n e n t  V o is the Inoue  surface with double  curve D. The  componen t  
V 2 is the b lowup of a IP 2 at  9 -  a points of a nodal  cubic. The  c o m p o n e n t  V l is the 
b lowup of  IF  at  two smoo th  points on different fibers, 

0 0 

-a  

+a 

__:_1 . . . . . .  :L .  

-1 -1 

-a  

then glued to itself by joining the two ( -1 ) - cu rves .  Q(V0)= 11 + a ,  Q(V1)=2, and  
Q(v2) = 1 1 -  a in this degenerat ion.  

For  a = 10, we use the following X 0 �9 

-1 -2 -2 
0 

V 2 

10 

0 

V 3 

-10 8 

0 
- i  -2 -2 

-2 

V 4 

-8 6 -6 4 

0 
-2 

~ 6 

-3 

V 0 is the Inoue  surface. V~ is a two-fold b lowup of IF~o at two points  of  the negative 
section, then glued to itself as shown. V 2 ~ IFI o, Vs -~ IFs, and  V 4 ~ IF6- Vs is a •2 
with double  curves a line and  a conic. V 6 is a b lowup  of  IF3, 
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1 ilt -1 -2 

-2 :1___ 

-2 

- . . . . . . .  :1 | 
-2 

1 -2 

-3 

with the last two non-double exceptional curves shown above. Here Q(Vo)=21, 
Q(Vs)= 1, and Q(V6)=2. 

This completes the analysis of the cusps of length one. Before we discuss those 
of length two, we need a 

Lemma (5.1). Let (V,D) be an anticanonical pair with r(D)--2. Write D = D  1 § D 2. 

Then either 
(i) (D 2) § (D 2) _--- 4, or 

(ii) (D2)= 1, (D~)--4, and V~IP 2, with D 1 a line and D E a conic. 
Conversely, given two integers a I and a 2 such that al §  there is an 

anticanonical pair (V, D) with r(D)-- 2, such that (D E) = a 1 and (D 2) = a 2. 

Proof. The first statement follows directly from the classification in Lemma (3.2) of 
the minimal models. The second statement follows from the existence of (V,D) 
where r(D)--2 and (DE)+(D2)=4 for any (D2). [If either (D 2) or (D E) is __<0, use 
(lFzv, ( - N ,  N§  if both are positive, use (IF 1, (1, 3)) or (IF 0, (2, 2)).] Q.E.D. 

The Smoothings of  the Cusps of  Length Two 

Let us begin with the cusps D with r(D)= 2 and Q(D)~ 20, which all have rational 
duals, by Proposition (4.8). If D = 01 + 0 2, with (D E) = - N and (0 2) -- - M, then 
M and N are both at least two, and Q(D)< 20 if and only if N + M__< 14. Use the 
following X o : 

v o 

N-2 

v I 

M-8 
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Here Q(Vo)=N+M+6, Q(Vt)=2, and Q(V2)= 1 6 - N - M .  Again V o is the Inoue 
surface. V 1 is IF6_ M if M > 4  and is IFM_ 2 if M = 2  or 3. By Lemma (5.1), V 2 exists 
(as an anticanonical pair, with its two double curves) if ( N - 2 ) +  ( M - 8 ) < 4 ,  i.e., 
N + M < 1 4 .  

To smooth two of the four remaining Q = 21 cusps, we may use the same type 

of degeneration, exploiting the existence of (ip2, line + conic); the cusps ( ~ 1~) 

a n d ( ~  ~) may be smoothed by using the following Xo's: C )v C,) 
10 - -6 7 ~ -3 

inthe(30 1~) (60 90) case, the surface V 1 is IF6; in the case, the surface V 1 is IF 3. 

Both have Q = 2. 
The last two cases involve much more elaborate special fibers X o. For the cusp 

(131), use the following: 

/ 
-1 -1 
-I ~ . ~  -I 

Vl ~ V2 

-2 0 11 

_1 -ii-i -2 

-7 

-11 
u 

-2 -2 -2 -2 -2 -2 ' 
0 0 0 0 0 30 ~ 

' L1_11 -97  5 -5 -15 [3 -1' 9 -7 -3 14]-6  

IFI3 FII F 9 F 7 F 5 F30 

-2 -I _02 0 0 0 0 
-1 -2 -2 -2 -2 -2 

V 3 

V o is the Inoue surface. V t is a two-fold blowup of •2, and V 2 is a four-fold blowup 
of ~'~ s. The other surfaces are as marked, except for 1,'3; V 3 is a 14-fold blow-up 
of IF6, where the only exceptional curve which is not a double curve is shown 
above (meeting the lF3). Here Q(Vo)=21, Q(IF1)=Q(Ip2)=Q(V3)=I, and 
Q (others) = 0. 
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Finally, for the cusp (50 100), we have 
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-4 
"-'2 
-1 

