
Cremona Orbits in P4 and Applications 

Olivia Dumitrescu and Rick Miranda 

Abstract This article is motivated by the authors’ interest in the geometry of the 
Mori dream space P4 blown up in 8 general points. In this article, we develop the nec-
essary technique for determining Weyl orbits of linear cycles for the four-dimensional 
case, by explicit computations in the Chow ring of the resolution of the standard 
Cremona transformation. In particular, we close this paper with applications to the 
question of the dimension of the space of global sections of effective divisors having 
at most 8 base points. 

1 Introduction 

Let Xn 
s be the projective space P

n blown up at s general points. Motivated by the 
study of the dimensionality problem for effective divisors on Xn 

s , we analyze the 
standard Cremona action on X4 

8 and give several applications. We first establish 
the terminology we use throughout the paper. We call a Weyl line/Cremona line 
(Weyl hyperplane, respectively) to be the orbit under the Weyl group action of a line 
passing through two of the s points (hyperplane passing through n of the points). In 
dimension two, the Weyl lines are also known in the literature as (−1) curves; via a 
theorem of Nagata [ 15, Theorem 2a] they can be described via numerical properties 
as irreducible classes with self-intersection −1 and anticanonical degree 1. In [  10], 
the authors noticed that Nagata’s work can be generalized, and similar numerical 
properties via the Dolgachev–Mukai bilinear form are equivalent to Weyl divisors. 
In dimension three, the Weyl group action on curves was analyzed by Laface and 
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Ugaglia in [ 13]. Finally, in arbitrary dimension, the Weyl group action on curves in 
Xn 
s and their connection to the (−1)-curves introduced by Kontsevich is analyzed 

by the two authors in a forthcoming paper [ 11]. 
In the planar case, the Gimigliano-Harbourne–Hirschowitz conjecture, still open, 

predicts that the dimension of the space of global sections of an effective divisor 
depends on the Euler characteristic and the multiplicity of containment of Weyl lines 
in the base locus of the divisor. In P3, the conjecture of Laface–Ugaglia [ 13] predicts 
that this dimension depends on the multiplicity of containment of Weyl lines, Weyl 
hyperplanes, and Weyl orbit of the unique quadric in X3 

s passing through nine general 
points. 

In general, for a small number of points, Xn 
n+2, it was proved that this dimen-

sion depends on the Euler characteristic and the multiplicity of containment of 
linear cycles spanned by the fixed points in the base locus of the divisor D as in 
[ 3, Theorem 2.3]. Moreover, the birational geometry of the space Xn 

n+3, studied 
in several publications (e.g., [ 1, 2, 4]), namely the effective and movable cone of 
divisors, their Mori chamber decompositions together with the dimension of space 
of global sections is determined by secant varieties to the rational normal curve of 
degree n passing through n + 3 general points together with their joins. In general, 
the case Xn 

n+4 seems to be mysterious. 
We dedicate this paper to study X4 

8 , which is a Mori Dream Space, whose birational 
geometry is not totally explained in the literature. In this paper, together with [ 5] we  
define and classify the varieties that determine combinatorial data describing the 
geometry of X4 

8 . 
The two spaces X2,8 and X4,8 are related by Gale duality as described in [ 14]. 

The precise relation between X2,8 and X4,8 was established in the following theorem 
of Mukai (semistability refers to semistability in the sense of Gieseker–Maruyama): 
X4,8 is isomorphic to the moduli space of rank 2 torsion free sheaves F on X2,8 

for which c1(F) = −KS and c2(F) = 2. Via Mukai’s correspondence, Casagrande 
et al. describe in [ 7] the five types of surfaces in X4,8 playing a special role in the 
Mori program. In this paper, we rediscover these surfaces as Weyl planes, defined 
below analogously to Weyl lines and hyperplanes. 

The Weyl group of X4 
8 is generated by the standard Cremona transformations 

together with permutations of the base points. In order to define and construct Weyl 
planes, we introduce Y 4 8 to denote the blowup of X

4 
8 along all lines joining any two 

points and the eight rational normal curves of degree 4 passing through 7 points. 
(These curves are all disjoint in X4 

8 .) 

Definition 1.1 A Weyl plane is the Weyl orbit of the proper transform of a plane 
through three fixed points under the blowup of the three lines joining any two points 
in Y 4 8 . 

It is important to remark that Weyl planes live on the space Y 4 8 . We emphasize that this 
orbit is different (in the Chow ring) than the Weyl orbit of planes through three points. 
Moreover, in [ 5], the authors introduce and classify the notions of Weyl curves and 
Weyl surfaces in X4 

8 as the intersection of two distinct Weyl divisors that are orthogonal 
with respect to the Dolgachev–Mukai bilinear pairing. Since the classification of Weyl
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surfaces [ 5] in  X4 
8 is the same with the classification of Proposition 7.3, we can deduce 

that the two definitions of Weyl planes (1.1) and Weyl surfaces [ 5] are equivalent in 
X4 
8 . By definition, Weyl lines coincide with Weyl curves in the projective plane X

2 
s , 

but the explicit relation between the two definitions, in general, will be studied in a 
different paper. 

In this paper, Corollaries 5.3 and 7.2 enable us to determine the Weyl action on 
(a) 1-cycles (i.e., curves) on the Chow ring of blowup of X4 

s ; 
(b) 2-cycles (i.e., surfaces) on the Chow ring of Y 4 8 . 

As a consequence, Proposition 7.3 determines the complete list of Weyl planes 
and Weyl divisors on X4 

8 , and it also gives the formulas for all Weyl lines on X4 
s , (for 

arbitrary number of fixed points s). In particular, for X4 
8 , the only Weyl lines are lines 

through two fixed points and the rational normal curve of degree 4 passing through 
7 of the 8 points. In fact, in a forthcoming paper [ 11], we prove that this statement 
holds for all Mori Dream Spaces. Let Qi denote Weyl line of degree 4 (the rational 
normal quartic) skipping only the i th point. In particular, we prove that on X4 

8 , there 
are 5 types of Weyl planes (modulo permutation of points), matching computations 
in [ 7, Theorem 8.7] and [ 5]: 

• The 56 planes S1(i jk) through three of the eight points (pi , p j , pk); it has multi-
plicity one along the three lines Li j  , Lik , and L jk . 

• The 56 cubic surfaces S3(i, j ) triple at pi , passing through all other points except 
p j ; it has multiplicity one along the lines Lik  for k /= i, j , and along Q j 

• The 56 sextic surfaces S6(i jk) passing through pi , p j , and pk and triple at the other 
five points; it has multiplicity one along all lines joining two of the five points, 
and along Qi , Q j , and Qk 

• The 28 surfaces S10(i j) of degree 10 having two points pi and p j of multiplicity 6 
and triple at the other six points; it has multiplicity 3 along the line Li j  , multiplicity 
one along all lines Lik  and L jk  for k /= i, j , and multiplicity one along the curves 
Qk for k /= i, j 

• The 8 surfaces S15(i) of degree 15 having one point pi with multiplicity 3 and 
having multiplicity 6 at the other seven points; it has multiplicity one along all 
lines L jk  for j, k /= i , multiplicity one along each Q j for j /= i , and multiplicity 
3 along Qi . 

In addition to the multiplicities at the points pi , the reader will note that for 
all of these surfaces we also compute the multiplicities along the lines Li j  and 
along the rational normal quartics (through 7 of the 8 points). This is important 
for computations in the Chow ring: unless one takes into account that these surfaces 
have multiplicity along these curves, one does not fully capture the intersection 
behavior of these surfaces after one blows up the points (and in general, the curves 
and surfaces that appear as base loci of linear systems of divisors). It is also critical 
for computations of the dimensions of the linear systems: it is one of the principles 
of this article that the multiplicities along these curves must be taken into account in 
determining the difference between the virtual dimension and the actual dimension 
of linear systems. Indeed, for certain purposes, it is useful to consider not only the
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blowup X4 
8 of P

4 at the 8 general points but also then the further blowup Y 4 8 of all of 
the proper transforms of the lines Li j  and the rational normal quartics Qk ; these are 
easily seen to be disjoint in X4 

8 and therefore Y 
4 
8 is smooth. 

