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Abstract This article is motivated by the authors’ interest in the geometry of the
Mori dream space P* blown up in 8 general points. In this article, we develop the nec-
essary technique for determining Weyl orbits of linear cycles for the four-dimensional
case, by explicit computations in the Chow ring of the resolution of the standard
Cremona transformation. In particular, we close this paper with applications to the
question of the dimension of the space of global sections of effective divisors having
at most 8 base points.

1 Introduction

Let X7 be the projective space " blown up at s general points. Motivated by the
study of the dimensionality problem for effective divisors on X!, we analyze the
standard Cremona action on Xg and give several applications. We first establish
the terminology we use throughout the paper. We call a Weyl line/Cremona line
(Weyl hyperplane, respectively) to be the orbit under the Weyl group action of a line
passing through two of the s points (hyperplane passing through n of the points). In
dimension two, the Weyl lines are also known in the literature as (—1) curves; via a
theorem of Nagata [15, Theorem 2a] they can be described via numerical properties
as irreducible classes with self-intersection —1 and anticanonical degree 1. In [10],
the authors noticed that Nagata’s work can be generalized, and similar numerical
properties via the Dolgachev—Mukai bilinear form are equivalent to Weyl divisors.
In dimension three, the Weyl group action on curves was analyzed by Laface and
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Ugaglia in [13]. Finally, in arbitrary dimension, the Weyl group action on curves in
X{ and their connection to the (—1)-curves introduced by Kontsevich is analyzed
by the two authors in a forthcoming paper [11].

In the planar case, the Gimigliano-Harbourne—Hirschowitz conjecture, still open,
predicts that the dimension of the space of global sections of an effective divisor
depends on the Euler characteristic and the multiplicity of containment of Weyl lines
in the base locus of the divisor. In P, the conjecture of Laface—Ugaglia [13] predicts
that this dimension depends on the multiplicity of containment of Weyl lines, Weyl
hyperplanes, and Weyl orbit of the unique quadric in X? passing through nine general
points.

In general, for a small number of points, X ,, it was proved that this dimen-
sion depends on the Euler characteristic and the multiplicity of containment of
linear cycles spanned by the fixed points in the base locus of the divisor D as in
[3, Theorem 2.3]. Moreover, the birational geometry of the space X 3 studied
in several publications (e.g., [1, 2, 4]), namely the effective and movable cone of
divisors, their Mori chamber decompositions together with the dimension of space
of global sections is determined by secant varieties to the rational normal curve of
degree n passing through n 4 3 general points together with their joins. In general,
the case X, , seems to be mysterious.

We dedicate this paper to study X§, which is aMori Dream Space, whose birational
geometry is not totally explained in the literature. In this paper, together with [5] we
define and classify the varieties that determine combinatorial data describing the
geometry of Xj.

The two spaces X, g and X4 3 are related by Gale duality as described in [14].
The precise relation between X, g and X4 g was established in the following theorem
of Mukai (semistability refers to semistability in the sense of Gieseker—Maruyama):
X4.g is isomorphic to the moduli space of rank 2 torsion free sheaves F on X; g
for which ¢\ (F) = —Kg and c;(F) = 2. Via Mukai’s correspondence, Casagrande
et al. describe in [7] the five types of surfaces in X4 g playing a special role in the
Mori program. In this paper, we rediscover these surfaces as Weyl planes, defined
below analogously to Weyl lines and hyperplanes.

The Weyl group of Xg is generated by the standard Cremona transformations
together with permutations of the base points. In order to define and construct Weyl
planes, we introduce Yg1 to denote the blowup of X g along all lines joining any two
points and the eight rational normal curves of degree 4 passing through 7 points.
(These curves are all disjoint in X§.)

Definition 1.1 A Weyl plane is the Weyl orbit of the proper transform of a plane
through three fixed points under the blowup of the three lines joining any two points
in Yé‘ .

It is important to remark that Weyl planes live on the space Yy . We emphasize that this
orbit is different (in the Chow ring) than the Weyl orbit of planes through three points.
Moreover, in [5], the authors introduce and classify the notions of Weyl curves and
Weyl surfacesin X g as the intersection of two distinct Weyl divisors that are orthogonal
with respect to the Dolgachev—Mukai bilinear pairing. Since the classification of Weyl
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surfaces[5]in X g is the same with the classification of Proposition 7.3, we can deduce
that the two definitions of Weyl planes (1.1) and Weyl surfaces [5] are equivalent in
X4. By definition, Weyl lines coincide with Weyl curves in the projective plane X2,
but the explicit relation between the two definitions, in general, will be studied in a
different paper.

In this paper, Corollaries 5.3 and 7.2 enable us to determine the Weyl action on
(a) 1-cycles (i.e., curves) on the Chow ring of blowup of X;‘;

(b) 2-cycles (i.e., surfaces) on the Chow ring of Yg‘ .

As a consequence, Proposition 7.3 determines the complete list of Wey! planes
and Weyl divisors on Xg, and it also gives the formulas for all Weyl lines on X?, (for
arbitrary number of fixed points s). In particular, for X2, the only Weyl lines are lines
through two fixed points and the rational normal curve of degree 4 passing through
7 of the 8 points. In fact, in a forthcoming paper [11], we prove that this statement
holds for all Mori Dream Spaces. Let Q; denote Weyl line of degree 4 (the rational
normal quartic) skipping only the ith point. In particular, we prove that on X§, there
are 5 types of Weyl planes (modulo permutation of points), matching computations
in [7, Theorem 8.7] and [5]:

e The 56 planes S (i jk) through three of the eight points (p;, p;, px); it has multi-
plicity one along the three lines L;;, L, and L .

e The 56 cubic surfaces S3(i, j) triple at p;, passing through all other points except
pj; it has multiplicity one along the lines L;; for k # i, j, and along Q;

e The 56 sextic surfaces Sg (i jk) passing through p;, p;, and p; and triple at the other
five points; it has multiplicity one along all lines joining two of the five points,
and along Q;, Q;, and Qi

o The 28 surfaces S (i) of degree 10 having two points p; and p; of multiplicity 6
and triple at the other six points; it has multiplicity 3 along the line L;;, multiplicity
one along all lines L;; and L j; for k # i, j, and multiplicity one along the curves
Qi fork #1i,j

e The 8 surfaces Si5(i) of degree 15 having one point p; with multiplicity 3 and
having multiplicity 6 at the other seven points; it has multiplicity one along all
lines L j; for j, k # i, multiplicity one along each Q; for j # i, and multiplicity
3 along Q;.