-I  -2 -2 -2 -2 

-6 V1 
-2 

\ -12 
10 

-12 
10 

-12 
10 

-12 

-2 0 FI0 
~IO 

8 
-2 F8 -8 

-2 ~6 6 
-6 

-2 

-2 

-2 

]p2 4 

'---. I 

-3 

V 2 

-1 

Again V 0 is the Inoue surface. V 1 is an eight-fold blowup of IFlo ; Vz is an eight- 
fold blowup of IF3 (with one non-double exceptional curve, shown meeting 
the 1F6). All other surfaces are either •2, IF, or have five or six double curves and 
are of the form 

or 

All unmarked double curves have self-intersection - 1  (on both surfaces). Here 
Q(Vo)= 21, Q(IP2)= 1, and Q(V2) = 1. 
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We have therefore verified Looijenga's conjecture for cusps of length 1 or 2: 

Theorem (5.2). Let (V,, p) be the germ of a cusp singularity with resolution D, and 
assume r(D) < 2. I f  D has a rational dual, then (V,,p) is smoothable. 

The Smoothings of Certain Cusps of Length Three 

Combining this result with a special case of a theorem of Karras [5] and Wahl 
[10] we can prove the smoothability of aI1 cusps D of length three and Q < 20. The 
result for r(D)= 3 is the 

Proposition (5.3). Let D = D  1 + D 2 + D 3 be a cusp of length 3. Then D deforms to 
the cusp C, where C = C 1 + C 2 is of length 2, (C 2) = (D2), and (C 2) = (D 2) + (D 2) + 2. 

Proposition (5.4). Let D be a cusp of length 3, with Q(D) = 20, Then D is smoothable. 

Proof It suffices to show that D deforms to a smoothable cusp C of length 2. By 
Proposition (5.3), if Q(D)= 20, then Q(C)= 21, so that C is smoothable if and only if 
C is either (2, 13), (3, 12), (5, 10), or (6,9). Therefore, D=(dl ,  d2,d3) is smoothable if 
and only if one of the di's is either 2, 3, 5, 6, 9, 10, 12, or 13 ; a simple check of all 
triples (dl, d2,d3) with d l + d  2 + d  3 = 17 [which is equivalent to Q(D)=20] and 
d i > 2 show that in all cases there is a d i equal to one of the above numbers. 
Equivalently, not all the dl can be chosen from among {4,7,8,11} to achieve 
dx + d2 + d3 =17. Q.E.D. 

If Q(D)<20, let C be as in (5.3). Then Q(C)<20, so, by (5.2), C is smoothable. 
Since D deforms to C, D is smoothable as well. Alternatively, we could deduce this 
from (5.4) and (2.15). Summarizing: 

Theorem (5.5). Let (V,p) be the germ of a cusp singularity D, with r(D)=3 and 
Q(D) < 20. Then (V,, p) is smoothable. 

Using the methods of this paper, we have only been able to exhibit smoothings 
of a few Q = 21 cusps of length three. 

Proposition (5.6). The cusps (2, 2, 14), (2, 6, 10), and (6, 6,6) are smoothable. The 
cusps (2, 5, 11) and (4, 5, 9) are smoothable. 

Proof 

-14 -10 -6 
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-2 

-2 

-2 

91-21 , 
1-211 
0 - 2  

3" 

-9 

-7 

-2 

-2 

-2 

7 

( 

-7 
5 

-5 

\ 1 

\ 
_21 

/ 

We leave the verification to the reader. Q.E.D. 

Although the methods of this paper become quickly intractible if the length of 
the cusp is large, there are some special fibers X o which can be constructed with an 
arbitrarily large number of components, producing some interesting examples of 
smoothable cusps. We will just mention one such construction. 

( 3  2N+12) N>_O, is smoothab le .  Proposition (5.7). T h e  Q = 21 cusp  N ' - 

Proof .  Use the special fiber 
N components 

-3 ~ 4  -6 

-2 -2 
O O 

6 

IF 6 

-8  

F 8 

0 0 -2 -2 

8 -10 

/3 
where V o is the Inoue surface with the given [~  

Q(F2N+6)=2, and Q(Vo)=21. Q.E.D. 