Remark 1.2 In paper [ 5], the authors use a different notation for the Chow ring basis. 
For example, {h, ei , ei j } and {h1, e1 i } of [ 5] represent here {S, Si , Gi j } and {l, li }, 
respectively. In [ 5], surfaces denoted above by S1(i jk), S3(i, j ), S6(i jk), S10(i j  ), 
and S15(i ) are denoted by Hi jk , S3 i,^j , S

6 
i jk , S

10 
i j  , and S

15 
i , respectively. 

We predict that the birational geometry of X4 
8 is determined not only by Weyl 

hyperplanes but also Weyl lines and Weyl planes classified in Proposition 7.3. Finally, 
in Sect. 8, we present applications to the vanishing conjecture and dimensionality 
problem. 

2 The Standard Cremona Transformation and Its 
Resolution 

The standard Cremona transformation of Pn can be elegantly factored into a series 
of blowups at the proper transforms of the coordinate linear spaces, followed by a 
series of symmetric blowdowns. 

Fix coordinates [x0 : x1 :  · · ·  :  xn] in Pn , and consider the standard Cremona invo-
lution 

[x0 : x1 :  · · ·  :  xn] −→ [x−1 
0 : x−1 

1 :  · · ·  :  x−1 
n ] 

which simply inverts all the coordinates. This is well defined on the torus where all 
coordinates are non-zero, and has a fundamental locus the union of the coordinate 
hyperplanes. The transformation is relatively straightforward to resolve in a sequence 
of blowups and blowdowns, as follows. 

Let p0, p1, . . . ,  pn be the coordinate points of Pn . For an index set I ⊂ {0, 1, . . . ,  
n}, denoted by L I , the linear span of the coordinate points indexed by I : L I = 
span{pi | i ∈ I }. We have that dim L I = |I | −  1. 

We set Xn 
0 = Pn , and define π j : Xn 

j → Xn 
j−1 to be the blowup of the proper 

transforms of all  L I with |I | =  j . Hence, π1 is the blowup of all the coordinate 
points in Pn; π2 is the blowup of the (proper transforms of the) coordinate lines 
Li j  , etc. Note that the sequence of blowups stops with πn−1, the blowup of the 
codimension two coordinate linear spaces, creating the space Xn 

n−1. We will denote 
by EI the exceptional divisor created when L I is blown up. EI is created on Xn 

|I |, 
and we will use the notation EI for the proper transform on subsequent blowups 
too. If |I | =  n, then L I is a coordinate hyperplane in Pn; we will denote its proper 
transform in Xn 

n−1 by EI as well. 
We note that, at this point , on Xn 

n−1, the nature and configuration of the divisors 
EI are completely symmetric, with respect to taking complements; in other words, 
we have an isomorphism of Xn 

n−1 that switches the roles of EI and EJ when I and J
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are complementary in {0, 1, . . . ,  n}. Hence, we can reverse the sequence of blowups 
with the complementary divisors, and blow down to Pn “the other way”: first blow 
down the EI with |I | =  2, then the EI with |I | =  3, etc., finishing by blowing down 
the proper transforms of the coordinate hyperplanes E|I | with |I | =  n. This is the 
resolution of the birational involution. 

We note that: 

• On Xn 
|I |−1 when the L I are blown up, they are all disjoint. • Each linear space L I experiences a sequence of blowups (by the earlier blowups); 

on Xn 
|I |−1, the proper transform of each L I is isomorphic to X|I |−1 

|I |−2. • By induction, this proper transform has both the hyperplane divisor class H (the 
pullback of the hyperplane divisor class on X|I |−1 

0 = P|I |−1) and its Cremona invo-
lution image H '. 

• On X|I |−1 
|I |−2, the normal bundle of the proper transform of L I is isomorphic to 

O(−H ')⊕n−|I |+1 . 

• Since the normal bundle of the proper transform of L I splits as a direct product 
of identical line bundles, when EI is created on Xn 

|I |, it is isomorphic to a product 

X
|I |−1 
|I |−2 × Pn−|I |. 

• EI experiences further blowups on its way to Xn 
n−1, and there it is isomorphic to 

X
|I |−1 
|I |−2 × Xn−|I | 

n−|I |−1, where it has a normal bundle isomorphic to the tensor product 
of the anti-Cremona-hyperplane bundles coming from the two factors. 

This construction generalizes the familiar construction of the quadratic Cremona 
transformation of P2, which is obtained by blowing up the three coordinate points 
L0, L1, and L2 (obtaining X2 

1) and then blowing down the three coordinate lines L01, 
L02, and L12. 

3 The Case of Three Space 

For three space, the sequence of iterated blowups, in this case, involves two sets of 
blowups: 

X
3 
2 

π2 −→ X3 
1 

π1 −→ X3 
0 = P3 

where π1 blows up the four coordinate points pi = Li and π2 blows up the six proper 
transforms of the coordinate lines Li j  . The exceptional divisors Ei start out as P2’s 
in X3 

1, and then are further blown up to become isomorphic to X2 
1’s in X

3 
2. The  

coordinate lines start in P2 having normal bundle of bidegree (1, 1); after blowing up 
the two coordinate points on each, the proper transforms have normal bundles with 
bidegree (−1, −1) in X3 

1. They are then blown up to Ei j  
∼= P1 × P1 in X3 

2. Finally 
the coordinate hyperplanes Li jk  are each blown up three times by π1, and then not 
blown up further by π2, and so arrive at X3 

2 as surfaces isomorphic to X2 
1.
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The blowing down proceeds by blowing down the Ei j  via the other ruling, which 
blows down each Li jk  to a P2; one then blows down each of these to points, finishing 
the process. 

If one is interested in intersection phenomena related to these coordinate sub-
spaces, the Chow ring is the appropriate tool; it is useful primarily for record-
ing two different kinds of phenomena. One is containment (with multiplicity) by 
a given subvariety of one of the blowup centers. In P3, for divisors, this is the 
multiplicity of the divisor at one of the coordinate points, and the multiplicity of 
containment along one of the coordinate lines. For curves, this is the multiplic-
ity of the curve at one of the coordinate points. For a divisor written in the form 
D = dH  − E

i mi Ei − E

i j  ni j  Ei j  , the coefficient d is the degree; mi is the multi-
plicity at the coordinate point Li ; and mi j  is the multiplicity along the line Li j  . 

The other phenomenon which the Chow ring coefficients can record is the higher-
dimensional contact that the given subvariety may have with one of the blowup 
centers. (Higher-dimensional contact in the sense of higher than expected dimension.) 
In P3, for surfaces, this is not relevant for the coordinate points and lines; higher-
dimensional contact is containment with multiplicity. This is also true for curves 
with respect to the points: the only phenomenon is that of containment. However, 
with curves, one can have additional contact with the lines, without containment. 

The Chow ring of X3 
2 is not difficult to compute; all the relevant tools are pre-

sented in [ 12], Chaps. 9 and 13. The codimension zero classes are one-dimensional, 
generated by [X3 

2] itself; the codimension three classes are also one-dimensional, 
generated by the class [p] of a point. The codimension one classes are freely gener-
ated by the pullback H of the hyperplane class, and the exceptional divisors Ei and 
Ei j  . 