In addition to the multiplicities at the points p;, the reader will note that for
all of these surfaces we also compute the multiplicities along the lines L;; and
along the rational normal quartics (through 7 of the 8 points). This is important
for computations in the Chow ring: unless one takes into account that these surfaces
have multiplicity along these curves, one does not fully capture the intersection
behavior of these surfaces after one blows up the points (and in general, the curves
and surfaces that appear as base loci of linear systems of divisors). It is also critical
for computations of the dimensions of the linear systems: it is one of the principles
of this article that the multiplicities along these curves must be taken into account in
determining the difference between the virtual dimension and the actual dimension
of linear systems. Indeed, for certain purposes, it is useful to consider not only the
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blowup X ‘8‘ of P* at the 8 general points but also then the further blowup Yg‘ of all of
the proper transforms of the lines L;; and the rational normal quartics Qy; these are
easily seen to be disjoint in X§ and therefore Yy is smooth.

Remark 1.2 Inpaper [5], the authors use a different notation for the Chow ring basis.
For example, {£, ¢;, e;;} and {(h!, eil} of [5] represent here {S, S;, G;;} and {/, [;},
respectively. In [5], surfaces denoted above by S| (ijk), S3(i, j), Se(ijk), Si0(ij),
and S)5(i) are denoted by H;jx, Sfj, Sfjk, Siljo, and S/, respectively.

We predict that the birational geometry of X‘S1 is determined not only by Weyl
hyperplanes but also Weyl lines and Weyl planes classified in Proposition 7.3. Finally,
in Sect. 8, we present applications to the vanishing conjecture and dimensionality
problem.

2 The Standard Cremona Transformation and Its
Resolution

The standard Cremona transformation of P" can be elegantly factored into a series
of blowups at the proper transforms of the coordinate linear spaces, followed by a
series of symmetric blowdowns.

Fix coordinates [xg : x1 : - - - : x,,] inP", and consider the standard Cremona invo-
lution

[x0:x1:--- 1 x,] — [xof1 :xfl:u-:xn_]]
which simply inverts all the coordinates. This is well defined on the torus where all
coordinates are non-zero, and has a fundamental locus the union of the coordinate
hyperplanes. The transformation is relatively straightforward to resolve in a sequence
of blowups and blowdowns, as follows.

Let po, p1, ..., pn be the coordinate points of P". For anindex set I C {0, 1, ...,
n}, denoted by L;, the linear span of the coordinate points indexed by I: L; =
span{p; | i € I}. We have thatdim L; = |I| — 1.

We set Xj =P, and define 7; : X} — X’}_, to be the blowup of the proper
transforms of all L; with |I| = j. Hence, 7 is the blowup of all the coordinate
points in P?; m, is the blowup of the (proper transforms of the) coordinate lines
L;j, etc. Note that the sequence of blowups stops with 7,_, the blowup of the
codimension two coordinate linear spaces, creating the space X! _,. We will denote
by E; the exceptional divisor created when L, is blown up. E; is created on X[,
and we will use the notation E; for the proper transform on subsequent blowups
too. If |[I| = n, then L; is a coordinate hyperplane in P"; we will denote its proper
transform in XJ_, by E; as well.

We note that, at this point , on X?'_,, the nature and configuration of the divisors
E; are completely symmetric, with respect to taking complements; in other words,

we have an isomorphism of X, that switches the roles of E; and E; when [ and J
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are complementary in {0, 1, ..., n}. Hence, we can reverse the sequence of blowups
with the complementary divisors, and blow down to P “the other way”: first blow
down the E; with |I| = 2, then the E; with |I| = 3, etc., finishing by blowing down
the proper transforms of the coordinate hyperplanes E|; with |/| = n. This is the
resolution of the birational involution.

We note that:

e On X} _; when the L; are blown up, they are all disjoint.

e Each linear space L; experiences a sequence of blowups (by the earlier blowups);
on X‘”IH, the proper transform of each L; is isomorphic to Xm:;

e By induction, this proper transform has both the hyperplane divisor class H (the
pullback of the hyperplane divisor class on X}y ~' = P!’|~") and its Cremona invo-
lution image H'.

e On X:ﬁ::;, the normal bundle of the proper transform of L; is isomorphic to

O(_H’)EBVI*”HI )

e Since the normal bundle of the proper transform of L; splits as a direct product
of identical line bundles, when E; is created on X"’”, it is isomorphic to a product
[7]-1 —|1
Xm—z x Pl

e E; experiences further blowups on its way to X"

n_1»> and there it is isomorphic to
Xm:; x XZ:I?I_I, where it has a normal bundle isomorphic to the tensor product

of the anti-Cremona-hyperplane bundles coming from the two factors.

This construction generalizes the familiar construction of the quadratic Cremona
transformation of P, which is obtained by blowing up the three coordinate points
Ly, Ly, and L, (obtaining X%) and then blowing down the three coordinate lines Lo,
Loz, and L12.

3 The Case of Three Space

For three space, the sequence of iterated blowups, in this case, involves two sets of
blowups:
X35 X5 X =P

where 7, blows up the four coordinate points p; = L; and 7, blows up the six proper
transforms of the coordinate lines L;;. The exceptional divisors E; start out as P2’g
in X3, and then are further blown up to become isomorphic to X3’s in X3. The
coordinate lines start in P> having normal bundle of bidegree (1, 1); after blowing up
the two coordinate points on each, the proper transforms have normal bundles with
bidegree (—1, —1) in X3. They are then blown up to E;; = P' x P! in X3. Finally
the coordinate hyperplanes L;;; are each blown up three times by 7, and then not
blown up further by 7, and so arrive at X% as surfaces isomorphic to X%
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The blowing down proceeds by blowing down the E;; via the other ruling, which
blows down each L;j; to a IP?; one then blows down each of these to points, finishing
the process.

If one is interested in intersection phenomena related to these coordinate sub-
spaces, the Chow ring is the appropriate tool; it is useful primarily for record-
ing two different kinds of phenomena. One is containment (with multiplicity) by
a given subvariety of one of the blowup centers. In P, for divisors, this is the
multiplicity of the divisor at one of the coordinate points, and the multiplicity of
containment along one of the coordinate lines. For curves, this is the multiplic-
ity of the curve at one of the coordinate points. For a divisor written in the form
D=dH - ,mE; — Zij n;; E;;, the coefficient d is the degree; m; is the multi-
plicity at the coordinate point L;; and m;; is the multiplicity along the line L;;.