-2 
U 

2N+2 -2N-4 2N+, 

F2N+4 

0 
-2 

~-2N-12 

2/ 
2N~ 12) cusp. Here Q(Ip2) = 1, 
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6. Some Concluding Remarks 

It is a theorem of Wahl [11] that the dimension of a smoothing component  of the 
versal deformation space of a germ of a cusp singularity D is 22-Q(D), if one 
exists. Hence when Q(D)<= 20 and D is smoothable, one expects that the different 
directions of smoothing would imply the existence of distinct combinatorial  data 
producing the special fiber X o as in (2.4). We see this empirically in many cases; 
one example is the cusp (3, 5, 9) which has Q = 20, and two different Xo's enhibiting 
a smoothing, which are not equivalent by base change or birational modifications : 

-2 -2  010 
7 IF 7 -7 5 F 5 

v 1 

o 

Q(Vl)  = Q(~:~) = 1 
Q( Vz) = 2 

Q(Vo) = 20 

v 2 

-2 -2 -2 

U -75 0 -53 0 

7 

~7 F5 F3 

0 0 0 
-z -2 -2 

-2 

0 

Q(v1)=2 
Q(v2) = Q(F1)= 1 
Q(Vo) =20 

For a Q = 21 cusp, which is smoothable, each smoothing component  is one- 
dimensional. If  there is only one smoothing component,  one would expect that all 
special fibers X o exhibiting a smoothing would be base changes of a 
"primitive" X o. It  can be checked whether a given X o is the base change of another  
special fiber (see [2] for details) and in all cases the special fibers X o which we have 
produced for the smoothing of Q = 21 cusps in Sect. 5 are not base changes of any 
other X o. 

If a Q = 21 cusp had more than one smoothing component,  one would expect 
distinct special fibers X o exhibiting the different smoothings, which were not 
related by base change or birational modifications. We have no examples of this 
phenomenon as yet, but we make the following 

Conjecture (6.1). Let D be a cusp, and D' its dual cusp. Assume Q(D)= 21. Then the 
number of smoothing components in the versal deformation space of D is the number 
of non-isomorphic anticanonical pairs (V, D'). 
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[Two anticanonical pairs (V 1, D1) and (V2, D2) are isomorphic if there is an 
isomorphism f : V I ~ V  2 of the surfaces, such that f * D 2 = D v ]  

We know of several examples of this phenomenon. Let D be the (6,9) cusp, 

whose dual is D'=  (33 36). Then D' sits on two different blowups of IF3 as an 

anticanonical divisor, as depicted below: 

C 1 

C~ 

E1 . . . .  -1___ 

-2 

Vl: 

T 
-3 C 4 

-2 . . . .  --1---E 2 

l. 

-2 C 5 

-2 C 6 

-2 C 7 

-2 C 8 

-2 . . . .  " I - - -E 3 

-3 
S 

C 1 

C 2 
E1___-t__. 

C 3 

V2: 

-3 

-2 
-2 

-2 

-2 

-2 

-2 

-3 

C_5___-1___E2 

- - - : I - - E  

In both cases, the Neron-Severi group of Vii is generated by S, E a, E z, E 3, 
C~ C 2 . . . .  , C8, and the rank NS(V~)= 12. Since r(D')= 11, and D' is negative definite, 
there is exactly one primitive vector G~ (up to sign) which is orthogonal to all 
components of D' in both cases. A computation shows that 

= 2S + 9E1-6Ez-  E3 + 5Cl +10C2 + 6C3- 5C, , -4Cs-  3C6- 2CT- C8 a 1 

and 

G 2 = 12S + 80E 1 - 35E  2 -  5E  3 + 2 8 C  1 + 84C 2 + 6 0 C  3 + 3 6 C  4 

- 2 8 C s - 2 1 C  6 -  1 4 C 7 - 7 C  8. 

We see that G~ = 2 and G22 =50;  moreover, if L is the lattice generated by the 
components of D', we have [detLI = 50. Therefore, if the image of L in NS(Vi) is the 
sublattice L i, then L 2 is embedded primitively in V2, and L 1 is embedded with 
index 5. (I.e., L 2 =L~ • and [L~ l :L1] = 5.) In particular, this proves that (1/1, D') is 
not isomorphic to (V 2, D'). It would be very interesting to find an alternative special 
fiber X o which exhibits a different smoothing of the (6, 9) cusp than the one 
produced in Sect. 5, and also to be able to decide, given the special fiber Xo, which 
anticanonical pair is being produced as the general fiber. If it is the case that 
(V I, D') is the special fiber, then there would be ;E/57/-torsion in the first homology 
group of the Milnor of this smoothing. 
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A m o r e  c o m p l i c a t e d  e x a m p l e  is a f forded by  the  (2,6,  10) cusp.  In matr ix  

n o t a t i o n ,  this  cusp  is D =  ,r(0 11),-" a n d  its d u a l  is D ' =  "~(~ "'~), w h i c h  occurs  on 
\ - -  \ -  

three dis t inct  a n t i c a n o n i c a l  pairs  (V~, D'), i =  1, 2, 3:  