In codimension two, the group A2(X3 
2) contains the following elements. The 

pullback of the general line class in P3 will be denoted by l. The general line class 
inside the exceptional divisor Ei will be denoted by li . The exceptional divisor Ei j  

is isomorphic to P1 × P1, and contributes a priori two curve classes: the class fi j  of 
the fiber of the blowup π2, and the class gi j  which is the horizontal ruling of Ei j  . 
These are not independent though in A2(X3 

2); it is an exercise to check that 

gi j  = fi j  + l − li − l j 

and that this is the only relation in A2. 
For a curve class C written as C = dl − E

i mili − E

i j  ni j  fi j  , the coefficient 
d is the degree, mi is the multiplicity of C at the coordinate point Li , and ni j  is 
the additional contact of C with the coordinate line Li j  (over and above the contact 
implied by the multiplicities at the two coordinate points on Li j  ). 

We have the following, where we use typical δ-notation: δI,J = 1 if I ⊆ J and 0 
otherwise.
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Proposition 3.1 (a) A basis for the Chow ring of X3 
2 is given by 

A0 : [X3 
2] 

A1 : H, E0, E1, E2, E3, E01, E02, E03, E12, E13, E23 

A2 : l, l0, l1, l2, l3, f01, f02, f03, f12, f13, f23 
A3 : p 

(b) Multiplication of these basis elements is given by 

A1 · A1 H Ei Ei j  

H l 0 fi j  
Ek 0 −li δik fi j  δk,i j  
Ekl fkl fklδi,kl (−2 fi j  − l + li + l j )δi j,kl 

A1 · A2 H Ei Ei j

l p 0 0
lk 0 −pδi,k 0 
fkl 0 0  −pδi j,kl 

The Cremona involution extends to an involution φ on the Chow ring; we denote 
the image of the involution using a superscript prime: 

• [X3 
2] ↔ [X3 

2] • H ↔ H ' = 3H − 2
E

i Ei − E

i j  Ei j  

• El ↔ E '
l = Li jk  = H − Ei − E j − Ek − Ei j  − Eik  − E jk  for i, j, k /= l 

• Ei j  ↔ E '
i j  = Ekl for k, l /= i, j . 

• l ↔ l' = 3l − E

i li • li ↔ l'
i = 2l − E

j /=i l j 

• fi j  ↔ f '
i j  = gkl = fkl + l − lk − ll for k, l /= i, j . 

• p ↔ p. 

We leave it to the reader to check that this is a ring automorphism, and is an 
involution. 

Proposition 3.2 (a) Let D = dH  − E

i mi Ei − E

i j  ni j  Ei j  be a general class in 
A1(X3 

2). Then the Cremona image D
' of D under the involution is D' = d 'H −

E

i m
'
i Ei − E

i j  n
'
i j  Ei j  where
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d ' = D' · l = D · l' = D ·
(

3l −
E

i

li

)

= 3d −
E

i 

mi ; 

m '
i = D' · li = D · l'

i = D · 
⎛ 

⎝2l −
E

j /=i

l j 

⎞ 

⎠ = 2d −
E

j /=i 

m j ; 

n'
i j  = D' · fi j  = D · f '

i j  = D · fkl + l − lk − ll = d + nkl − mk − ml 

for k, l /= i, j 

(b) Let C = dl − E

i mili − E

i j  ni j  fi j  be a general class in A
2(X3 

2). Then the Cre-
mona image C ' of C under the involution is C ' = d 'l − E

i m
'
ili −

E

i j  n
'
i j  fi j  

where 

d ' = C ' · H = C · H ' = C · (3H − 2
E

i 

Ei −
E

i j  

Ei j  ) = 3d − 2
E

i 

mi −
E

i j  

ni j ; 

m'
i = C ' · Ei = C · E '

i = C · (H −
E

j /=i 

E j −
E

j,k /=i 

E jk  ) = d −
E

j /=i 

m j −
E

j,k /=i 

n jk; 

n'
i j  = C ' · Ei j  = C · E '

i j  = C · Ekl = nkl for k, l /= i, j 

(In the computations above, we abuse notation and give the multiplications as 
integers instead of integer multiples of the point class p.) 

If one is in the position of not needing to consider the contact phenomena for 
curves, one can simplify the formulas as follows. 

Corollary 3.3 The subspace of A2(X3 
2) spanned by l and the li , is invariant under 

the Cremona involution. If C = dl − E

i mili is a general class in A2(X3 
2) in this sub-

space, then the Cremona image C ' of C under the involution is C ' = d 'l − E

i m
'
ili 

where 

d ' = C ' · H = C · H ' = C · (3H − 2
E

i 

Ei −
E

i j  

Ei j  ) = 3d − 2
E

i 

mi ; 

m '
i = C ' · Ei = C · E '

i = C · (H −
E

j /=i 

E j −
E

j,k /=i 

E jk) = d −
E

j /=i 

m j ; 

4 The Chow Ring for the Case of P4 

The sequence of iterated blowups in this case involves three sets of blowups: 

X
4 
3 

π3 −→ X4 
2 

π2 −→ X4 
1 

π1 −→ X4 
0 = P4
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where π1 blows up the five-coordinate points pi = Li to divisors Ei , π2 blows up 
the ten proper transforms of the coordinate lines Li j  to Ei j  , and π3 blows up the ten 
proper transforms of the coordinate planes Li jk  to Ei jk . 

We denote by H the general hyperplane class in P4 (and all its pullbacks); let 
us denote by S = H 2 the class of the general 2-plane, and l = H 3 the class of the 
general line; the point class will be p as usual. 

In this section, we’ll present the Chow ring A∗(X4 
3), proceeding through the 

sequence of three blowups. In the starting fourfold X4 
0 

∼= P4, the relevant subva-
rieties are simply the linear spaces L I for I ⊂ {0, 1, 2, 3, 4}. 

After blowing up the points via π1, we have  

• The divisors Ei 
∼= P3. 

• The proper transforms of the lines Li j  
∼= P1. 

• The proper transforms of the 2-planes Li jk  
∼= X2 

1. • The proper transforms of the hyperplanes Li jkl
∼= X3 

1. 

We now blow up with π2 the proper transforms of the ten lines Li j  , to the excep-
tional divisors Ei j  , to obtain X4 

2; there, we have the following descriptions of the 
relevant subvarieties: 

• The divisors Ei 
∼= X3 

1. • The exceptional divisors Ei j  
∼= P1 × P2. 

• The 2-planes Li jk  
∼= X2 

1. • The hyperplane threefolds Li jkl
∼= X3 

2. 

Finally, we blow up the proper transforms of the ten surfaces Li jk , to the excep-
tional divisors Ei jk , to obtain X4 

3; there, the relevant subvarieties are: 

• The divisors Ei 
∼= X3 

2. • The divisors Ei j  
∼= P1 × X2 

1. • The exceptional divisors Ei jk  
∼= X2 

1 × P1. 
• The hyperplane threefolds Li jkl

∼= X3 
2. 

The codimension one classes in A1(X4 
3) are freely generated by the pullback H 

of the hyperplane class in P4 and the exceptional divisors Ei , Ei j  , and Ei jk ; there are 
no relations among these. 

In the group A2(X4 
3) of codimension two classes, we have the class S = H 2 of 

the pullback of a general 2-plane in P4. The other classes that will generate A2 are 
supported in the exceptional divisors. 

