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Abstract

We investigate the study of smooth irreducible rational curves in Y, a general
blowup of P" at s general points, whose normal bundle splits as a direct sum of line
bundles all of degree i, for i € {—1,0,1}: we call these (i)-curves. We systematically
exploit the theory of Coxeter groups applied to the Chow space of curves in Y., which
provides us with a useful bilinear form that helps to expose properties of (7)-curves. We
are particularly interested in the orbits of lines (through 1 — 4 points) under the Weyl
group of standard Cremona transformations: we call these (7)-Weyl lines. We prove
various theorems related to understanding when an (i)-curve is an (i)-Weyl line, via
numerical criteria expressed in terms of the bilinear form. We obtain stronger results
for r = 3, where we prove a Noether-type inequality that gives a sharp criterion.

1 Introduction

Let us consider the rational variety Y =Y defined as the blowup of P" at s general points
D1, ---,Ds, With blowup map 7 : Y — P".

In this paper we study properties of curves in the space Y. The study of curves in
projective space is a well known problem in algebraic geometry, that goes back centuries. In
recent work [DM2] the authors defined the concept of (i)-curves in Y to be smooth, rational,
irreducible curves with normal bundle splitting as a direct sum of Op:1(7), for i € {—1,0,1}.
Prototypes for these curves are given by lines, passing through at most 2 points. For example,
(—1)-curves are rigid, and they give examples of flopping classes, while (0)- and (1)-curves
are movable and they determine extremal rays for the effective cone of divisors for Y,. The
property of a space being a Mori Dream Space can also be proved via the theory of movable
curves ([DM2]). The minimal model program in birational geometry has been formulated
via the theory of divisors, and it is an interesting question to understand it via the theory
of curves.
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We prove that in many cases, one can obtain (i)-curves in Y, by systematically applying
standard Cremona transformations to lines through at most 2 points. Such a curve will be
called an (7)-Weyl line, and one of the goals of the paper is to understand when a given
Chow class can be an (7)-Weyl line.

In [DM2] the authors proved that when Y is a Mori Dream Space, the (—1)-Weyl curves
can be identified numerically, using the parameters in the Chow class, by a linear invariant
known as the anticanonical degree and a quadratic invariant, the self-intersection of the
curve via a bilinear pairing that emerges from the Coxeter theory of the Weyl group acting
on the curve classes. (This pairing is directly equivalent to the Dolgachev-Mukai pairing.)

However, for spaces that are not Mori Dream Spaces, this result fails as Example 5.2
shows for Y}3. In this paper we give a numerical characterization for (—1)-Weyl curves in P?
by adding an additional numerical condition reflecting the irreducibility of the curve, related
to studying the projections of the curve.

In Section 2 we review the properties of the Chow ring and projections; in Section 3 we
review the Cremona transformation action on curves, and in Section 4 we review the Coxeter
theory and Weyl group action on the Chow curve classes A”~1(Y"). Our main results are the
following:

(A) The action of the Weyl group on the subspace of A”"}(Y) which is orthogonal to the
canonical class is isomorphic to the standard geometric representation of the Coxeter
group associated to the graph 75,41 —,—1 (see Proposition 4.5).

(B) For r > 3, all (i)-Weyl line classes of degree greater than one satisfy the inequality
d < ,.,.1m; when the multiplicities are put in non-increasing order; hence all such
classes can be monotonically reduced to the line class through 1 — 4 points by applying
a sequence of standard Cremona transformations (see Theorems 5.7, 5.9, 5.10).

(C) We prove a direct analogue of Noether’s Inequality for curves in P?, indicating that
under certain numerical conditions, one can apply a standard Cremona transformation
to a curve class to reduce the degree (see Theorem 6.6).

(D) We give a numerical criterion for a curve class to be an (#)-Weyl line in Theorem 6.13.

Theorem 6.13 resembles the theory for divisors. We leave as an open question if (—1)-
Weyl cycles, i.e. Weyl orbits of linear spaces, can be equivalently defined by numerical con-
ditions induced by the Coxeter theory. In this direction, the paper [DP] also gives equivalent
conditions for a divisor to be an (7)-Weyl divisor: satisfying a linear and quadratic formula,
and with positive intersection with all (—1)-divisors with respect to the Dolgachev-Mukai
pairing.

Acknowledgements

The collaboration was partially supported by NSF grants FRG DMS 2152130, NSF DMS
1802082/ DMS 2041740 and by the Simons Foundation: Collaboration Grants 855897. The
first author is grateful to MPIM, Bonnhor their hospitality during her time there.



2 The Chow ring of Y

2.1 Generators and multiplication in A(Y))

Let H be the hyperplane class in P", and F;, 1 < i < s, be the exceptional divisors in
Y =Y7; each E; is isomorphic to P"1.

The Chow ring A(Y) = @o<;j<,A?(Y) of YV is easy to describe. Let h; = [7*(H7)] be the
class of the pullback of the general linear space of codimension j. Let e; ; be the class of the
general linear subspace of F; of codimension j in Y (hence of codimension j — 1 in FE;). The
following is standard; see for example [EH].

Proposition 2.1. With the above notation, we have:
(a) The Chow ring A(Y') is generated as a ring by the divisor classes hy, e;1, 1 <i <'s.

(b) The Chow group A°(Y') is one-dimensional, generated by the identity class [Y]; dually,
the Chow group A" (Y') is one-dimensional, generated by the class [p] of a point p (which
is equal to h, and e;, for everyi)

(¢) The Chow groups AI(Y) for 1 < j <r —1 have dimension s + 1, with basis h;, €; ;,
1<i<s. Weseth; =e;; =0 forj>r+1.

(d) Multiplication in A(Y') is induced from the intersection form (—-—) on'Y, and is given
by:

(hjy = hjy) = hjiqjes (hy-eie) =05 (€iyy * Cinga) = —0i1inCiy jitjs P = €ip = [P).

(e) The canonical class of Y in AYY) is given by

S

Ky =—(r+Dh+ (-1 e

i=1
and we define the anticanonical curve class F' € A" 1Y) to be

S

F=(r+1)h_1— Zei,r—l

i=1
(which we will see is in some sense dual to —Ky € AY(Y)).

The anticanonical curve class was introduced in [DO1988|, see page 73; there it was
remarked that the span of the canonical root basis for A! is the orthogonal space to this
class. A

Note that [E;] = e;; and [E})/ = (—1)''e;; € AI(Y).

For convenience we abbreviate the divisor classes as H = h; and E; = ¢;; in AY(Y);
similarly if there is no possibility of confusion we will abbreviate the curve classes as h = h,._;
and €; = e;,_1 in A7H(Y).