The other phenomenon which the Chow ring coefficients can record is the higher-
dimensional contact that the given subvariety may have with one of the blowup
centers. (Higher-dimensional contact in the sense of higher than expected dimension.)
In P3, for surfaces, this is not relevant for the coordinate points and lines; higher-
dimensional contact is containment with multiplicity. This is also true for curves
with respect to the points: the only phenomenon is that of containment. However,
with curves, one can have additional contact with the lines, without containment.

The Chow ring of X3 is not difficult to compute; all the relevant tools are pre-
sented in [12], Chaps.9 and 13. The codimension zero classes are one-dimensional,
generated by [X%] itself; the codimension three classes are also one-dimensional,
generated by the class [ p] of a point. The codimension one classes are freely gener-
ated by the pullback H of the hyperplane class, and the exceptional divisors E; and
E,’ .

In codimension two, the group A%(X3) contains the following elements. The
pullback of the general line class in P* will be denoted by £. The general line class
inside the exceptional divisor E; will be denoted by ¢;. The exceptional divisor E;;
is isomorphic to P! x P!, and contributes a priori two curve classes: the class f; j of
the fiber of the blowup 75, and the class g;; which is the horizontal ruling of E;;.
These are not independent though in A%(X3); it is an exercise to check that

9ij = fij +t—ti — ¢

and that this is the only relation in AZ.

For a curve class C written as C = d€ — 3, m;{; — },; n;; fij, the coefficient
d is the degree, m; is the multiplicity of C at the coordinate point L;, and n;; is
the additional contact of C with the coordinate line L;; (over and above the contact
implied by the multiplicities at the two coordinate points on L;;).

We have the following, where we use typical d-notation: §; y = 1if I € J and 0
otherwise.



Cremona Orbits in P* and Applications 167
Proposition 3.1 (a) A basis for the Chow ring of X% is given by

A% [X3]

A': H,Ey, E1, Es, E3, Eo1, Eoy, Eo3, E1, Er3, E3

Az 2 4 Lo, 8y, £, 23, fors fors foss 12, f13, f23

A p

(b) Multiplication of these basis elements is given by

Al-A' H E; E;;
H 0 0 fij
Er 0 —£;0; SiiOk.ij
Ey  fu fubin (Z2f;j =€+ +£)0iju
A'“A*H E; E;;
¢ p 0 0
G 0 —psx O
Su 0 0 —pbiju

The Cremona involution extends to an involution ¢ on the Chow ring; we denote
the image of the involution using a superscript prime:

[X3] < [X3]

H(—)H/=3H—22[Ei—ZUEij

E, < E =Ljy=H—E —E;—Ey—Eij— Ey—Ejifori, jk#I
E;; <—>Elfj = Ey fork,l #1, j.

Co 0 =30-Y,¢

Z,«—)ZQ:ZK—Z#JJ

fii < fli=9u=futtl—b— Lt fork, [ #1i,j.

pP <D

We leave it to the reader to check that this is a ring automorphism, and is an
involution.

Proposition 3.2 (a) Let D=dH — ) ,m;E; — Zij ni;E;; be a general class in
A'(X3). Then the Cremona image D' of D under the involution is D' = d'H —
Y imiE; =3 .. nj Ei; where
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d’:D’~Z=D-E’=D~(3E—Z€i>:3d—2m,~;

mp=D£;=D-tj=D-|20=) ¢;|=2d-) m:
J# J#
n;sz’-ﬁsz- i/j=D-fk1+€—€k—€,:d—}-nkl—mk—ml
for k1 #1i,j

(b) LetC =dt -7, mit; — Zij n;j fi; be a general class in A*(X3). Then the Cre-
mzna image C' of C under the involution is C' = d't — 3, mil; — 3, ni, fij
where

d'=C-H=C-H =C-GH-2) E~Y Ej)=3d-2 m— ny;
i ij i ij
m;=C E=C-E/=C-(H-Y Ej— Y Ej)=d-Y mj— Y nj

J# Jok#i J#i ok
n;j:C/El/:CE{]:CEkl:nkl for k,l#l,]

(In the computations above, we abuse notation and give the multiplications as
integers instead of integer multiples of the point class p.)

If one is in the position of not needing to consider the contact phenomena for
curves, one can simplify the formulas as follows.

Corollary 3.3 The subspace of A*(X3) spanned by € and the ¢;, is invariant under
the Cremona involution. If C = df — Zi m;{; is a general classin AZ(X%) in this sub-
space, then the Cremona image C’ of C under the involution is C' =d'€ — ), m}{;
where

d=C-H=C-H=C-GH-2) E—» Ej)=3d-2) m;:
i ij i

mi=C E=C-E=C-(H-) E;j—Y Eyp)=d—Y mj
i ki J#

4 The Chow Ring for the Case of P*

The sequence of iterated blowups in this case involves three sets of blowups:

Vi Vi s
X; > X5 5 X5 X =P
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where 71 blows up the five-coordinate points p; = L; to divisors E;, m blows up
the ten proper transforms of the coordinate lines L;; to E;;, and 73 blows up the ten
proper transforms of the coordinate planes L;j to Ejji.

We denote by H the general hyperplane class in P* (and all its pullbacks); let
us denote by S = H? the class of the general 2-plane, and £ = H? the class of the
general line; the point class will be p as usual.

In this section, we’ll present the Chow ring A*(Xg‘), proceeding through the
sequence of three blowups. In the starting fourfold X = P*, the relevant subva-
rieties are simply the linear spaces L; for I C {0, 1,2, 3, 4}.

After blowing up the points via 7|, we have

The divisors E; = P3.

The proper transforms of the lines L;; = P!,

The proper transforms of the 2-planes L;;; = X%.
The proper transforms of the hyperplanes L;ji, = X?.

We now blow up with 7, the proper transforms of the ten lines L;;, to the excep-
tional divisors Ej;, to obtain X;‘; there, we have the following descriptions of the
relevant subvarieties:

The divisors E; = X3.

The exceptional divisors E;; = P! x P2
The 2-planes L;;; = X3.

The hyperplane threefolds L;jxe = X3.

Finally, we blow up the proper transforms of the ten surfaces L;jx, to the excep-
tional divisors Ejji, to obtain Xg‘; there, the relevant subvarieties are:

The divisors E; = X%

The divisors E;; = P! x X2,

The exceptional divisors E;jx = X% x P!,
The hyperplane threefolds L;jz, = X3.

The codimension one classes in A'(X%) are freely generated by the pullback H
of the hyperplane class in P* and the exceptional divisors E;, E;;, and E; jy; there are
no relations among these.

In the group A?(X%) of codimension two classes, we have the class S = H? of
the pullback of a general 2-plane in P*. The other classes that will generate A are
supported in the exceptional divisors.

In E;, which starts in X} as a P3, we have the general 2-plane; pulled back to X3
this gives a class S; for each i.