In Ei , which starts in X4 
1 as a P

3, we have the general 2-plane; pulled back to X4 
3 

this gives a class Si for each i . 
The divisor Ei j  starts in X4 

2 as isomorphic to the product P1 × P2. This contributes 
to two surface classes: the fiber {point} ×  P2 of the blowup, and the product P1 × 
{general line in P2}. Denote by Fi j  the pullback to X4 

3 of the former, the fiber class; 
and by Gi j  the pullback to X4 

3 of the latter. 
Finally, the divisor Ei jk  is isomorphic to X2 

1 × P1, and contributes five surface 
classes. One is Mi jk  = X2 

1 × {point}, a cross section of the blowup map. The others



170 O. Dumitrescu and R. Miranda

come from products of curve classes in Li jk  
∼= X2 

1 with the fiber P
1. The curve classes 

in Li jk  are generated by the pullback (from P2) of the general line class li jk  and the 
three exceptional curves ei jk,i , ei jk, j , and ei jk,k which are (in X4 

2) the intersection 
of Li jk  with the three divisors Ei , E j , and Ek respectively. These four classes give 
classes Hi jk  = li jk  × P1 and Vi jk,i , Vi jk, j , and Vi jk,k where Vi jk,i comes from the 
product of ei jk,i × P1 and the same for the other two. 

It is useful to introduce two new classes, for notational convenience. These are: 

Pi j  = Gi j  − Fi j and Yi jk  = 2Hi jk  − Vi jk,i − Vi jk, j − Vi jk,k; (4.1) 

we note thatYi jk  is the pullback of the Cremona image of the line class on the 2-plane 
Li jk . This will allow us to replace Gi j  by Pi j  among the generators for A2. 

There is a single relation among these codimension two classes beyond the defi-
nitional ones of (4.1). It is that 

Mi jk  = S − Si − Sj − Sk − Pi j  − Pik  − Pjk  + Yi jk . (4.2) 

Finally, we have the classes of the curves, the codimension three classes in A3(X4 
3). 

We again have the pullback l of the general line class in P4, and the classes li of the 
general lines in the Ei . 

The curve classes supported on Ei j  (which when it is created on X4 
2 is isomorphic 

to P1 × P2) are generated by the class li j  = {point} × {general line inP2} and hi j  = 
P
1 × {point}. 
The curve classes coming from Ei jk  are the ‘horizontal’ ones living in Li jk , crossed 

with a point; these we can denote again by li jk  and ei jk,i , ei jk, j , and ei jk,k as before. 
The final one is a general fiber of the blowup fi jk . 

There are relations among these curve classes also; these are: 

hi j  = li j  + l − li − l j ; li jk  = 2 fi jk  + l − li j  − lik  − l jk; (4.3) 
ei jk,i = fi jk  + li − li j  − lik; ei jk, j = fi jk  + l j − li j  − l jk; ei jk,k = fi jk  + lk − lik  − l jk  . 

(4.4) 

(Hence, we can dispense with these to generate A3(X4 
3).) 

It is the case that, for a surface class T , one measures multiplicity along the line 
Li j  by the intersection with Fi j  , and one measures higher-dimensional contact with 
Li j  by the intersection with Gi j  . Hence, if the coefficients of T include the terms 
−mPi j  − nFi j  , then m is the multiplicity of T along the line and n is the additional 
contact of T with the line, so that one can read off these geometric phenomena from 
the coefficients directly. (P and F are the dual basis to F and G in A2.) 

We can similarly observe that a general surface class T should meet the 2-plane 
Li jk  in a finite number of points. The coefficients of Hi jk  and Vi jk,i , Vi jk, j , and Vi jk,k 

(which generate the Picard group of the blown-up Li jk) record the higher-dimensional 
contact of a surface with Li jk , namely, contact in a curve class rather than in a 
finite number of points. Hence, if the coefficients of T include the terms −αHi jk  + 
βi jk,i Vi jk,i + βi jk, j Vi jk, j + βi jk,k Vi jk,k then the higher-dimensional contact of T with
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Li jk  (away from the coordinate lines) is a curve in the class αli jk  − βi jk,i ei jk,i − 
βi jk, j ei jk, j − βi jk,kei jk,k . 

Having described the generators for the Chow ring A∗(X4 
3), we can now present 

the ring structure. The computations are relatively straightforward, using, for exam-
ple, the formulas for the Chow rings of blowups presented in [ 12], Chap. 13. (The 
computation is iterative, first computing A∗(X4 

1), then using that to compute A∗(X4 
2), 

and finally A∗(X4 
3),) 

Proposition 4.5 The Chow ring of X4 
3 can be described as follows. 

(a) A basis for the Chow ring A(X4 
3) is given by the classes: 

A0 : [X4 
3] =  1 

A1 : H, Ei , Ei j  , Ei jk  

A2 : S, Si , Pi j  , Fi j  , Hi jk, Vi jk,i 

A3 : l, li , li j  , fi jk  
A4 : p 

(b) Multiplication of basis elements is given in the following tables. 

A1 · A1 H Ei Ei j Ei jk  

H S 0 Fi j Hi jk  

Em 0 −Si δi,m Fi j  δm,i j Vi jk,m δm,i jk  

Emn Fmn Fmnδi,mn −(Pi j  + 2Fi j  )δi j,mn (Hi jk  − Vi jk,m − Vi jk,n )δmn,i jk  

Emnr Hmnr Vmnr,i δi,mnr (Hmnr − Vmnr,i − Vmnr, j )δi j,mnr −(Mi jk  + Yi jk  )δi jk,mnr 

A1 · A2 H Ei Ei j Ei jk  
S l 0 0 fi jk  
Sm 0 −li δi,m 0 fi jk  δm,i jk  
Pmn lmn lmnδi,mn (−li j  − l + li + l j )δi j,mn − fi jk  δmn,i jk  
Fmn 0 0 −li j  δi j,mn fi jk  δmn,i jk  
Gmn lmn lmnδi,mn (−2li j  − l + li + l j )δi j,mn 0 
Hmnr fi jk 0 fmnr δi j,mnr (−4 fi jk  − l + li j  + lik  + l jk  )δi jk,mnr 
Vmnr,m 0 − fmnr δi,m fmnr δm,i j (−2 fmnr − lm + lmn + lmr )δi jk,mnr 

A1 · A3 H Ei Ei j Ei jk

l p 0 0 0
lm 0 −pδi,m 0 0
lmn 0 0  −pδi j,mn 0 
fmnr 0 0 0 −pδi jk,mnr
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A2 · A2 S Si Pi j Fi j Gi j Hi jk Vi jk,i 

S p 0 0 0 0 0 0  
Sm 0 −pδi,m 0 0 0 0 0  
Pmn 0 0 pδi j,mn −pδi j,mn 0 0 0  
Fmn 0 0  −pδi j,mn 0 −pδi j,mn 0 
Gmn 0 0 0 −pδi j,mn −pδi j,mn 0 0  
Hmnr 0 0 0 0 0 −pδi jk,mnr 0 
Vmnr,m 0 0 0 0 0 0 pδi jk,mnr δi,m 

5 The Cremona Involution on P4 

Consider now the Cremona involution 

[x0 : x1 : x2 : x3 : x4] −→ [  
1 

x0 
: 1 
x1 

: 1 
x2 

: 1 
x3 

: 1 
x4 

] 
= [x1x2x3x4 : x0x2x3x4 : x0x1x3x4 : x0x1x2x4 : x0x1x2x3] 

which lifts to a biregular automorphism of X4 
3. The induced action φ on the Chow 

ring A(X4 
3) is given as follows. 