If a and b are two classes in complementary dimension, then we will usually abbreviate
their product in A(Y) as (a-b) = k when (a-b) = k[p].
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If C C P is a curve of degree d having multiplicity m; at p; for each i, and C C Y is
the proper transform in Y, then the class [C] € A" 1(Y) is [C] = dh — Y, m;e; which can
be easily deduced by intersecting with the basis elements of A'(Y). Similarly for divisors, if
D is a divisor on P" having multiplicity m; at p; for each ¢, then the proper transform of D
in Y has the class dH — ). m;E;.

The degrees and multiplicities as recorded in the respective Chow classes are called the
numerical characters of the divisor or curve.

2.2 Rational curves and (i)-curves (i € {—1,0,1})

Suppose C' is a smooth rational curve in Y = Y7, whose class [C] € A™1(Y) is [C] =
dh — >, m;e;. We define the virtual dimension of C in terms of these numerical characters
to be

vdim(C) := (r+1)(d+1) — (r — 1) Zm —4=(r—3)—(C-Ky) (2.2)

which is x of the normal bundle of C. (It is also seen to be the dimension count of the
number of parameters for a map from P! to P" of degree d, imposing the multiple points,
and taking into account the automorphisms of P1.) Tt is determined by the class of C' in
Ar—L,

If we assume that the number of parameters for such a curve C' is non-negative (so that
in general we can hope that such a rational curve C' with these multiplicities is expected to
exist) but that it is isolated and is a reduced point in the Hilbert scheme (it doesn’t move
in a family, even infinitesimally), then we are imposing that H° = H' = 0 for the normal
bundle, which is equivalent to having the normal bundle N = N¢/y split as a direct sum of
O(—1)’s.

If N splits as a direct sum of O(i)’s for i € {—1,0,1}, then the normal bundle has
H' = 0 and dim H® = (r — 1)(i + 1), so that x(N) = (r — 1)(i + 1) and (C - Ky) =
(r—3)—(r—1)(i+1)=—-2—1i(r —1). We call such a curve an (i)-curve.

Motivated by this, we define a numerical (i)-class in A"1(Y) to be a class ¢ such that
(¢c- Ky) = —2—i(r —1); this is the x(V) = (r — 1)(i + 1) condition. We can also write this
as (r+1Ld—(r—1)> . m;=2+i(r—1).

The class of every (i)-curve is a numerical (7)-class of course; the converse is not true in
general.

We expect a finite number of smooth rational (—1)-curves representing a given numerical
(—1)-class.

The prototype of a (—1)-curve on Y is the proper transform of a line through two of the
points: such a curve will have the class h — e; — e; for two indices 1, j.

The prototype of a (0)-curve is the proper transform of a line through one of the points;
such a curve will have class h — e; for some index i. The prototype of a (1)-curve is a general
line in Y, with class h.



2.3 Projections

Projections offer an interesting perspective and tool to study curves in Y = Y. If C is
an irreducible curve in P", r > 3, with class ¢ = dh — >, me; € A7 1(Y]), then we may
consider the projection 7 from any one of the multiple points (say p; with multiplicity m;)
and obtain the curve 7(C) C P"~! with class 7(c) = (d —mi)h — 3., mje; € AT2(YI .

We've seen above that x(N¢/y) is determined by the class of C, and it can happen that
X(N) is non-negative for C' but negative for 7(C'). This is an indication that, although the
X(NN) computation suggests that a rational curve exists with that class, the projection is not
expected to exist (and hence the original curve actually shouldn’t either).

We can say more in case C'is an (i)-curve in P". In that case, since the normal bundle N¢
will surject onto the normal bundle for Ny, we must have that that all of the summands
for Nz(c) have degree at least i. Therefore x(Nx()) > (r —2)(i + 1).

One can then compute that vdim(C') — vdim(7(C)) = d +my + 1 — > °_, m;, and since
this difference is the difference of the x’s of the normal bundles, we have that

d+m1+1—zmj:(r—l)(i+1)—X(Nﬂ(c))g(r—l)(¢+1)—(r—2)(i+1):z‘+1.

=2
This leads to the following, which we call the Projection inequality for (i)-curves:
Proposition 2.3. If C is an (i)-curve in P" then d +my <i+ 377 _,m;.

Remark 2.4. A necessary condition for an (i)-class to be an (i)-curve is that it satisfies the
above projection inequality.

A bit of algebraic manipulation shows that if ¢ = dh — . mje; is a numerical (i)-class,
so that (r +1)d — (r —1) >_;m; = 2 +i(r + 1), then this projection inequality is equivalent
to d — (r — 1)my > 1, which applied to each multiplicity would imply

d—1
d—(r—1)m; > 1 or mjg—l for each j =1,...s; (2.5)
r —

we will see that this is a useful formulation.

We developed this with » > 3 primarily in mind; however it is instructive to see what
the projection inequality for (7)-curves implies when r = 2. For planar (i)-curves (studied
previously in [DO]J), the condition imposed by the projection inequality is rather mild: it
simply says that d > m, for each j. Being an (7)-curve in the plane corresponds to having the
anticanonical degree (the intersection with —K') equal to A = i+ 2; hence for i € {—1,0,1},
these are curves with anticanonical degree equal to A = 1,2,3. If we allow d = 0, then the
only possibility is an exceptional curve e; itself. We have the following.

Lemma 2.6. Forr =2 andi € {—1,0,1}, the following hold.

1. If the class of C in Y2 is a numerical (i)-class but is not an exceptional divisor, and

satisfies the projection inequality, then d > 1.

2. If C is an (i)-curve in Y2 and C satisfies the projection inequality then d > 1. (Indeed,
the only (i)-curves in Y2 that fail the projection inequality are lines through 1 or 2
points, or the exceptional divisors.)



Proof. We have discussed the d = 0 case, leading to the exceptional divisors, so let us assume
d > 1. If the projection inequality fails, then one of the multiplicities (say my) is at least d;
and therefore must be equal to d. Hence the (i)-curve is a cone, and since it is irreducible it
must be a line. This proves the second statement.

Suppose an effective divisor D = dh — ) ;mye; fails the projection inequality; then as
above the divisor is a cone (over the first point, say), and if L, is the line joining p; to p; for
J > 2, we must have D =", ,m;L;, and d = my = 3,5, m;. Therefore A =3d -3, m;
must equal d, and cannot be negative.

O

3 The standard Cremona transformations

3.1 The geometric description of the standard Cremona transfor-
mation

We will exploit the standard Cremona transformation of P" (centered at 4 1 points) which
we describe below. The reader may also see [DM2] for a bit more detail.