D 6 
E2--Zl-- 

D 7 

D 8 

D 9 

E3--:I-- 

V 1 

-2 

-2 -2 

-4 

-2 -2 

-2 
-2 

-2 

-2 
-3 

-2 

E2-zI -~ 
D 1 

D5 

)2 D 6 

D 3 
--11--E1 D 7 

D 4 D8 

D9 

)5 E3__:I__ 

V 2 

-4 
-2 

12 
12 

12 
12 

2 

2 
-3 

-2 D1 E2--ZI ~ -2 

D 5 ~2 

D 7 ~2 

3 3 D 8" ~2 

V 3 

-4 

-2 

-2 
S S 

-2 

-2 

D 1 

)2 

D 3 

- - - I -E l  

As  in the p r e v i o u s  e x a m p l e ,  the latt ice L generated  by  the c o m p o n e n t s  o f  D' 
has corank  one  in the N e r o n - S e v e r i  g r o u p  o f  V~ in each case. Let  G i be the  
pr imi t ive  vector  in NS(Vi) o r t h o g o n a l  to L. NS(V~) is generated  by  S, E 1, E 2, E 3, D 1, 
D 2 . . . . .  0 9 for each  i (note  that  these  letters refer to different curves,  d e p e n d i n g  
on  i) a n d  a c o m p u t a t i o n  s h o w s  that 

G 1 = 9D  l + 18D 2 q-  63D 3 + 4 2 D  4 + 2 1 D  5 - 9D  6 - 2 0 D  7 - 31D 8 - 4 2 D  9 

+ 6 6 E  1 + 2E 2 -  32E 3 - 2 1 S ,  

G 2 = 30D 1 + 60D z + 36D 3 - 30D 4 - 25D 5 - 2 0 D  6 - 15D 7 - 10D 8 - 5D  9 

+ 54E 1 - 35E  2 - 7E  3 + 12S ,  

a n d  

G 3 = D 1 + 2D  2 + 3D 3 - D 4 -  2D  5 - 3D 6 - 4 D  v - 5D 8 - 6D 9 + 4 E  1 - 4 E  3 - 3S .  

O n e  can see that  G ~ = G  2 =  100 a n d  G ~ = 4 ;  s ince  I d e t L l =  100, L is e m b e d d e d  
pr imi t ive ly  in NS(V1) a n d  in NS(V2), but  has  index  5 in L "• in NS(V3). In 
particular,  (V1,D')-~(V3,D')~(V2,D') as a n t i c a n o n i c a l  pairs.  T o  see that  
(V,, D ' ) ~ ( V  2, D'), a s s u m e  that  they  are i s o m o r p h i c .  T h e n  the curve  E z on V, m u s t  
also appear  as an  e x c e p t i o n a l  curve  E on  V z, w h i c h  m u s t  m e e t  the curve  D 6 on  V2, 
o n c e  transversal ly ,  a n d  be d is jo int  f r o m  the  o ther  c o m p o n e n t s  o f  D'. T h e s e  
c o n d i t i o n s  force E to be  

E = xG z + t 0 D  1 + 20D 2 + 12D 3 - 10D 4 -  9 D  5 - 8D 6 - 6D  v - 4 D  8 - 2D 9 

+ 18E 1 -  l l E  z - 2 E  3 + 4 S  
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for some integer x, However, the condition that E 2 =  - 1  is equivalent to 50x 2 
+ 3 9 x + 7 = 0 ,  which has no integral solutions. Hence no such E exists on V 2 and 
(Vr O')-~(V2, D'). 

As a final example, consider the (3, 12) cusp D, whose dual is the cusp 

D ' = ( 3  0 39). There is only one anticanonical pair (V, D') up to isomorphism, shown 

below : -3 

ID-- -I---E 
DI -3 -2 5 2 

E __-i__ _2[D6 
i D 2 -2 

-2 

-2 

-2 

D 7 

18 

~---I--E3 

The classes of S, E 1, E2, E 3, D 1 .. . . .  D 8 generate NS(V) and the primitive vector G 
orthogonal to the lattice L generated by the components of D' is G =4D~ + 12D 2 
+ 9D 3 + 6D 4 -  4D 5 - 3D 6 - 2D 7 - D 8 + 11E~ - -  5 E  2 - -  2E 3 + 3S. Here G 2 = 2, and 
tdetLI=32,  so that L has index 4 in L • in NS(V), and there is no anticanonical 
pair (ED')  such that L is embedded primitively in NS(V). In this case, therefore, 
there is in fact torsion in the first homology of the Milnor fiber, and indeed (as 
pointed out to us by Wahl) the fundamental group of the Milnor fiber is of order 4. 
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