Proposition 5.1 

φ(H ) = 4H − 3
E

i 

Ei − 2
E

i j  

Ei j  −
E

i jk  

Ei jk  

φ(Ei ) = [L jkmn /=i ] =  H −
E

m /=i 

Em −
E

mn /=i 

Emn −
E

mnr /=i 

Emnr 

φ(Ei j  ) = Emnr /=i, j 

φ(Ei jk  ) = Emn /=i, j,k 

φ(S) = 6S − 3
E

i 

Si −
E

i j  

Pi j  

φ(Sm ) = 3S − 2
E

i /=m 

Si −
E

i j /=m 

Pi j  

φ( Fmn ) = Mi jk /=mn = S − Si − S j − Sk + Fi j  + Fik  + Fjk  − Gi j  − Gik  − G jk  + Yi jk  

= S − Si − S j − Sk − Pi j  − Pik  − Pjk  + 2Hi jk  − Vi jk,i − Vi jk, j − Vi jk,k 
φ(Gmn ) = Yi jk /=mn = 2Hi jk  − Vi jk,i − Vi jk, j − Vi jk,k 
φ(Pmn ) = −S + Si + S j + Sk + Pi j  + Pik  + Pjk  (i jk /= mn) 

φ(Hmnr ) = 2Gi j  − (Hi jm  − Vi jm,i − Vi jm, j ) − (Hi jn  − Vi jn,i − Vi jn, j ) − (Hi jr  − Vi jr,i − Vi jr, j ) 
= 2Pi j  + 2Fi j  − (Hi jm  − Vi jm,i − Vi jm, j ) − (Hi jn  − Vi jn,i − Vi jn, j ) − (Hi jr  − Vi jr,i − Vi jr, j ) 
for i, j /= m, n, r 

φ(Vmnr,m ) = Gi j  − (Hi jn  − Vi jn,i − Vi jn, j ) − (Hi jr  − Vi jr,i − Vi jr, j ) 
= Pi j  + Fi j  − (Hi jn  − Vi jn,i − Vi jn, j ) − (Hi jr  − Vi jr,i − Vi jr, j )



Cremona Orbits in P4 and Applications 173 

for i, j /= m, n, r 

φ(l) = 4l −
E

i

li 

φ(lm ) = 3l −
E

i /=m

li 

φ(lmn ) = 2l − li − l j − lk + fi jk  for i, j, k /= m, n 
φ( fmnr ) = hi j  = l − li − l j + li j  for i, j /= m, n, r 

Proposition 5.2 (a) Let D = dH  − E

i mi Ei − E

i j  mi j  Ei j  − E

i jk  mi jk  Ei jk  be a 
general class in A1(X4 

3). Then the Cremona image φ(D) of D under the involution 
is 

φ(D) = d 'H −
E

i 

m '
i Ei −

E

i j  

m '
i j  Ei j  −

E

i jk  

m '
i jk  Ei jk  

where 

d ' = φ(D) · l = D · φ(l) = D · (4l −
E

r

lr ) = 4d −
E

r 

mr ; 

m'
i = φ(D) · li = D · φ(li ) = D · (3l −

E

r /=i

lr ) = 3d −
E

r /=i 

mr 

m'
i j  = φ(D) · li j  = D · φ(li j  ) = D · (2l −

E

r /=i j

lr + frst /=i j  ) = 2d −
E

r /=i j  

mr + mrst /=i j  

m'
i jk  = φ(D) · fi jk  = D · φ( fi jk  ) = D · (l −

E

r /=i jk

lr + lrs /=i jk  ) = d −
E

r /=i jk  

mr + mrs /=i jk  

(b) Let T = dS  − E

i mi Si − E

i j  mi j  Pi j  − E

i j  ni j  Fi j  −
E

i jk  mi jk  Hi jk  + E

i jk  

(ni jk,i Vi jk,i + ni jk, j Vi jk, j + ni jk,k Vi jk,k) be a general class in A2(X4 
3). Then the 

Cremona image φ(T ) of T under the involution is 

φ(T ) = d 'S −
E

i 

m '
i Si −

E

i j  

m '
i j  Pi j  −

E

i j  

n'
i j  Fi j  

−
E

i jk  

m '
i jk  Hi jk  +

E

i jk  

(n'
i jk,i Vi jk,i + n'

i jk, j Vi jk, j + n'
i jk,k Vi jk,k) 

where 

d ' = φ(T ) · S = T · φ(S) = T · (6S − 3
E

i 

Si −
E

i j  

Pi j  ) 

= 6d − 3
E

i 

mi +
E

i j  

(mi j  − ni j  ) 

m'
i = φ(T ) · Si = T · φ(Si ) = T · (3S − 2

E

r /=i 

Sr −
E

rs /=i 

Prs  )
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= 3d − 2
E

r /=i 

mr +
E

rs /=i 

(mrs  − nrs  ) 

m'
i j  = φ(T ) · Fi j  = T · φ(Fi j  ) 

= T · (S − Sr − Ss − St − Prs  − Prt  − Pst + 2Hrst  − Vrst,r − Vrst,s − Vrst,t ) 
= d − mr − ms − mt + mrs  + mrt  + mst − nrs  − nrt  − nst  + 2mrst  − nrst,r − nrst,s − nrst,t 

n'
i j  = φ(T ) · Gi j  = T · φ(Gi j  ) = T · (Yrst /=i j  ) = T · (2Hrst  − Vrst,r − Vrst,s − Vrst,t ) 

= 2mrst  − nrst,r − nrst,s − nrst,t 
m'

i jk  = φ(T ) · Hi jk  = T · φ(Hi jk  ) 

= T · (2Grs  − (Hrsi  − Vrsi,r − Vrsi,s ) − (Hrs  j  − Vrs  j,r − Vrs  j,s ) − (Hrsk  − Vrsk,r − Vrsk,s ) 
for rs /= i jk  
= 2nrs  − (mrsi  − nrsi,r − nrsi,s ) − (mrs  j  − nrs  j,r − nrs  j,s ) − (mrsk  − nrsk,r − nrsk,s 

n'
i jk,i = φ(T ) · Vi jk,i = T · φ(Vi jk,i ) 

= T · (Grs  − (Hrs  j  − Vrs  j,r − Vrs  j,s ) − (Hrsk  − Vrsk,r − Vrsk,s )) 
= nrs  − (mrs  j  − nrs  j,r − nrs  j,s ) − (mrsk  − nrsk,r − nrsk,s ) 

(c) Let C = dl − E

i mili − E

i j  mi jli j  − E

i jk  mi jk  fi jk  be a general class in 
A3(X4 

3). Then the Cremona image φ(C) of C under the involution is 

φ(C) = d 'l −
E

i 

m '
ili −

E

i j  

m '
i jli j  −

E

i jk  

m '
i jk  fi jk  

where 

d ' = φ(C) · H = C · φ(H ) = C · (4H − 3
E

i 

Ei − 2
E

i j  

Ei j  −
E

i jk  

Ei jk) 

= 4d − 3
E

i 

mi − 2
E

i j  

mi j  −
E

i jk  

mi jk; 

m '
i = φ(C) · Ei = C · φ(Ei ) = C · (H −

E

r /=i 

Er −
E

rs /=i 

Ers  −
E

rst /=i 

Erst  ) 

= d −
E

r /=i 

mr −
E

rs /=i 

mrs  −
E

rst /=i 

mrst ; 

m '
i j  = φ(C) · Ei j  = C · φ(Ei j  ) = C · Erst /=i j  = mrst /=i j  

m '
i jk  = φ(C) · Ei jk  = C · φ(Ei jk) = C · Ers /=i jk  = mrs /=i j  

We note that, for surface classes in A2(X4 
3), higher-dimensional contact is observed 

by having nonzero coefficients in the F , H , and V basis elements. For curve classes 
in A3, this higher-dimensional contact corresponds to nonzero coefficients in the li j  
and the fi jk  basis elements (corresponding to a curve meeting a coordinate line or a
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coordinate plane). The formulas above show that a similar phenomenon happens as 
in the P3 case: if these are all zero, that is preserved under the involution. 