The standard Cremona transformation of P" (inverting the coordinates, i.e., sending
[0 : -+ a] to[rg! i -+ 2 Y]) is realized geometrically by blowing up the r + 1 coordinate
points, then all coordinate lines, then all coordinate 2-planes, etc., until one blows up all
coordinate (r — 2)-planes; then one blows down the exceptional divisors starting with those
over the coordinate lines, then those over the coordinate 2-planes, etc., finally ending by
contracting the proper transforms of the coordinate hyperplanes. This is well known (see for
example [DO1988|, Chapter VI, Lemma 1) and is a standard exercise.

After the first stage of performing the blowups, we arrive at a r-fold X"; this is the space
that resolves the indeterminacies of the Cremona on P". The subspace in the codimension
one part of the Chow ring of X" generated by the exceptional divisors over the positive-
dimensional linear coordinate spaces of P" is invariant under the Cremona transformation,
and the quotient space inherits the action. This quotient space is naturally isomorphic to
AY(Y,), and the action extends (trivially) to an action on A*(Y[) for any s > r + 1.

Since the s points are general, any set of » + 1 of them can be the base points of a
corresponding Cremona transformation. For any subset I of r + 1 indices, we will denote by
¢r the corresponding Cremona transformation, which induces an action on the codimension
one Chow space A*(Y]).

Dually, the subspace of the curve classes in the Chow ring of X" spanned by the general
line class and the general line classes inside of each E; is also invariant under the Cremona ac-
tion. This subspace is naturally isomorphic to A" (Y’ ,), and therefore we have a Cremona
action there, which extends to A" '(Y).

3.2 Formulas for the Cremona action on divisor and curve classes

We describe these actions explicitly below, and leave the details of checking the formulas to
the reader.

Proposition 3.1. Fiz any (r + 1)-subset I C {1,2,...,s}.
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(a) The action of ¢; on AN (Y) is given by sending dH — >, m;E; to d'H =Y, m,E; where

d/:Td—ij:d+t1
jeI
m; = (r—1)d — Z m;=m; +t, for i € I and mj;=m; for i ¢ I
JELj#i

and ty = (r —1)d =) _..,; m;. It has order two. In particular

¢r(H)=rH—(r=1)> E;, ¢)(Ej)=H— > Ejifjel,

iel ielitj
and ¢r(E;) = Ej if j ¢ 1.
(b) The action of ¢; on A" 1Y) is given by sending dh — ", mje; to d'h =, mie; where

d':rd—(r—l)Zmi:d—i—(r—l)tr,l
iel
m, =d— Z m; =m; +t,—y for i €I and m;=m; for i ¢ I

Jel,j#1

and t,_1 =d — Zie[ m;. It has order two. In particular

¢r(h) =rh—> e, dile;)=(r—1Dh— > e ifjel,

icl iclit]
and ¢r(e;) =e; if j ¢ 1.

(c) The intersection pairing between AY(Y) and A™=1(Y) is ¢r-invariant, i.e., for any class
D e AYY) and C € A" H(Y), we have

(D-C) = (¢1(D) - ¢1(C)).

We will abbreviate ¢ = ¢y for I = {1,2,...,r + 1}.

We will call a divisor class dH — Y. m;E; Cremona reduced if (r — 1)d > .., m; for
every (r + 1)-subset I of the indices; by (a) above, this implies that the degree of the class
cannot be lowered by any of the ¢;’s.

Similarly, we call a curve class dh — . m;e; Cremona reduced if d > Zie ; m; for every
(r + 1)-subset I of the indices; by (b) above, this implies that the degree of the class cannot
be lowered by any of the ¢;’s.

Certain other inequalities are common when considering the degrees and multiplicities
for classes of curves in P".

Lemma 3.2. Suppose that s > r + 1, so that the points span P". Let C' be an irreducible
non-degenerate curve in P", such that the class of C'in A" ' is dh — Y7 m;. Then for any
subset J C {1,...,s}, if 1 < |J| <7, we haved > .., m;.



Proof. If d < % .., m;, then since C' is irreducible C' must be contained in any hyperplane
that contains the points of J. Therefore C' is contained in the intersection of all such, which
is the span of J. Since |J| < r + 1, the span of J is a proper linear space, so C' must be
degenerate. O

This statement is familiar to those who know that the smallest degree of an irreducible
nondegenerate curve in P" is r, and that is achieved only by the rational normal curve; any
such can be specified by s = r + 3 points in general position. (Here d = r and all m; = 1.)

The above Lemma allows us to easily conclude the following.

Proposition 3.3. Suppose that s > r+1, so that the points span P", and let I be a subset of
points with |I| = r+1. If C is an irreducible non-degenerate curve in P" of degree d > 1, then
its image ¢;(C) after a Cremona transformation based at the points of I is an irreducible
curve with non-negative degree and multiplicities.

Proof. Since C' is non-degenerate and irreducible, it does not live in any hyperplane, and
so is not contracted by the Cremona transformation. Hence ¢;(C') is an irreducible curve.
Let us denote its degree and multiplicities by d’ and m/. The formulas of Proposition 3.1(b)
show immediately that all the m/ are non-negative, using Lemma 3.2.

Of course the degree is non-negative; to see this using the formulas, note that if we add
up the formulas d > >, ; m; for each r-subset J C I, we obtain v .., m; < (r + 1)d, and

S0 +1
Somi< T md< —d
. r r—1
iel

which is equivalent to d’ > 0 using the formula for d’ in Proposition 3.1(b). O

3.3 Cremona Invariants and (i)-Weyl lines

Note that the symmetric group on the indices of the s points acts on all these spaces, and if
o is the permutation taking the subset I to the subset J, then c¢;0~! = ¢;. The canonical
class Ky = —(r+1)H + (r—1) ). E; is the only symmetric ¢-invariant class (up to scalars)
in A' (and it is invariant under all ¢; therefore). Dually, the anticanonical curve class
F = (r+1)h—3"7_ ¢ is the only symmetric ¢-invariant class (up to scalars) in A" (Y,
and again it is invariant under all ¢;.

The invariance of these classes gives us linear functionals

(-, F) e (AY)* and (—,K) € (A1)

that are both symmetric and Cremona-invariant.

In addition to these familiar linear functionals, both spaces enjoy a symmetric ¢-invariant
quadratic form, which are unique up to scalars also. These we denote by ¢; on A! and ¢,_;
on A™"! and may be defined using the numerical characters (d;m) by

q1(d;m) = q(dH — Z miE) = (r — 1)d* — Z m? (3.4)

¢r—1(d;m) = ¢,_1(dh — Zmiei) =d*—(r—1) zjml2 (3.5)



Each of these quadratic forms give rise to associated bilinear forms, which in the case of
divisors is (up to scalar multiple) the Dolgachev-Mukai pairing.