The divisor E;; starts in X3 as isomorphic to the product P! x P2, This contributes
to two surface classes: the fiber {point} x P? of the blowup, and the product P' x
{general line in P?}. Denote by F;; the pullback to X% of the former, the fiber class;
and by G;; the pullback to X3 of the latter.

Finally, the divisor E;j; is isomorphic to X7 x P!, and contributes five surface
classes. One is M;j; = X% x {point}, a cross section of the blowup map. The others
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come from products of curve classes in L;;x = X7 with the fiber P!. The curve classes
in L;j; are generated by the pullback (from P?) of the general line class ¢;j; and the
three exceptional curves e;jx i, €ijk,j, and e;jxx which are (in X‘z*) the intersection
of L;j, with the three divisors E;, E;, and E; respectively. These four classes give
classes Hjjx = £;jx x P! and Vijk,i» Vijk,j» and Vjji x where V;ji; comes from the
product of e;jx ; x P! and the same for the other two.

It is useful to introduce two new classes, for notational convenience. These are:

Py =Gy —F; and Ak =2Hijk — Vijki — Vijk.j — Vijkxs 4.1

we note that A; j is the pullback of the Cremona image of the line class on the 2-plane
L;jx. This will allow us to replace G,; by P;; among the generators for A”.

There is a single relation among these codimension two classes beyond the defi-
nitional ones of (4.1). It is that

M,'jk=S—S,'—Sj—Sk—Pij—Pik—ij+Aijk. “4.2)

Finally, we have the classes of the curves, the codimension three classes in A3 (Xg).
We again have the pullback £ of the general line class in P4, and the classes £; of the
general lines in the E;.

The curve classes supported on E;; (which when it is created on X3 is isomorphic
to P! x P?) are generated by the class ¢;; = {point} x {general line inP?} and h;; =
P! x {point}.

The curve classes coming from E; j; are the ‘horizontal’ ones living in L; j;, crossed
with a point; these we can denote again by £;; and e;jx ;, €;jk, ;j, and e;jx x as before.
The final one is a general fiber of the blowup f;jx.

There are relations among these curve classes also; these are:

hij =4tij + €=t —L;; Cijp =2fijk +€—Lij — lik — L (4.3)
eijki = fijk +€i — tij — Lis  eiji,j = fije 4 — Lij — Lk eijkk = fijk + e — Lik — Ljk.
4.4

(Hence, we can dispense with these to generate A* (Xg).)

It is the case that, for a surface class 7', one measures multiplicity along the line
L;; by the intersection with F;;, and one measures higher-dimensional contact with
L;; by the intersection with G;;. Hence, if the coefficients of T include the terms
—mP;; — nF;;, then m is the multiplicity of T along the line and 7 is the additional
contact of T with the line, so that one can read off these geometric phenomena from
the coefficients directly. (P and F are the dual basis to F and G in A%.)

We can similarly observe that a general surface class 7' should meet the 2-plane
L;ji in a finite number of points. The coefficients of H;jx and Vijx i, Vij,j, and Vijy x
(which generate the Picard group of the blown-up L, ;) record the higher-dimensional
contact of a surface with L;;;, namely, contact in a curve class rather than in a
finite number of points. Hence, if the coefficients of T" include the terms —aH;j; +
Bijk.i Vijk.i + Bijk.j Vijk,j + Bijk k Viji.x then the higher-dimensional contact of 7' with
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Lijr (away from the coordinate lines) is a curve in the class al;jr — Bijk i€iji,i —
Bijk.j€ijk.j — Bijkk€ijk.k-

Having described the generators for the Chow ring A*(X$), we can now present
the ring structure. The computations are relatively straightforward, using, for exam-
ple, the formulas for the Chow rings of blowups presented in [12], Chap. 13. (The
computation is iterative, first computing A* (X‘l‘), then using that to compute A* (X‘z‘),
and finally A*(X}),)

Proposition 4.5 The Chow ring of Xg‘ can be described as follows.
(a) A basis for the Chow ring A(Xg‘) is given by the classes:

A° X31=1

Al . H, E,‘,E,“/,Eijk
A%: S, S, Py, Fij, Hiji, Vijii
A3Z £7£i7£l‘jvﬁjk

At p

(b) Multiplication of basis elements is given in the following tables.

Al Al H E; Ejj Eijk
H S 0 Fij Hijk
En 0 _S[(Si,m Ej61}1,[j V[jk,mém,ijk
Enn Finn andi,mn _(Pij + 2Fij)6ij,mn (Hijk - Vijk,m - ijk,n)amn,ijk
Emnr Hmnr anr,ilsi,mnr (Hmnr - anr,i - anr,j)lsij,mnr 7(Mijk + Aijk)(sijk,mnr
1 2 . L. ..
Al A2 H E; E;j Eijk
s 0 0 fijk
Sm 0 —€idim 0 fijkOm.ijk
Pun Lmn Lmnbimn  (—Lij — L+ L€; +£;)6ij mn —fijkOmn,ijk
Fun 0 0 —£i0ij.mn fijkOmn,ijk
Gmn  Lmn emnfsi,mn (_2€ij -+ + ej)(sij,mn 0
Hmnr fijk 0 fmnr(sz‘j,mnr (_4fijk -+ [ij + Lk + Kjk)(sijk,mnr
anr‘,m 0 _fmnr(;i,m fmnr(;m,ij (_zfmnr —&m + Lmn + Zmr‘)(sijk,mnr
A'-A*H E; E;; Eijk
¢ p 0 0 0
by 0 —pdim 0 0
Zmn 0 0 _p(sij,mn 0
fmnr 0 0 0 _péijk,mnr
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A2 . A2 S S,' Pl'j Fij Gij Hijk Vijk,i
S p 0 0 0 0 0 0
Sn 0 —pdim 0 0 0 0 0
Pmn 0 0 p(sij,mn _paij,mn 0 O 0
an 0 0 _p(sij,mn 0 _p(sij,mn 0
Gmn 0 0 0 _p(sij,mn _péij,mn 0 0
Hmnr 0 0 0 0 0 _p(sijk,mnr 0
anr m () 0 0 O 0 O p(sijk,mnr(si,m

5 The Cremona Involution on P*

Consider now the Cremona involution

1 1 1 1 1
[Xo:x1:x:ix3:x4] —w[—:i—:—:— 1 —
Xo X1 X2 X3 X4

= [X1.XQX3X4 L XX2X3X4 ¢ XX X3X4 © XX X2X4 © XQ)C]XQ.X3]

which lifts to a biregular automorphism of X3. The induced action ¢ on the Chow
ring A(X3) is given as follows.