Corollary 5.3 (a) The subspace of A2(X4 
3) spanned by S, the  Si , and the Pi j  is 

invariant under the Cremona involution φ. If  T = dS  − E

i mi Si − E

i j  mi j  Pi j  
is an element in this subspace, then φ(T ) = d 'S − E

i m
'
i Si −

E

i j  m
'
i j  Pi j  where 

d ' = 6d − 3
E

i 

mi +
E

i j  

mi j  

m '
i = 3d − 2

E

r /=i 

mr +
E

rs /=i 

mrs  

m '
i j  = d − mr − ms − mt + mrs  + mrt  + mst for r, s, t /= i, j 

(b) The subspace of A3(X4 
3) spanned by l, li is invariant under the Cremona invo-

lution φ. If  C = dl − E

i mili is an element in this subspace, then φ(C) = 
d 'l − E

i m
'
ili where 

d ' = 4d − 3
E

i 

mi 

m '
i = d −

E

r /=i 

mr 

For divisors, the natural subspace invariant under the involution is the one gener-
ated by the Ei j  ’s and Ei jk’s. If we are only interested in the multiplicity conditions at 
the points, we can therefore mod out by this subspace of A1, and obtain the following. 

Corollary 5.4 The subspace of A1(X4 
3) spanned by the Ei j  ’s and Ei jk’s is invariant 

under the Cremona involution φ. Denote by Ā 
1 
the quotient of A1 by this subspace; 

the involution φ descends to an involution of Ā 1 . If  D̄ = dH  − E

i mi Ei represents 
a coset in this subspace, then φ(D̄) = d 'H − E

i m
'
i Ei where 

d ' = 4d −
E

i 

mi and m '
i = 3d −

E

r /=i 

mr . 

6 Six and Seven Points in P4 

The formulas for how degrees and multiplicities change for curves, surfaces, and 
divisors in P4 under the standard Cremona transformation can be used to analyze
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compositions of such Cremona transformations based at more than five points. We 
will present the orbits of the linear subspaces spanned by subsets of the points in this 
section. 

If we first consider six general points in P4, it is easy to see using the formulas 
above that any line through 2 of the six points, 2-plane through 3 of them, or a 
hyperplane through 4, is either contracted by the Cremona transformation or is sent 
to itself. 

The case of seven general points in P4 is one step more interesting. In this case, 
for a line through two of the seven points, it is either contracted by the Cremona 
transformation based at five of the points (if the two points are a subset of the five), is 
sent to itself (if one of the two is a subset of the five) or is sent to the rational normal 
quartic (RNQ) through all seven points (if neither of the two is among the five). 

The iteration of Cremona now leads us to consider the transformation of the RNQ; 
applying Cremona at any five yields back the line joining the other two (since the 
Cremona is an involution). 

Hence the Cremona orbit of the line through two points is the collection of all of 
the 21 lines, plus the rational normal quartic through all seven points. 

Now consider the 2-plane spanned by three of the 7 points. Performing a Cremona 
transformation at 5 of the 7 points, we see that if all three points are among the 5, 
the plane is contracted as part of the fundamental locus. If two of the three points are 
among the five, the plane is sent to itself. If only one of the three points is among the 
five, then the Cremona image is a surface of degree three, with a point of multiplicity 
3 at that one point, and multiplicity 1 at the other six points. It contains the line 
joining that one point to the other six, with a multiplicity of one each, and no other 
lines joining the points. It also contains the RNQ with multiplicity one. This cubic 
surface is a cone over a twisted cubic in P3. 

Iterating the Cremona by applying it to this cone, we see that if the five points 
contain the vertex, it will be transformed back into the 2-plane. If it does not, it is 
preserved. 

Hence, the Cremona orbit of the 2-plane through 3 points in P4 consists of the 35 
planes and the 7 cubic cones. 

For the hyperplanes through 4 of the seven points, there are four cases to consider. 
We choose five of the seven to perform the Cremona transformation at. If all 4 of the 
hyperplane points are among the five, then the hyperplane is contracted to a point. If 
3 of the hyperplane points are among the five, then the hyperplane is transformed to 
another hyperplane. If 2 of the hyperplane points are among the five, it is transformed 
into a quadric double cone: a cone over a smooth conic with vertex a line (the line 
corresponding to the two points). To be explicit, take the line joining the two points, 
and a complementary plane; projection from the line to the plane sends the other five 
points to five general points in the plane, and there is a unique conic in that plane 
through those five points. The threefold is obtained as the cone over the conic with 
vertex the line. The surfaces contain all the lines joining the two points with the other 
five, as well as containing the RNQ too. 

If we apply a second Cremona transformation to this quadric, we either return to 
the hyperplane, preserve the quadric, or (if we use as the base points the five points
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not on the vertex line) we obtain a cubic surface double at all seven points. It is also 
double all along the RNQ; this cubic surface is the secant variety to the RNQ, in fact. 

Further applications of Cremona to this cubic surface lower the degree and return 
us to the quadric double cone; we see then that the orbit of the hyperplane consists of 
the set of 35 hyperplanes, the 21 quadric double cones, and the cubic secant variety 
to the RNQ. 

It is interesting that the two special linear systems with irreducible members in 
P
4 imposing only double points appear here: the quadrics double at two points and 

the cubics double at 7. 

7 Eight Points in P4 

We now consider the case of Cremona transformations based at 8 general points 
p1, . . . ,  p8 in P4. Denote by Li j  the line joining pi and p j as usual. Denote by Qi 

the rational normal quartic curve passing through all eight points except pi (i.e., 
passing through the other 7). 

It is easy to see, with a parallel computation as that done above for seven points, 
that the orbit of a line through two points, say L12, consists of all 28 such lines Li j  , 
and all 8 of the RNQ’s Qk . 

We can now take up the case of surfaces, which is more involved. We will record 
the data for a surface of degree d , having multiplicity mi at pi , multiplicity ni along 
Qi , and multiplicity mi j  along Li j  , by the triangular array of numbers: 

d m1 m2 m3 m4 m5 m6 m7 m8 

n1 n2 n3 n4 n5 n6 n7 n8 
m12 m13 m14 m15 m16 m17 m18 

m23 m24 m25 m26 m27 m28 

m34 m35 m36 m37 m38 

m45 m46 m47 m48 

m56 m57 m58 

m67 m68 

m78 

(7.1) 

Suppose we perform the five-point Cremona on the first five points 1, 2, 3, 4, 5. 
Then the degree d , the multiplicities mi for i ≤ 5, and the mi j  for i, j ≤ 5, are  
transformed as indicated in Corollary 5.3(a). 

For multiplicity m '
i j  with i ≤ 5 and j ≥ 6, we note that this line Li j  is left invariant 

under the Cremona, so that m '
i j  = mi j  for these indices. 

For multiplicities mi j  with both i, j ≥ 6, we note that this Li j  is the image of Qk 

where {i, j, k} = {6, 7, 8}; k is the third index. Hence m '
i j  = nk for k = {6, 7, 8} −  

{i, j}. 
For the n'

k with k ≥ 6, conversely we have n'
k = mi j  where i, j = {6, 7, 8} − {k}. 