We will denote the bilinear form on A™~! derived from the quadratic form q,_;(dh —
SSomies) = @ — (1 — 1) Sy m? by (=, —): (@,9) = 2w 1(z +9) — gr1(z) — go_1(y)) which
has the following values on the basis elements:

(h,h) =1; (h,e;) =0and (e;,e;) =1 —rfor alli; (e;,e;) =0fori#j

It is easy to see that for any ¢ € A™~!, we have the anticanonical degree of ¢ which is equal
to (=K - c¢) = (F,c). We therefore have that a class ¢ is a numerical (—1)-class if and only
if (F,c¢) =3 —r (and in general is a numerical (i)-class if and only if (F,c¢) =2+ i(r — 1))

For i € {—1,0,1}, we define an (i)- Weyl line to be the image (under a sequence of stan-
dard Cremona transformations) of a (degree one) line through 1 — i points. The class of a
(—1)-Weyl line is therefore an element of the orbit (under the group of Cremona transfor-
mations) of the class h — e; — ey; similarly the class of a (0)-Weyl line is an element of the
orbit of A — ey, and the class of (1)-Weyl line is an element of the orbit of the line class h.

Since the linear functional (F, —) and the quadratic form (—, —) are Cremona-invariant,
any (i)-Weyl line must have the same values for these invariants as the lines through 1 — i
points. Therefore:

Corollary 3.6. If ¢ is the class of an (i)-Weyl line in P", we have

(Fye)y=2+i(r—1) and {(c,c) =1+ (i —1)(r — 1).

3.4 Projections and Cremona transformations

It is easy to see that projections commute with the Cremona transformation, in the following
sense (see [DM2]). Suppose that I is any subset of 7 + 1 indices for the s points of Y, and
1 € I. If we denote the projection from the ¢-th point by m;, then we have

mi(¢1(c)) = Gr—fiy (mi(c))

which is elementary and we leave to the reader to check.
It is also the case that the projection inequality (2.3) is preserved under ’increasing’
Cremona transformations, in the following sense.

Proposition 3.7. Fiz i, and let ¢ = dh — Y myey be a curve class satisfying the inequality
(2.3):
d+m; < ka—i-ifor every j € {1,...,s}.
ki
Fiz a subset I C {1,...,s} with |I| =r+ 1, and write the Cremona transformed class ¢;(c)
as d'h =", mpey. If d > d, then the class ¢1(c) also satisfies the inequalities

d'—l—m;§Zm;€+if0reveryjG{l,...,s}
Py



Proof. From Proposition 3.1(b) if we set t = d —)_,.,; my, we have d' = d + (r — 1)t, and for
any k € I we have m) = my +t; for k ¢ I, mj, = my. Our assumptions imply that ¢t > 0.
We distinguish two cases. If 7 € I, then both sides of the projection inequality change by
adding rt, and hence it is preserved.

If 7 ¢ I, then the left-hand side of the projection inequality changes by adding (r — 1)t,
while the right-hand side changes by adding (r + 1)t. Since t > 0, the inequality is again
preserved.

O

We note that the projection inequality for numerical (i)-classes (2.5) can be re-written
in terms of the bilinear form, as follows:

(C,h—ej) >1 foreach j=1,...,s. (3.8)

3.5 Irreducible and Non-degenerate curves

Now let C' be an irreducible non-degenerate (—1)-curve in P" whose class in A" is ¢ =
dh — "7 _, m;, and order the points so that m; > m;; for all i < s.

Let us also assume that C' is in the orbit of the line through two points under the Weyl
group. In that case there is a Cremona transformation taking the line through two points
to C', and that Cremona transformation w will take the class h — e; — e5 to the class ¢ of C.
Conversely, if ¢ is a class in the orbit of h — e; — es, then there is an element w in the Weyl
group taking the line through two points to a curve C' whose class is ¢. (Just take w to be
the Weyl group element that takes h — e; — e5 to ¢.) The prototype of such a class is the
class of the rational normal curve of degree r passing through r + 3 general points of P"; its
class can be written as (r; 173, 057"73).

Lemma 3.9. Let ¢ be a class in A"~ (YT) with positive degree d and non-negative multi-
plicities in non-decreasing order, such that d > my. Assume that ¢ has the two numerical
invariants of a (—1)-Weyl line class: (F,c) =3 —r and {(c,c) =3 — 2r.

(a) If d =1, then ¢ = h — ey — ey: ¢ is the class of a line through two points.

(b) If d > 1, then d > r. Moreover if d =1 the c=dh — 3 ... ,y¢€;: c is the class of a
rational normal curve of degree r through r + 3 general points.

C =T €N Myp43 . ere are at least r + Siric POSITIVE TMULLTIPLICITIES.
Ifd>r th L3 #£0: th t least v + 3 strictly positi ltipliciti

(d) Suppose that ¢ is actually a (—1)-Weyl line class, i.e., it is in the orbit of h — e; — es.
Then d > Zigr m;.

(e) If ¢ is a (—1)-Weyl line class and ¢ is not Cremona reduced (i.c., d < S7% m;), then
after applying the standard Cremona transformation ¢ to the r+1 largest multiplicities,
we obtain a class with positive degree and non-negative multiplicities.

Proof. To see (a), if d =1, (F,c) =3 —rsays (r — 1)) ., m; = 2r — 2, so that the sum of
the multiplicities is two. Since the multiplicities are at most the degree, we must have two
of them equal to one and all other equal to zero.
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Statement (b) follows from re-writing the two invariants, as
(r=1) mi=dr+1)—(3—r) and (r—1)> mj=d"—(3—2r).

Since all multiplicities are non-negative, we have that their sum is not larger than the sum
of their squares. Hence we conclude that d(r +1) — (3 —r)=dr+d+r—3 < d*>—3+2r
which we can re-write as (d — 1)r < d?> — d = d(d — 1), from which we conclude that r < d.

If d = r, we see that in the argument above the inequalities above must all be equalities,
and in particular Y m; = > m?, which forces all nonzero m; to be equal to one, and gives
the rational normal curve class.

To show (c), assume that there are exactly k strictly positive multiplicities. In that case
we can apply the Cauchy-Schwarz inequality to conclude that (> m;)? < k> m?. We then
see that

(o = Qam <k Y i =

using the two invariants. We want to prove that & > r + 3, so it suffices therefore to show
that

(rd+d+r —3)?
<
TS LT (@ 2 —3)

The denominators here are all positive, so clearing them, expanding, simplifying, and fac-
toring, this inequality is equivalent to

(d—7r)(4d +2r* —6) > 0

which is true since d > r, and proves (c).