Proposition 5.1

G(H)=4H -3y E; —2Y Ej— Y Eij
i ij

ijk
@(El) = [ijmn;&i] =H— Z En — Z Emn — Z Emnr
m#i mn#i mnr#i

O(Eij) = Emnri.j
O(Eijk) = Emnsi,jk

¢(S):6S—3Z_S‘i _Zpij
i ij
&(Sm) =38 —22 Si — Z Pi_/'

im ijm
O(Fmn) = Mijkgmn =S = Si = Sj = Sk + Fij + Fix + Fji — Gij — Gik — G ji + Aiji
=8—S8 —8; =S — Pij — Pik — Pjx + 2Hijk — Vijk.i — Vijr.j — Vijkok
O(Gmn) = Aijktmn = 2Hijie — Vijei — Vijk.j — Vijkk

S(Pup) = =S + Si + Sj + Sk + Pij + Pix + Pji(ijk # mn)

O(Hppnr) =2Gij — (Hijm — Vijmi — Vijm,j) — (Hiju = Vijui — Vijn,j) — (Hijr = Vijri — Vijr.j)
=2Pij + 2F;j — (Hijm — Vijm,i — Vijm,j) — (Hijn — Vijni = Vijn,j) — (Hijr = Vijri = Vijr,j)
for i,j#m,n,r

& Vmnr.m) = Gij — (Hijn — Vijni — Vijn.j) — (Hijr = Vijri — Vijr.j)
= Pij + Fij — (Hijn — Vijni = Vijn,j) — (Hijr = Vijri = Vijr.j)
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for i,j#m,n,r
) =4—Y b
i
Glw) =3~ L
i#m
OUmp) =20 —L; —Lj — b + fijk fori, j. k #m,n
O(finnr) =hij =L —L; —L; + & for i, j #m,n,r

Proposition 5.2 (a) Let D =dH — Zi m;E; — Zij m;jEij — Zijk m,jkE[jk be a
general classin A' (Xg). Then the Cremona image ¢(D) of D under the involution

A
¢(D) = d/H — Zm;E, — Zm;jE[j — Zm;jkE,jk
i ij

ijk
where
d=¢(D)- =D $)=D-@4 =Y ;) =4d—Y m;

mp=¢(D)-4i=D-¢pl)=D-B3t—Y {;)=3d-Y m,

r#i r#i
miy = (D) Lij =D - G(lij) =D 2L~y b+ frszif) =2d = ) my+miysizij
r#ij r#ij
miye = (D) - fije = D-d(fijr) = D+ (L= D by +brszij) =d = D my +myszij
r#ijk r#ijk

(b) Let T =dS—3 mS;— Zij mi; Pij — Zij nijFij — Zijk mijiHiji + Zijk
(l’l,‘jk!i Vijk,i + 1k, Vijk,j + Mijk ok Vijk,k) be a general class in Az(Xg) Then the
Cremona image ¢(T') of T under the involution is

1) = 5= Tomis - Sy, - i
i i ij
- Z m e Hije + Z(”;_;’k,ivijk,i + i Vijk.g + Wi Vi)

ijk ijk

where
d’=<z‘>(T)~S=T‘¢(S)=T'(65*3251' ’ZP"J')
i ij
=6d — 3Zm,- + Z(mi_,‘ - njj)
i ij

mi=¢(T)- S =T ¢(S)=T-B3S—=2Y S~ Py)
r#i rs#i
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=3d =2 me+ Y (e —npy)

r#i rs#i
mi; = ¢(T)- Fij =T - p(Fj)
=T-(S—8 =S8 —8 — Prs — Prt — Pt + 2Hrst — Vistr = Vestys — Vistt)
=d—m, —mg —my + Mg + My + Mg — Npg — Npp — Ngp + 2Mpgp — Npgrr — Npsts — Npstt
n,/-j =¢(T)-Gij =T -9(Gij) =T - (Arstzij) =T - QHyst — Vestr — Vists — Vistr)
=2my5 — Myst,r — Nyst,s — Nystt
miy =&(T) - Hijxe =T - p(Hijx)
=T Q2Gys — (Hrsi = Vesiyp — Visiys) — (Hrsj — Visjor — Visjs) — (Hrsk — Viskr — Visk,s)
for rs £ijk
=2npy — (Mrsi = Nrsiyr — Nrsins) = (Mrgj — Nrgjor — Nrgjis) — Mgk = Nrskr — Nrsk,s
nii = O - Vijri =T - 6(Vijk.i)
=T -(Grs — (Hrsj = Visjr — Visjis) — (Hrsk — Viskr — Visk,s))

=Nyps — (mrsj — Nysjor — nri.s) — (mypgk — Nysk,r — nrsk,s)

(c) Let C=dt—7) ,ml; — Zij mijli; — Zijk mijk fijk be a general class in
A3(X§). Then the Cremona image ¢(C) of C under the involution is

QC)=d't =Y mils = miti; — > my, fijk
i ij

ijk
where

d=¢C)-H=C-¢(H)=C-(4H -3 E; =2 E;j—> Eiy)

ij ijk
=4d —3Zm[ —szlj - Zmijk;
i ij

ijk

m;=¢(C)-E;=C-¢(E)=C-(H=Y E, —Y E;— Y E)

r#&i rs#i rst#i
=d — Zm, — Zmrs - Z Myses

r#i rs#i rst#i
mi; = ¢(C) - Eij = C - ¢(Eij) = C - Ergizij = Mysiij
mi = ¢(C) - Ejjp = C - $(Ejji) = C - Ersgijk = Mysij

We note that, for surface classes in A2 (Xg‘), higher-dimensional contact is observed
by having nonzero coefficients in the F', H, and V basis elements. For curve classes
in A3, this higher-dimensional contact corresponds to nonzero coefficients in the £; j
and the f;j; basis elements (corresponding to a curve meeting a coordinate line or a
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coordinate plane). The formulas above show that a similar phenomenon happens as
in the IP? case: if these are all zero, that is preserved under the involution.