For n'
k with k ≤ 5, since such a Qk is fixed, we have n'

k = nk . This gives the following:
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Corollary 7.2 The surface with degree and multiplicities indicated by (7.1) is trans-
formed, under the Cremona involution based at the first five points p1, p2, p3, p4, p5, 
into the surface with degree and multiplicities recorded by: 

d ' m '
1 m

'
2 m

'
3 m

'
4 m

'
5 m6 m7 m8 

n1 n2 n3 n4 n5 m78 m68 m67 

m '
12 m

'
13 m

'
14 m

'
15 m16 m17 m18 

m '
23 m

'
24 m

'
25 m26 m27 m28 

m '
34 m

'
35 m36 m37 m38 

m '
45 m46 m47 m48 

m56 m57 m58 

n8 n7 
n6 

where 

d ' = 6d − 3 
5

E

i=1 

mi +
E

1≤i < j≤5 

mi j  

m'
i = 3d − 2

E

r≤5;r /=i 

mr +
E

r,s≤5;r,s /=i 

mrs  for i ≤ 5 

m'
i j  = d − mr − ms − mt + mrs  + mrt  + mst for i, j ≤ 5 and r, s, t = {1, 2, 3, 4, 5} − {i, j} 

The Proposition below presents the orbit of L123, a  2-plane through three of the 
points, in (b). For notational consistency with the other surfaces in this orbit, we will 
also denote Li jk  by S1(i jk). We have included in (a) the remarks above about the 
orbit of the line L12. In (c), we present the orbit of a hyperplane; the reader can verify 
the computations as an exercise. 

Proposition 7.3 Fix 8 general points in P4, and consider Cremona transformations 
based at 5 of the 8, in series.  

(a) The orbit of a line through two of the 8 points consists of the 28 lines Li j  

(1 ≤ i < j ≤ 8) through two (pi and p j ) of the  8 points, and the 8 rational 
normal quartics Qk (1 ≤ k ≤ 8 through 7 of the 8 points (through all seven 
except pk). 

(b) The orbit of a plane through three of the 8 points consists of: 

(b1) the 56 planes Li jk  = S1(1 jk) through three of the 8 points (namely pi , p j , 
and pk); the plane L123 = S1(123) is recorded as
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1 1 1 1 0 0 0 0 0  
0 0 0 0 0 0 0 0  
1 1 0 0 0 0 0  
1 0 0 0 0 0  
0 0 0 0 0  
0 0 0 0  
0 0 0  
0 0  
0 

(b2) the 56 surfaces S3(i, j) of degree 3 with one point pi of multiplicity 3, 6 points 
of multiplicity one, and one point p j of multiplicity 0. It contains the lines 
joining the triple point pi to all other multiplicity one points pk (k /= j ) and 
no other lines; it contains the rational normal quartic Q j through the triple 
point and the six multiplicity one points. For example, S3(8, 1) is recorded 
as: 

3  0  1 1 1 1 1 1 3  
1 0 0 0 0 0 0 0  
0 0 0 0 0 0 0  
0 0 0 0 0 1  
0 0 0 0 1  
0 0 0 1  
0 0 1  
0 1  
1 

(b3) the 56 sextic surfaces S6(i jk) of degree 6 with three points ( pi , p j , pk) of  
multiplicity one, and the other 5 points of multiplicity 3. It contains the lines 
joining any two of the multiplicity 3 points and no other lines; It contains 
the rational normal quartics through the five multiplicity 3 points and any 
two of the three multiplicity one points. For example, S6(678) is recorded 
as: 

6 3 3 3 3 3 1 1 1  
0 0 0 0 0 1 1 1  
1 1 1 1 0 0 0  
1 1 1 0 0 0  
1 1 0 0 0  
1 0 0 0  
0 0 0  
0 0  
0 

(b4) the 28 surfaces S10(i j  ) of degree 10 with two points ( pi and p j ) of multiplicity 
6 and the other 6 points of multiplicity 3. It contains the lines joining the 
multiplicity one points to the multiplicity six points (each with multiplicity
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one) and the line joining the two multiplicity 6 points with multiplicity 3. It  
contains the 6 rational normal quartics that pass through the two multiplicity 
6 points and five of the six multiplicity one points. For example, S10(78) is 
recorded as: 

10  3 3 3 3 3 3 6 6  
1 1 1 1 1 1 0 0  
0 0 0 0 0 1 1  
0 0 0 0 1 1  
0 0 0 1 1  
0 0 1 1  
0 1 1  
1 1  
3 

(b5) the 8 surfaces S15(i ) of degree 15 with one point ( pi ) of multiplicity 3 and 
the other seven points of multiplicity 6. It contains the joining any two points 
of multiplicity 6, and no other lines. It contains all 8 of the rational normal 
quartics; the one through the seven multiplicity 6 points with multiplicity 
three, and all others with multiplicity one. For example, S15(1) is recorded 
as: 

15  3 6 6 6 6 6 6 6  
3 1 1 1 1 1 1 1  
0 0 0 0 0 0 0  
1 1 1 1 1 1  
1 1 1 1 1  
1 1 1 1  
1 1 1  
1 1  
1 

(c) We use the notation that (d;m1m2 · · ·  m8) represents a hyperplane of degree d 
having multiplicity mi at pi . The orbit of the hyperplane through the first four 
points (represented by (1; 11110000) consists of the following divisors, and all 
related divisors obtained by permutations of the eight points: 

(1; 11110000) (2; 22111110) (3; 22222220) (3; 32222111) 
(4; 33332221) (4; 43222222) (5; 44333322) (6; 44444432) 
(6; 54443333) (7; 55544443) (7; 64444444) (8; 65555544) 
(9; 66665555) (10; 76666666)
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8 Applications 

Proposition 8.1 Let R and T be two Weyl planes on X4,8. Then R · T ∈ {0, 1, 3}. 

Proof If we choose an element w of the Weyl group that sends Weyl plane R to 
the actual plane S1(123), then since the intersection form is preserved we have 
R · T = S1(123) · w(T ). Hence it suffices to show that the intersection of S1(123) 
with any Weyl plane is in {0, 1, 3}. This one can check by hand for all of the cases. 

Even easier would be to notice that, if φ is the Cremona transformation centered at 
the first five points, then by Corollary 7.2 we have φ(S1(123)) = −P45 in the Chow 
ring. Hence it also suffices to show that −P45 · T ∈ {0, 1, 3} for all Weyl planes T . 
By Proposition 4.5, intersecting with −P45 picks out exactly the multiplicity m45 for 
the Weyl plane. Hence it suffices, after taking account of permutations, to observe 
that for all Weyl planes, all mi j  are in {0, 1, 3}. |

Proposition 8.2 Let R and T be any Weyl planes on X4 
8 . If  R · T /= 3, then there 

exists w in the Weyl group of X4 
8 and i ∈ {1, 4} such that w(R) = H123 and w(T ) = 

Hi56. 

Proof It is enough to prove the statement for R /= T . One can use the same technique 
as in Proposition 8.1 and reduce one Weyl surface to −P45 and select Weyl surfaces 
from the list of Proposition 7.3(b) that have m45 ∈ {0, 1}. Then applying the Cremona 
transformation φ centered at the first five points, we have the first Weyl surface being 
S1(123) and the other on the following lists (up to permutations that fix {1, 2, 3}): 
1. Case S1(123) · T = 1: 

(a) S1(123) · S1(456) = 1 
(b) S1(123) · S3(4, 1) = 1 
(c) S1(123) · S6(126) = 1 
(d) S1(123) · S10(45) = 1 
(e) S1(123) · S15(1) = 1 

We are done in the first case of course. In the other cases it suffices to find 
five indices, two of them among {1, 2, 3}, so that the corresponding Cremona 
transformation reduces the degree of the second surface; such a Cremona will 
fix S1(123) and we proceed then by induction on the degree. 
To reduce the cubic surface, {2, 3, 4, 7, 8}will work; for the sextic, {1, 3, 5, 7, 8} 
works. For the surface of degree 10, {1, 2, 4, 5, 6} suffices; finally for the last 
surface of degree 15, {2, 3, 6, 7, 8} works. 