If ¢ is the class of a (—1)-Weyl line C, then by (c), we have that C' is non-degenerate; it
passes through at least r + 1 points in general position. Since C' is irreducible, Lemma 3.2
implies (d).

If in addition ¢ is not Cremona reduced, then applying ¢ to ¢, and setting ¢t = d —
> j<ri1 My, We obtain ¢ = d'h — 3 mj; where for it <r+1,mi=m;+t=d—3 ., .\ ,;m;
using the formulas of Proposition 3.1(b). This quantity is non-negative by part (d). Hence
all multiplicities for ¢’ are non-negative, and since ¢ also represents an irreducible curve (the
image of the curve ('), it must have positive degree also. (Positive degree also follows easily
now from observing that ' = rd—(r—1) >, ., m; = (r—1)(d—>_,., m;)+(d—(r—1)m,4.1);
the first quantity is non-negative and the second is strictly positive using Lemma 3.2.) This
proves (e).

O

Part (e) of Lemma 3.9 will allow us to apply an inductive argument to reduce (—1)-Weyl
line classes via standard Cremona transformations, as long as we can assure that the classes
are not Cremona reduced. For this we use a more sophisticated analysis, relying on Coxeter
systems and the properties of the Weyl group.
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4 The Weyl Group

4.1 Coxeter Systems and Groups of type 75,

Fix a, b, and c at least 2. Define the graph T,,. with a + b + ¢ — 2 vertices, and consisting
of three chains (of lengths a, b, and ¢) with the final vertices identified. Hence there is one
vertex of degree 3 (the identified final vertex), three vertices of degree 1 (the other ends of
the three chains) and all other vertices have degree 2.

For our purposes in studying the space Y., we will have need of the case a =2, b =r+1,
and ¢ = s —r — 1. The total number of vertices is s. We label them as follows, from 0 to
s —1:

1)=(2) = =)= (7”|r1) —(r+2)--—(s—1)
(0)
For the basics of the Coxeter theory that applies to this situation, we refer the reader to
[Bo] and [Hu|. However the study of these concepts and their interrelationships go back to
the 19th century, as exposed in the book by A. Coble [Co]. We would also point the reader
to [DO1988] and [Do] for more modern treatments.

The graph 75,41 s—,—1 defines the Coxeter system and the Coxeter group W generated
by w;, 0 <4 < s — 1, with relations w? = 1, w;w; = w;w; if 7 and j are not connected with
an edge in the 75,1 s—,—1 graph, and w,w;w; = wyw,;w; if ¢ and j are connected with an
edge.

Let E be the real vector space with basis {z; | 0 < i < s — 1}. Define the symmetric
bilinear form B on E by

1 it i=7
B(x;,xj) =0 if 7 and j are not connected with an edge

—1/2 if i and j are connected with an edge.

Define the reflection o; on E by 0;(z) = © — 2B(z, x;)z;. For each i, o; preserves the bilinear
form B: B(z,y) = B(oi(z),0,(y)). The assignment w; € W to o; gives an injective group
homomorphism ¢ : W — GL(FE) and all elements of o(W) preserve the bilinear form.

This representation of the Coxeter group is called the standard geometric representation.

The Coxeter group W also acts on the dual space E* via the induced action: if f € E* is
a functional on F, and w € W, then (wf) is the functional defined by (wf)(z) = f(w™(z)).
The positive chamber C is defined as the set of f € E* such that f(z;) > 0 for each
1=20,...,5s — 1. C is an open simplicial cone in E*, and no two elements of C can be in the
same orbit of the Weyl group: if w € W and C Nw(C) # () then w = 1. A reference for this
material is [Bo|, Chapter V, Section 4.

This ‘positive chamber’ C has the set C as its closure, defined by the set of f € E* such
that f(z;) > 0 for each i. This set may be partitioned as follows: for each subset X of the
basis vectors {z;}, we define Cx as the set of f € E* such that f(z;) = 0 for z; € X, and
f(z;) > 0 for x; ¢ X. We have Cy = C, and C is the disjoint union of all Cx as X ranges
over all subsets of the set of generators.

For such a subset X, define Wx to be the subgroup of the Weyl group W generated by
the elements of X. Proposition 5 of [Bo], Chapter V, Section 4, No. 6 gives the following:
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Proposition 4.1. Suppose X and X' are subsets of the basis vectors {x;}, and w is in the
Weyl group W. If w(Cx)NCxs # 0, then X = X', w € Wy, and w(Cx) = Cx. In particular
the stabilizer of any f € Cx is Wx.

The union of all of the translates w(C) as w ranges over the Weyl group is the Tils cone
in E*. It is a convex cone in E*, and the non-negative cone C is a fundamental domain for
the action of W on the Tits cone. The general theory gives:

Theorem 4.2. The following are equivalent:
o The Weyl group is finite.
e The Tits cone is the entire dual space E*.

o The bilinear form B s positive definite.
The following is a useful observation.

Proposition 4.3. Suppose that g is a functional in the Tits cone, so that some translate
w € W sends g into the non-negative cone C. One can construct the Weyl group element w
that sends g into C with the following algorithm. We may assume g ¢ C, else take w = 1.
Set g1 = g, and set k = 1.

(a) If gr € C, stop.

(b) If gx & C, then choose any generator x; for W such that g.(z;,) < 0. Set gri1 =

(¢) Increment k and go to step (a).

This process stops in a finite number K of steps, and w = x;, x;,_, - x;,x;, sends g into C.

Proof: The only thing to show here is that the algorithm stops, and we do this by induction
on the length of the Weyl group element w that takes ¢ into C. If that length is 0, then
g = g1 is already in the non-negative cone. If not, then the algorithm allows us to choose
a generator x;, such that gi(z;,) < 0, and we consider go = z;,¢1; for convenience set
u = x;,, so that go = ug;. The Weyl group element wu sends g, into the non-negative cone:
(wu)(g2) = (wu)(ugi) = wg € C.

We claim that the length ¢(wu) is less than the length ¢(w). This is equivalent to
((uw™) < £(w™'), which by [Hu], Lemma, page 120, is equivalent to w™'(C) C A/, where
A, = {f € B | f(u) <0},

Consider the original functional g; by assumption it lies in A’ and since w(g) € C, we
have g € w™!(C). Hence g is in the intersection w™(C) N A/, so that intersection is not
empty.