Corollary 5.3 (a) The subspace of Az(Xé) spanned by S, the S;, and the P;; is

invariant under the Cremona involution ¢. If T = dS — ), m;S; — Zij m;; Pij

is an element in this subspace, then 9(T) = d'S — 3, m;S; — ;. m;; P;j where
d, = 6d —321’”1 + Zmij
i ij
mp=3d =2 m,+ Y my

r#i rs#i

i . .
mij=d—m,—ms—m,+mrs+m”+mx, for r,s,t#i,j

(b) The subspace of A3 (Xg) spanned by £, £; is invariant under the Cremona invo-
lution ¢. If C =d€ — ", m;{; is an element in this subspace, then ¢(C) =
d't =), mit; where

d/=4d—3Zmi

L
=d=)
m;=d— ) m,

r#i

For divisors, the natural subspace invariant under the involution is the one gener-
ated by the E;;’s and Ejj;’s. If we are only interested in the multiplicity conditions at
the points, we can therefore mod out by this subspace of A', and obtain the following.
Corollary 5.4 The subspace of A (Xg‘) spanned by the E;;’s and E;j;’s is invariant
under the Cremona involution ¢. Denote by A' the quotient of A' by this subspace;

the involution ¢ descends to an involution of Al IfD=dH — > . m;E; represents
a coset in this subspace, then $(D) = d'H — Y, m} E; where

d :4d—Zm,- and m; = 3d—Zm,.
i i

6 Six and Seven Points in P

The formulas for how degrees and multiplicities change for curves, surfaces, and
divisors in P* under the standard Cremona transformation can be used to analyze



176 O. Dumitrescu and R. Miranda

compositions of such Cremona transformations based at more than five points. We
will present the orbits of the linear subspaces spanned by subsets of the points in this
section.

If we first consider six general points in P4, it is easy to see using the formulas
above that any line through 2 of the six points, 2-plane through 3 of them, or a
hyperplane through 4, is either contracted by the Cremona transformation or is sent
to itself.

The case of seven general points in P* is one step more interesting. In this case,
for a line through two of the seven points, it is either contracted by the Cremona
transformation based at five of the points (if the two points are a subset of the five), is
sent to itself (if one of the two is a subset of the five) or is sent to the rational normal
quartic (RNQ) through all seven points (if neither of the two is among the five).

The iteration of Cremona now leads us to consider the transformation of the RNQ);
applying Cremona at any five yields back the line joining the other two (since the
Cremona is an involution).

Hence the Cremona orbit of the line through two points is the collection of all of
the 21 lines, plus the rational normal quartic through all seven points.

Now consider the 2-plane spanned by three of the 7 points. Performing a Cremona
transformation at 5 of the 7 points, we see that if all three points are among the 5,
the plane is contracted as part of the fundamental locus. If two of the three points are
among the five, the plane is sent to itself. If only one of the three points is among the
five, then the Cremona image is a surface of degree three, with a point of multiplicity
3 at that one point, and multiplicity 1 at the other six points. It contains the line
joining that one point to the other six, with a multiplicity of one each, and no other
lines joining the points. It also contains the RNQ with multiplicity one. This cubic
surface is a cone over a twisted cubic in P3.

Iterating the Cremona by applying it to this cone, we see that if the five points
contain the vertex, it will be transformed back into the 2-plane. If it does not, it is
preserved.

Hence, the Cremona orbit of the 2-plane through 3 points in P* consists of the 35
planes and the 7 cubic cones.

For the hyperplanes through 4 of the seven points, there are four cases to consider.
We choose five of the seven to perform the Cremona transformation at. If all 4 of the
hyperplane points are among the five, then the hyperplane is contracted to a point. If
3 of the hyperplane points are among the five, then the hyperplane is transformed to
another hyperplane. If 2 of the hyperplane points are among the five, it is transformed
into a quadric double cone: a cone over a smooth conic with vertex a line (the line
corresponding to the two points). To be explicit, take the line joining the two points,
and a complementary plane; projection from the line to the plane sends the other five
points to five general points in the plane, and there is a unique conic in that plane
through those five points. The threefold is obtained as the cone over the conic with
vertex the line. The surfaces contain all the lines joining the two points with the other
five, as well as containing the RNQ too.

If we apply a second Cremona transformation to this quadric, we either return to
the hyperplane, preserve the quadric, or (if we use as the base points the five points
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not on the vertex line) we obtain a cubic surface double at all seven points. It is also
double all along the RNQ); this cubic surface is the secant variety to the RNQ, in fact.

Further applications of Cremona to this cubic surface lower the degree and return
us to the quadric double cone; we see then that the orbit of the hyperplane consists of
the set of 35 hyperplanes, the 21 quadric double cones, and the cubic secant variety
to the RNQ.

It is interesting that the two special linear systems with irreducible members in
P* imposing only double points appear here: the quadrics double at two points and
the cubics double at 7.

7 Eight Points in P4

We now consider the case of Cremona transformations based at 8 general points
Pi, ..., pg in P* Denote by L;; the line joining p; and p; as usual. Denote by Q;
the rational normal quartic curve passing through all eight points except p; (i.e.,
passing through the other 7).

It is easy to see, with a parallel computation as that done above for seven points,
that the orbit of a line through two points, say L, consists of all 28 such lines L;;,
and all 8 of the RNQ’s Q.

‘We can now take up the case of surfaces, which is more involved. We will record
the data for a surface of degree d, having multiplicity m; at p;, multiplicity »n; along
Q;, and multiplicity m;; along L;;, by the triangular array of numbers:

dm; my mz my ms meg mj mg
ny np n3 ng nNs neg Ny ng
Mg M3 Mg M5 My M7 Mg
Ma3 Mo4 Mas5 Moe M7 Mo
M34 M35 M36 M37 M38 (7.1)
Mys NMae My7 N4
mse Mmsy Msg
me7 M6y
msg

Suppose we perform the five-point Cremona on the first five points 1, 2, 3, 4, 5.
Then the degree d, the multiplicities m; for i <5, and the m;; for i, j <5, are
transformed as indicated in Corollary 5.3(a).

For multiplicity m ;withi < 5and j > 6, we note that this line L;; is left invariant
under the Cremona, so that m; i =mjj for these indices.

For multiplicities m;; with both i, j > 6, we note that this L;; is the image of Oy
where {i, j, k} = {6, 7, 8}; k is the third index. Hence mgj =ny fork =1{6,7,8} —
{i, j}-

For the n) with k > 6, conversely we have n; = m;; where i, j = {6, 7, 8} — {k}.
For n}< withk < 5, since such a Qy is fixed, we have nﬁc = ny. This gives the following:
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Corollary 7.2 The surface with degree and multiplicities indicated by (7.1) is trans-
formed, under the Cremona involution based at the first five points py, pa, P3, Pa, Ds,
into the surface with degree and multiplicities recorded by:

d' my m) mj mj ms me my mg
ny np n3 ng nNs mig Neg Me7
m'y myz My, mys mig miz mig

M3 My Mis Mg M7 Mog

mby mis M3g M37 M3g

My Mag My7 N4g

Mse Ms7 Msg

ng ny

ne

where

5
d'=6d—=3% mi+ Y mj
i=1

I<i<j<5
mp=3d-2 % my+ Y. my for i <5
r<5;r#i r,s<5ir,s#i

m;j =d—my —mg —my +mps +mpy +mg for i,j <5 and r,s,t ={1,2,3,4,5} —{i, j}

The Proposition below presents the orbit of Lj,3, a 2-plane through three of the
points, in (b). For notational consistency with the other surfaces in this orbit, we will
also denote L;j; by S;(ijk). We have included in (a) the remarks above about the
orbit of the line L,. In (c), we present the orbit of a hyperplane; the reader can verify
the computations as an exercise.