2. Case S1(123) · T = 0: In this case a similar approach yields the following lists 
to analyze: 

(a) S1(123) · S1(145) = 0 or S1(123) · S1(124) = 0 
(b) S1(123) · S3(1, 2) = 0 or S1(123) · S3(1, 4) = 0 or S1(123) · S3(4, 5) = 0 
(c) S1(123) · S6(145) = 0 or S1(123) · S6(456) = 0 
(d) S1(123) · S10(12) = 0 or S1(123) · S10(15) = 0
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(e) S1(123) · S15(4) = 0 

The same proof as in the prior case works; in each situation one finds five indices, 
two among {1, 2, 3}, that reduce the degree of the second surface. For example, 
{2, 3, 6, 7, 8} works for the degree 15 surface. We leave the details of the other 
cases to the reader.

|

We remark that Weyl planes that intersect in three points (modulo permutations 
of points) are 

S1(123) · S6(123) = S3(1, 8) · S3(8, 1) = 3. 

Corollary 8.3 Assume R and T are Weyl planes in the base locus of the linear 
system |D| for an effective divisor D = dH  − E8 

i=1 mi Ei on X4 
8 . Then R · T = 0. 

Proof We argue by contradiction. Assume first that R · T = 1. By Proposition 8.2, 
we can apply a series of Cremona transformations, which do not change the hypoth-
esis on the base locus, and assume that R = S1(123) and T = S1(456). It follows 
from the results of [ 6], Sect. 4, and [ 8], Proposition 4.2, that we therefore have 

m1 + m2 + m3 − 2d > 0 and m4 + m5 + m6 − 2d > 0. 

Hence, the system of rational normal curves of degree 4 passing through the first 6 
points must be in the base locus of |D|; since this family of curves covers P4, we  
conclude |D| is empty, a contradiction. 

If the two Weyl planes intersect in three points, then they are either S3(1, 8) and 
S3(8, 1) or S1(123) and S6(123) (up to permutations). We will analyze the first case; 
the other is handled by a similar argument. Assume by contradiction that both such 
Weyl planes are in the base locus of the linear system |D| of an effective divisor D. 
By Proposition 3 of [ 5], the multiplicity of containment of the surface S3(1, 8) in the 
base locus of a divisor D is 2m1 + m2 + . . .  + m7 − 5d < 0; therefore since both 
S3(1, 8) and S3(8, 1) are in the base locus we obtain 2(m1 + . . .  + m8) − 10d < 0. 
This contradicts the effectivity of the divisor D because 2(m1 + . . .  + m6) + m7 + 
3m8 − 10d ≤ 2(m1 + . . .  + m8) − 10d < 0; therefore a family of curves of degree 
10 with six double points, one simple point, and one triple point meets D negatively, 
and so is part of the base locus also. Corollary 5.3 implies that these curves are in the 
Weyl orbit of a line through a point, and therefore again cover the projective space, 
a contradiction. The remaining case can be handled by the same argument. |

Remark 8.4 In fact, the linear equations of pencils of curves in the base locus of 
the linear system of an effective divisor D, that in this case are equivalent to two 
Weyl planes that meet in the base locus of |D|, give the  faces of the cone of effective 
divisors. We will prove this theorem in the case of a Mori Dream Space in arbitrary 
dimension in [ 11].
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Remark 8.5 In [ 11], we prove that a Weyl curve and a Weyl divisor that meet can 
not be simultaneously in the base locus of the linear system of an effective divisor 
D. 

For any effective divisor D ∈ Pic(X4 
8), define ~D ∈ Pic(^X4 

8) to be the proper 
transform of D after blowing up all the Weyl lines and Weyl planes in the base locus 
of |D| to obtain ^X4 

8 . Corollary 8.3 proves that the space
^X4 

8 is smooth. 
We remark first that the Weyl line C has normal bundle ⊕O(−1)3. If  D · C < 0 

then the Weyl line C is in the base locus of the linear system |D|. Let  D(1) denote the 
proper transform of D under the blowup Y of all fixed Weyl lines in X4 

s . For each 
Weyl line C , define kC = −D · C . 

Proposition 8.6 If D be an effective divisor on X4 
8 , then 

h1 (X4 
s , OX4 

s 
(D)) =

E

C

(

2 + kC 
4

)

+ h1 (Y, OY (D(1)) − h2 (Y, OY (D(1)). 

A general form of Proposition 8.6 for (−1)-curves in arbitrary dimension will be 
given in [ 11]. We conclude that if kC ≥ 2 then h1(X4 

s , OX4 
s 
(D)) ≥ 1 + h1(Y, OY 

(D(1)) − h2(Y, OY (D(1)). 

Conjecture 8.7 Let D be an effective divisor on X4 
s , with H

1(X4 
s , OX4 

s 
(D)) = 0. 

Then D · C ≥ −1 for any Weyl line C . 

Remark 8.8 For arbitrary number of points s, the converse of Conjecture (8.7) is  
not true. Indeed, take D := 4H − 2

E14 
i=1 Ei ∈ Pic(X4 

14). We can see that D · C ≥ 0 
for any Weyl line C ; however, the Alexander Hirschowitz Theorem implies that 

h1 (X4 
s , OX4 

s 
(D)) = 1. 

For every r -subset I (r) of the indices {1, . . . ,  8}, let  L I (r ) be the linear span of 
the corresponding points. Let kw(L I (r )) be the multiplicity of containment of the Weyl 
cycle w(L I (r)) in the base locus of D, for a Weyl group element w. In [  5], the Weyl 
expected dimension for an effective divisor D was introduced as 

wdim(D) := χ(D) + 
3

E

r=1

E

I (r)∈{1,...,8}

E

w∈W 

(−1)r+1

(

4 + kw(L I (r)) − r − 1 
4

)

. 

Moreover, in [ 5] it was conjectured that for every effective divisor D on ^X4 
8 , the  

dimension of space of global sections of D equals the Weyl expected dimension. 

Conjecture 8.9 Let D be an effective divisor on ^X4 
8 . 

1. If D · C ≥ −1 for all Weyl curves C then
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H 1 (X4 
s , OX4 

s 
(D)) = 0. 

2. h0(D) = wdim(D) + E3 
r=1(−1)r+1hr (~D). 

3. For every r ≥ 1, hr (~D) = 0. 
4. Moreover, ~D is globally generated on ^X4 

8 . 

We remark that Conjecture 8.9 part (2) implies wdim(D) = χ(~D), while part (3) 
implies that conjecture of [ 5] regarding dimension h0(D) is true. 

Remark 8.10 We remark that Conjecture 8.9 holds for effective divisors on Xn 
n+2 

[ 3, 8, 9]; therefore it holds for X4 
6 . Notice that

^X4 
9 is not a Mori Dream Space and 

in fact, there are infinitely many Weyl lines. The authors believe that Conjecture 8.9 
also holds for ^X4 

9 with a similar construction for the Weyl planes as the one presented 
here. 

Remark 8.11 Conjecture 8.9 fails in ^X4 
10, because for arbitrary number of points, in 

non Mori-dream spaces Weyl cycles are not the only obstructions. Indeed, consider 
the divisor 

D := 4H − 4E1 − 2 
10

E

i=2 

Ei . 

We remark that D contains in the base locus of its linear system just double lines 
kL1i = 2; therefore its proper transform under the blowup of all its Weyl base locus 
(i.e. only lines) is

^D := 4H − 4E1 − 2 
10

E

i=2 

Ei − 2 
10

E

i=2 

E1i 

Moreover, since kL1i = 2 we have 

χ(D) =
(

4 + 4 
4

)

−
(

4 + 4 − 1 
4

)

− 9
(

4 + 2 − 1 
4

)

= 70 − 35 − 45 = −10 

wdim(D) = χ(^D) = χ(D) + 9
(

2 + 2 
4

)

= −1 

However, this divisor is effective, and, in fact, the Alexander–Hirschowitz theorem 
implies that it is unique in its linear system. We conclude that h0(D) = 1 /= 0 = 
wdim(D), therefore h1(^D) = 1. 
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