However any translate of C is fully contained in either A/, or A, = {f € E* | f(u) > 0}. If
w™(C) C A,, then we must have w=*(C) C A,. However A, N A/, = 0; this would then force
w™H(C) N A/, = (). This is a contradiction, since g is an element there. Hence we conclude
that w™(C) C A, which then allows us to conclude that the length £(wu) < £(w).

We finish then by induction on the length.

QED
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Remark 4.4. The above give us a practical method in many cases for determining whether
two elements T and 7' of the Tits cone are in the same orbit for the Weyl group. First, use
the algorithm of Proposition 4.3 to move T and 7' into the non-negative chamber C, obtaining
elements ¢ and c’. Determine the subsets X and X' for which ¢ € Cx and ¢ € Cx/. If T and
7" are in the same orbit, then so are ¢ and ¢, and therefore by Proposition 4.1 we must have
X =X, and ¢ = w(c) for some element in W.

Therefore if X # X', or X = X' but no element of Wx sends ¢ to ¢, we conclude that
7 and ' are not in the same orbit. However if X = X' and such an element exists, then T
and T are in the same orbit of course.

4.2 The Weyl Group Action on A!(Y)

The ¢-invariant symmetric curve class F = (r + 1)h — >, e; € A" 1Y) gives a functional
on the divisor classes A'(Y') via the intersection pairing; the kernel of this functional is a
codimension one subspace V! C A! on which ¢ and the symmetric group acts irreducibly.
A divisor class dH — Y. m;E; is in V! if and only if (r + 1)d = >, m;. (Using the notation
of Proposition 3.1(a), we see that this is indeed preserved by ¢; for any index set I, since
the quantity ¢; is added to the degree and to r + 1 of the multiplicities.)

We have dim(V') = s and a basis for V! is given by the divisor classes v; = -5 H — E;
fori=1,...,s. The symmetric group acts on these basis elements by permuting the indices.
The action of ¢ is given by

r+1 £4j=1
v+ =L S v, if r+2<i<s

2 r+1 . .
v, ——=—> Ty if 1<i<r+1
¢('Ui>:{ ’

r+1 j=1

An alternative basis which is more tuned to the Coxeter theory is {X;}o<i<s—1 where X, =
Z::llvz:H_Z::llEz aHdXZ':Ui+1—UZ':Ei—Ei+1 fOI'lSZSS—l
The quadratic invariant ¢; on A' introduced in (3.4) gives rise to a (symmetric, ¢-

invariant) bilinear form B; on A' defined by setting

-1
Bi(z,y) = (a2 +y) — a(2) — aly))
which takes on the following values:

1—

and hence has signature (s, 1) on A'. We note that since the canonical class K = (r+1)H —

(r—1)%, Ei, and we have By(K,dH — Y, m;E;) = 5°((r + 1)d — Y, m;), we see that

1—r
2

By(z,K) = (x - F)

and hence V! is exactly the orthogonal space to the canonical class K, with respect to the
B; pairing. We have that

Bi(K,K)=——((r+1)?%—s(r—1))




and hence if (r +1)? > s(r — 1) we have B;(K, K) < 0, which implies that the restriction of
B; to the subspace V! has signature (s,0), i.e., B; is positive definite on V.
It has the following values on the X; basis vectors for V1

B1<X27Xz) =1 for all ¢

B(xoxy = JOH iz izl
REOTUT) 12 i i =+ 1

Bi(X, X;))=01if 1<d,j<s—1,]i—j|>1

Let W be the group of transformations of V! generated by the symmetric group on
the s indices and the Cremona action ¢. Denote by 7; the transposition (i,7 + 1) in the
symmetric group; since the 7;’s generate the symmetric group, the 7;’s and ¢ form a set of
generators for the group W?'. Each of these generators have order two, and it is standard
that 7; and 7; commute if [i — j| > 1, else 7,7; has order 3. In addition, an easy computation
shows that 7; and ¢ commute unless ¢« = r + 1, and in that case 7,1¢ has order 3. Hence
W' is a homomorphic image of the Coxeter group whose Coxeter graph is the T, 11 i1
graph introduced above: there is a surjective group homomorphism o« : W — W?. This
homomorphism sends oy to ¢ and o; to 7; for ¢ > 1.

Let V4 = V! ®R be the real vector space with basis X;. Define a linear map 3 : £ — V3
by sending z; to X; for each ¢ =0,1,...,s — 1 and extending linearly.

What we have developed here is that the action of the Weyl group W' on VZ is isomorphic
to the action of the Coxeter group W on the vector space FE; this is almost classical by now,
described also in [DO1988]; we include the short argument here for completeness, and to
establish the notation we are using.

Proposition 4.5. The group homomorphism « is an isomorphism. The linear map B is an
1somorphism that preserves the bilinear forms:

By(B(x), B(y)) = B(x,y) forall x,y € E.

The diagram
WxE — FE
(a, 8) 1 g

Wix Vil — W

15 commutative, where the rows are the actions given above.

Proof: One first checks that the diagram commutes, and for this is suffices to show that
it commutes on ordered pairs (o;,z;) € W x E. This ordered pair is sent to o;(z;) =
r; — 2B(xj,x;)r; in E, and is then sent to X; — 2B(z;,z;)X; in Vi. Going the other way,
it is sent to (¢, X;) (if i = 0) or (7, X;) (if ¢ > 1) in W' x Vg; then on to ¢(X;) or (X))
depending on i. Hence we must show that

o(X;) it i =0

i~ 2B ) {Ti(xj) if i > 1.
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First assume that + > 1 and j > 1.

If |¢ — j| > 1, then B(z;,z;) = 0 and so the clockwise image is X;. The counterclockwise
image is Ti(Xj) = Ti(Ej — Ej+1) = Ej — Ej+1 = Xj also.

If |i —j| = 1, then B(xj,z;) = —1/2, so the clockwise image is X; + X;. This is
E,—FEj\1 +E — Eiyqy whichis B, — B if j=¢—1or B — Eypif j =4+ 1. The
counterclockwise image is 7;(E; — Ej41) which is E; — Ejy = B, — By if j =i —1 and
is El — Ej+1 = Ez — Ei+2 lfj =1¢+1 as required.

Finally if i = j then B(xj,z;) = 1 so the clockwise image is X; — 2X; = —X;. The
counterclockwise image is 7;(X;) = 7;(E; — Fiy1) = FEiy — E; = —X; also.

Next assume ¢ = 0 and j > 1. In this case we must show that X; —2B(z;, x0) Xo = ¢(X;).
If j #r+1, then B(z;,x0) = 0, so we must show that ¢ fixes X, which is clear.