Proposition 7.3 Fix 8 general points in P*, and consider Cremona transformations
based at 5 of the 8, in series.

(a) The orbit of a line through two of the 8 points consists of the 28 lines L;;
(1 <i < j <38) through two (p; and p;) of the 8 points, and the 8 rational
normal quartics Q (1 <k < 8 through 7 of the 8 points (through all seven

except py).
(b) The orbit of a plane through three of the 8 points consists of:

(bl) the 56 planes L;jx = S1(1jk) through three of the 8 points (namely p;, p;,
and py); the plane Liy; = S1(123) is recorded as
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(b2)

(b3)

(b4)

111100000
00000000
1100000
100000
00000
0000

000

00

0

the 56 surfaces S5 (i, j) of degree 3 with one point p; of multiplicity 3, 6 points
of multiplicity one, and one point p; of multiplicity 0. It contains the lines
Jjoining the triple point p; to all other multiplicity one points py (k # j)and
no other lines, it contains the rational normal quartic Q ; through the triple
point and the six multiplicity one points. For example, S3(8, 1) is recorded

as:
301111113

10000000
0000000
000001
00001
0001

001

01

1

the 56 sextic surfaces S¢(ijk) of degree 6 with three points (p;, pj, px) of
multiplicity one, and the other 5 points of multiplicity 3. It contains the lines
Jjoining any two of the multiplicity 3 points and no other lines; It contains
the rational normal quartics through the five multiplicity 3 points and any
two of the three multiplicity one points. For example, S¢(678) is recorded

as:
633333111

00000111
1111000
111000
11000
1000

000

00

0

the 28 surfaces S10(ij) of degree 10 with two points ( p; and p ;) of multiplicity
6 and the other 6 points of multiplicity 3. It contains the lines joining the
multiplicity one points to the multiplicity six points (each with multiplicity
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one) and the line joining the two multiplicity 6 points with multiplicity 3. It
contains the 6 rational normal quartics that pass through the two multiplicity
6 points and five of the six multiplicity one points. For example, Syo(78) is

recorded as:
1033333366

11111100
0000011
000011
00011
0011

011

11

3

the 8 surfaces S15(i) of degree 15 with one point (p;) of multiplicity 3 and
the other seven points of multiplicity 6. It contains the joining any two points
of multiplicity 6, and no other lines. It contains all 8 of the rational normal
quartics, the one through the seven multiplicity 6 points with multiplicity
three, and all others with multiplicity one. For example, Si5(1) is recorded

as:
1536666666

31111111
0000000
111111
11111

11

1

—
—_ e

(c) We use the notation that (d; mimy - - - mg) represents a hyperplane of degree d
having multiplicity m; at p;. The orbit of the hyperplane through the first four
points (represented by (1; 11110000) consists of the following divisors, and all
related divisors obtained by permutations of the eight points:

(1; 11110000)  (2;22111110)  (3;22222220)  (3;32222111)
(4;33332221)  (4;43222222)  (5:;44333322)  (6; 44444432)
(6:54443333)  (7;55544443)  (7;64444444)  (8; 65555544)
(9; 66665555)  (10; 76666666)
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8 Applications
Proposition 8.1 Let R and T be two Weyl planes on X45. Then R - T € {0, 1, 3}.

Proof If we choose an element w of the Weyl group that sends Weyl plane R to
the actual plane S;(123), then since the intersection form is preserved we have
R-T = S;(123) - w(T). Hence it suffices to show that the intersection of S;(123)
with any Weyl plane is in {0, 1, 3}. This one can check by hand for all of the cases.

Even easier would be to notice that, if ¢ is the Cremona transformation centered at
the first five points, then by Corollary 7.2 we have ¢(S1(123)) = — P45 in the Chow
ring. Hence it also suffices to show that —Pys - T € {0, 1, 3} for all Weyl planes T'.
By Proposition 4.5, intersecting with — Pys picks out exactly the multiplicity m4s for
the Weyl plane. Hence it suffices, after taking account of permutations, to observe
that for all Weyl planes, all m;; are in {0, 1, 3}. O

Proposition 8.2 Let R and T be any Weyl planes on Xg. If R - T # 3, then there
exists w in the Weyl group ofXg andi € {1, 4} such that w(R) = Hyy3 and w(T) =
H;se.

Proof 1tisenough to prove the statement for R # T'. One can use the same technique
as in Proposition 8.1 and reduce one Weyl surface to — P45 and select Weyl surfaces
from the list of Proposition 7.3(b) that have mys € {0, 1}. Then applying the Cremona
transformation ¢ centered at the first five points, we have the first Weyl surface being
S1(123) and the other on the following lists (up to permutations that fix {1, 2, 3}):

1. Case §1(123) - T =1:

(a) S;(123) - §,(456) = 1
(b) S;(123) - S3(4, 1) =1
(©) S1(123) - Ss(126) = 1
(d) $1(123) - S;0(45) = 1
(e) $1(123) - Si5(1) =1

We are done in the first case of course. In the other cases it suffices to find
five indices, two of them among {1, 2, 3}, so that the corresponding Cremona
transformation reduces the degree of the second surface; such a Cremona will
fix §1(123) and we proceed then by induction on the degree.
To reduce the cubic surface, {2, 3, 4, 7, 8} will work; for the sextic, {1, 3, 5, 7, 8}
works. For the surface of degree 10, {1, 2,4, 5, 6} suffices; finally for the last
surface of degree 15, {2, 3, 6, 7, 8} works.

2. Case S1(123) - T = 0: In this case a similar approach yields the following lists
to analyze:

(a) S1(123) - S;(145) = O or §;(123) - §;(124) = 0
(b) S;(123) - S5(1,2) = 0 or S;(123) - S3(1,4) = 0 or $;(123) - S3(4,5) = 0
(©) S1(123) - Ss(145) = 0 or S;(123) - S6(456) = 0
(d) $1(123) - S;10(12) = 0 or §;(123) - S;0(15) = 0
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(e) §1(123) - S15(4) =0

The same proof as in the prior case works; in each situation one finds five indices,
two among {1, 2, 3}, that reduce the degree of the second surface. For example,
{2, 3, 6,7, 8} works for the degree 15 surface. We leave the details of the other
cases to the reader.