For j = r + 1, we have B(z;,z0) = —1/2, so we must show that ¢(X,11) = X,+1 + Xo.
Using the notation and formulas of Proposition 3.1(a), we have that X,,; = E, ;1 — E,;2 o
that d = 0, m,y1 = —1, m,.o = 1, and all other m; = 0; hence t; = 1 so that the image
under the Cremona has degree 1, m; =1 for 1 <i <r, m,. ;1 =0, myy1o =1, and m; = 0 for
1 > 1+ 3. This is Xy + X, as required.

Next assume i > 1 and j = 0. In this case we must show that Xo—2B(xq, ;) X; = 7(Xo).

If i # r+ 1 then B(xg,x;) = 0 so we must observe that 7; fixes X, which is clear.

If i =r+1 then 7.1(Xo) = Xo + X,41 as required.

The final check is for i = j = 0, and we must show that ¢(Xy) = —Xy. Again using the
notation of Proposition 3.1(a), we have t; = —2, and since the degree and multiplicities for
X are all 1 up to index r 4+ 1, adding —2 changes them to —1, switching the sign.

This finishes the computation that the diagram commutes.

It is obvious that § is an isomorphism, since it is defined by identifying the two bases.

The preservation of the bilinear forms is immediate from the computation of B and B;
given above on the basis vectors.

To finish we must show that « is a group isomorphism, and it suffices to show it is 1-
1. Suppose that w € W is in the kernel of a. Fix any vector e € E; since the diagram
commutes, we have S(w(e)) = (a(w))(B(e)) = B(e) in Vi since a(w) = 1 in W, Since 3 is
an isomorphism, this implies that w(e) = e. Since e was arbitrary, this implies w = 1 in W.

QED

This finishes the proof that the group generated by the symmetric group and the Cremona
transformation, acting on V!, is isomorphic to the standard geometric representation of the
Coxeter group with graph 75,41 s—r_1.

Therefore we can apply Theorem 4.2 and conclude the following:

Theorem 4.6. If (r + 1) > s(r — 1) then the Weyl group acting on V' (and hence on A')
is finite, and the Tits cone in the dual space (V')* is the whole space.

Proof: We have seen that this inequality with  and s implies that the bilinear form B; is
positive definite. The previous theorem then allows us to apply Theorem 4.2 to conclude.

QED
We note that

(r4+12>s(r—1) <= r=2,5<8r=3,s<T;r=4,5s<8r>5s<r+3 (4.7
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4.3 The dual space to V3 as a quotient of A"

The intersection pairing in the Chow ring allows us to naturally identify the curve classes
A"l as the dual space to the divisor classes Al. The subspace V! C A! defined as the
orthogonal space to the curve class F' = (r + 1)h — . e; therefore has, as its natural dual
space, the quotient V"=! = A" /(F); we mod out the span of the vector F' which acts via
intersection as identically zero on V!. The presentation outlined below follows [Bo].

Let us be explicit about the dual action on V"!; we will restrict ourselves to computing
the action by the generators of the Weyl group W. For the x;, i > 1, these act on V! by the
transposition (4,7 + 1) on the classes of the exceptional divisors F;; clearly these act then on
V7! by that same transposition on the e; classes (mod F) in V"1,

For the generator zg, it acts on V! by the Cremona transformation on divisors; hence if
we fix a class ¢ € V" !(mod F') we have that (zo(c))(D) = (¢- ¢~1(D)) = (c¢- ¢(D)) for any
divisor class D € V1. Since the Cremona transformation preserves the intersection form on
the Chow ring, we have (c- ¢(D)) = (¢(c) - D), so that z¢(c) acts as intersection with ¢(c),
and hence is equal to ¢(c) by the perfect pairing.

Therefore the positive chamber C C Vg ' is the set of curve classes ¢(mod F') such that
¢ X; > 0 for each generator X; € V!. Write ¢ = dh — >, m;e;(mod F'). Then we have:

r+1 r41

(c-XO):(c-H—ZEi):d—ZmZ-

iZ12(C'Xi):(C'Ei—Ei+1):mi—mi+1

(We note that these conditions are all invariant under the addition of multiples of the curve
class F'.) Hence the positive chamber is defined by

r—+1
C:{dh—Zmiei(mod F)|d> Zmi and m; >m; . Vi=1,...,s—1}.

i=1

This is the condition that the multiplicities strictly decrease, and that the class is strictly
Cremona reduced. The closure C relaxes these conditions to d > Z:;Lll m; and m; > m;iq.
Note that the mod I’ requirement then eliminates the condition that all multiplicities are
positive: we do not have the condition that mg > 0.

For each subset X C {X;} we also have the chamber faces Cx as above, defined with the
equalities instead of strict inequalities here.

It is useful to be explicit about the algorithm presented in Proposition 4.3. We re-

formulate it in our case below.

Proposition 4.8. Let ¢ € A" Y(mod F), and suppose it is not in the non-negative chamber
C. Then we may apply the following sequence of transformations to c:

(a) Reorder the multiplicities in descending order.

(b) If ¢ is now Cremona reduced, stop.
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(¢) If ¢ is not Cremona reduced, apply the Cremona transformation ¢ (to the first, hence
largest, r + 1 multiplicities).

(d) Go to step (a).

If this sequence stops, then c is in the Tits cone and it stops with a Cremona-reduced class
that is Weyl-equivalent to c(mod F'). If this sequence does not stop, then c is not in the Tits
cone, and no Weyl group translate of ¢ can be Cremona reduced.

Remark 4.9. Since applying Cremona transformations when the class is not Cremona re-
duced strictly reduces the degree, Proposition 4.8 implies that if a class is in the Tits cone,
then the sequence of Cremona transformations that brings the class into the non-negative
chamber (i.e., makes it Cremona reduced) monotonically reduces the degree.

One practical consequence of Proposition 4.1 for our purposes is the following.

Lemma 4.10. Suppose that ¢ and ¢’ are two Cremona reduced classes with multiplicities in
non-increasing order. Assume that they are Cremona-equivalent: there is an element w in
the Weyl group such that w(c) = c. Then ¢ = ' mod F'.

Proof. Suppose that cmod F' € Cx for a subset X of generators of the Weyl group W.
Proposition 4.1 implies that ¢mod F' € Cx also, and w € Wx. Since W fixed (pointwise)
Cx, we must have ¢mod F' = cmod F' as claimed. O

4.4 The direct action on the space of curve classes

In the treatment above, we see that the Coxeter group acts on the divisor classes A'(Y7),
with the action restricted to the subspace V! being isomorphic to the standard geometric
representation; with this perspective, the dual space is then the quotient of the curve classes.