O

We remark that Weyl planes that intersect in three points (modulo permutations
of points) are
S1(123) - S6(123) = S5(1, 8) - $3(8,1) = 3.

Corollary 8.3 Assume R and T are Weyl planes in the base locus of the linear
system | D| for an effective divisor D = dH — 21‘8:1 m; E; on Xg. Then R-T = 0.

Proof We argue by contradiction. Assume first that R - T = 1. By Proposition 8.2,
we can apply a series of Cremona transformations, which do not change the hypoth-
esis on the base locus, and assume that R = §7(123) and T = $;(456). It follows
from the results of [6], Sect. 4, and [8], Proposition 4.2, that we therefore have

my+my+m3—2d >0 and my + ms + mg — 2d > 0.

Hence, the system of rational normal curves of degree 4 passing through the first 6
points must be in the base locus of |D|; since this family of curves covers P4, we
conclude | D| is empty, a contradiction.

If the two Weyl planes intersect in three points, then they are either S3(1, 8) and
S3(8, 1) or S1(123) and Se(123) (up to permutations). We will analyze the first case;
the other is handled by a similar argument. Assume by contradiction that both such
Weyl planes are in the base locus of the linear system |D| of an effective divisor D.
By Proposition 3 of [5], the multiplicity of containment of the surface S3(1, 8) in the
base locus of a divisor D is 2m; + m, + ...+ m7 — 5d < 0; therefore since both
S3(1, 8) and S5(8, 1) are in the base locus we obtain 2(m + ...+ mg) — 10d < 0.
This contradicts the effectivity of the divisor D because 2(m; + ...+ mg) +m7 +
3mg — 10d < 2(m; + ...+ mg) — 10d < 0O; therefore a family of curves of degree
10 with six double points, one simple point, and one triple point meets D negatively,
and so is part of the base locus also. Corollary 5.3 implies that these curves are in the
Weyl orbit of a line through a point, and therefore again cover the projective space,
a contradiction. The remaining case can be handled by the same argument. O

Remark 8.4 In fact, the linear equations of pencils of curves in the base locus of
the linear system of an effective divisor D, that in this case are equivalent to two
Weyl planes that meet in the base locus of | D|, give the faces of the cone of effective
divisors. We will prove this theorem in the case of a Mori Dream Space in arbitrary
dimension in [11].
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Remark 8.5 In [11], we prove that a Weyl curve and a Weyl divisor that meet can
not be simultaneously in the base locus of the linear system of an effective divisor
D.

For any effective divisor D € Pi c(Xg), define D € Pi c()/(g) to be the proper
transform of D after blowing up all the Weyl lines and Weyl planes in the base locus

of | D| to obtain Xg. Corollary 8.3 proves that the space X§ is smooth.

We remark first that the Weyl line C has normal bundle @O(—1)3.If D - C < 0
then the Weyl line C is in the base locus of the linear system |D|. Let D ;) denote the
proper transform of D under the blowup Y of all fixed Weyl lines in X?. For each
Weyl line C, define k¢ = —D - C.

Proposition 8.6 If D be an effective divisor on X§, then

2+ k
h (X}, Oxs(D) = ( Z C) +h' (Y, Oy(Day) — B*(Y, Oy (Dqyy).
C

A general form of Proposition 8.6 for (—1)-curves in arbitrary dimension will be
given in [11]. We conclude that if k¢ > 2 then hl(X;‘, Ox:(D)) > 1 + hl'(Y, Oy
(Dqy) — h*(Y, Oy (D).

Conjecture 8.7 Let D be an effective divisor on X%, with H'(X?, Ox:+(D)) = 0.
Then D - C > —1 for any Weyl line C.

Remark 8.8 For arbitrary number of points s, the converse of Conjecture (8.7) is
not true. Indeed, take D := 4H — 2 21‘111 E; € Pic(X},). Wecanseethat D - C > 0
for any Weyl line C; however, the Alexander Hirschowitz Theorem implies that

h'(X}, Oxs(D)) = 1.

For every r-subset I (r) of the indices {1, ..., 8}, let L;(. be the linear span of
the corresponding points. Let ky,(z,,,,) be the multiplicity of containment of the Weyl
cycle w(L;() in the base locus of D, for a Weyl group element w. In [5], the Weyl
expected dimension for an effective divisor D was introduced as

: 4+k —r—1
wdim(D) := x(D) + Z Z Z (_1)r+1< W(LIZ) )

r=1 I(r)e{l,....8} weW

Moreover, in [5] it was conjectured that for every effective divisor D on X g, the
dimension of space of global sections of D equals the Weyl expected dimension.

Conjecture 8.9 Let D be an effective divisor on )/(E.

1. If D-C > —1 for all Weyl curves C then
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H'(X], Oxs(D)) = 0.

2. B°(D) = wdim(D) + Y_)_ (=1y*'h" (D).
3. Foreveryr > 1,h" (D) = 0. e
4. Moreover, D is globally generated on X g.

We remark that Conjecture 8.9 part (2) implies wdim(D) = x(ﬁ), while part (3)
implies that conjecture of [5] regarding dimension 4°(D) is true.

Remark 8.10 We remark that Conjecture 8.9 holds for effective divisors on X,

[3, 8, 9]; therefore it holds for Xé. Notice that }/(\‘9‘ is not a Mori Dream Space and
in fact, there are infinitely many Weyl lines. The authors believe that Conjecture 8.9
also holds for X§ with a similar construction for the Weyl planes as the one presented
here.

Remark 8.11 Conjecture 8.9 fails in X}, because for arbitrary number of points, in
non Mori-dream spaces Weyl cycles are not the only obstructions. Indeed, consider

the divisor
10

D :=4H — 4E, —2ZE,~.
i=2

We remark that D contains in the base locus of its linear system just double lines
kr,; = 2; therefore its proper transform under the blowup of all its Weyl base locus
(i.e. only lines) is

10 10
D:=4H —4E, -2 E -2 Ey
i=2 i=2

Moreover, since k;, = 2 we have
4+4 4+4-1 4+2-1
= (") (T (M) =m0 ss-as =0

wdim(D) = x(D) = x(D) + 9(2 ' 2) _

However, this divisor is effective, and, in fact, the Alexander—Hirschowitz theorem

implies that it is unique in its linear system. We conclude that h(D)y=1#0=
wdim (D), therefore h' (D) = 1.
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