It turns out that we can take the opposite approach: the corresponding subspace of A™1
is also isomorphic to the standard geometric representation of the Coxeter group, and the
corresponding quotient of A! is then the dual.

It is more convenient to tensor with R at the outset. Define the vector space isomorphism
U:AYY )R — A YY) @R by W(H) = h and U(E;) = ¢;/(r — 1) for each i.

Note then that

gr1(V(dH — Z miE;) = qp_1(dh — Z(mi /(r—1))e;
=d®—(r—=1)) (mi/(r —1))?

e LU D Y

r—1
1

and hence the isomorphism W preserves the quadratic forms (and therefore the bilinear
forms) up to scalar.
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It is clear that ¥ commutes with the action of the symmetric group. We claim that it
also commutes with the Cremona transformations. To check this, it is enough to check it for

b.

We have ¢p(V(dH — >, m;E;)) = ¢(dh —>_.(m;/(r — 1))e;) = d'h — ), mle; where if we
define t, 1 =d -3, .,(mi/(r —1)), then d' = d + (r — 1)t,_1, mj = m;/(r — 1) +t,_ for
i<r+1,and m, =m;/(r —1) for i >r+ 1.

On the other hand, V(¢p(dH — >, m;E;)) = V(d"H =), m/E;) =d"h—=>Y_ . m!/(r—1)e,
where if we define t; = (r — 1)d — >, ., my, then d” = d +t;, mj = m; +t; for i <r +1,
and m} = m,; for i > r + 1.

We now see that d' = d”" =rd — ), ., m;, so the coefficients of h agree. If j <741,
then the coefficient of e; in both cases is d — >, ;. m;/(r —1). Finally if j > r+1, the
coefficient of e; in both cases is m;/(r — 1).

We conclude that W(¢(C)) = ¢(¥(C)) for all C. We also note that ¥(K) = F'.

We can then reproduce the entire analysis and conclude the following:

Proposition 4.11. Let V'™! € A™' @ R be the subspace orthogonal to K under the in-
tersection pairing (— - —). Then the action of the Weyl group on V'™ is isomorphic to
the standard geometric representation of the Coxzeter group for T i1 s—r1; the dual space is
isomorphic to the quotient space A' @ R/ < K >.

We immediately obtain the analogue of Proposition 4.8 also, which we leave to the reader
to formulate.

5 Applications

There are two main applications of the Coxeter group/Weyl group circle of ideas that we
want to focus on, dealing with the Weyl group orbit of a general line, a line through one
point, and a line through two points.

It is elementary to see that such lines through 1 — ¢ points (i = 1,0, —1) are smooth
rational curves in Y/ with normal bundle equal to O(i)®"~Y. In Section 2.2 we referred
to such a smooth rational curve an (i)-curve in Y]; If ¢ is the class of such a line, then
(¢, F) =2+ i(r — 1); such a class is a numerical (i)-class in A™1.

An (7)-Weyl line is a curve in Y that is in the orbit of a line through 1 — i points under
the action of the Weyl group. If ¢ is the class of such a curve, then (¢, F') =24 i(r — 1) and
(c,ey =1+ (i—1)(r—1). A numerical (i)-Weyl class is a class ¢ with these two values for
the invariants.

Finally recall that a curve class dh — ). m; with d > 1, m; > m;4; for each ¢ and ms > 0
is Cremona reduced if d > Z::ll m;; this ensures that the Cremona transformations ¢; do
not reduce the degree, for any set of r 4+ 1 indices I.

In [DM2] the authors investigated the relationship between these concepts, primarily in
the case when (F, F') > 0; this is the case when Y is a Mori Dream Space, and the Weyl

group is finite. In this article we will focus primarily on the other cases, although we will be
able to draw some conclusions in the Mori Dream Space cases as well.
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The approach is as follows. Take the line class through two points h — e; — es (in the
i = —1 case), the line class through one point h — e; (in the i = 0 case), or the general line
class h (if i = 1).

Consider the class mod F' in A"7!/(F). The first step is to determine whether the class
mod F'is in the Tits cone, by using Proposition 4.8.

If the class is in the Tits cone, determine the class ¢ mod F in the nonnegative chamber
C that is in its orbit. Lift the analysis to A™~! and classify all Cremona reduced classes there
that are in the orbit of the line class.

If the class is not in the Tits cone, we conclude that no Cremona reduced class can be in
the orbit of that degree one class in A" L.

5.1 The Weyl group orbit of the line through two points: planar
and finite Weyl group case

Our primary example will be the line L5 through the first two points, whose class is h—e; —es;
d =m; = my = 1, and all other multiplicities are zero. We note that h —e; — ey - Xog = —1
and hence this class (mod F) is not in the positive chamber; it is not Cremona reduced. In
the finite Weyl group case, every class is in the Tits cone, and so the algorithm of Proposition
4.8 will terminate in a Cremona reduced class R, s mod F' in the orbit of h —e; —ey. It
turns out that this happens for » = 2 and all s > 3 as well. We present the results for the
various cases below. We also present the subset X for which R,, € Cx, where C is positive
chamber for the Weyl group action.

T, s R, s = (d;m) mod F subset X
r=2s=3: (0;0,0,-1) {X1}
r=2,s>4: (0; 0571, —1) {Xizs—1}

r>3,s=r+1: (2—7;0,0,(=1)""h) {Xizo02}
r>3,s=r+2: (2—7;0,0,0,(—=1)"1) {Xizs}

r=2k>2s=r+3: (2k+1)(1—k);1—k)"? —k) {Xiz-1}
r=2k+1>3s=r+3: (—2k* — 2k + 1; (—k)"+3) {Xizo}
r=3,s="7: (—3;0,(—1)°%) {Xiz}
r=4,s=8: (—14;-2,(=3)7) {Xia}

We note that in all cases, the subgroup Wy fixes the Cremona reduced element R, , as
expected.

We have the following; the content here is that if a class is such that both the linear and
quadratic invariant is the same as line through two points, it is either reducible by Cremona,
or it is Cremona reduced, and is in fact not a Weyl line.

Proposition 5.1. Suppose that r = 2 and s > 3 or r,s satisfy (4.7). Let ¢ be a class
in A"™1 with positive degree and non-negative multiplicities, such that (¢, F) = 3 —r and
(c,cy =3 —=2r. Then:

(a) If ¢ is Cremona reduced, it is not the class of a (—1)-Weyl line.

(b) If ¢ is not Cremona reduced, let R be the result of applying the Cremona reduction
algorithm. If r # 2 orr = 2 and s # 9, then c is the class of a (—1)-Weyl line if
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and only if R = R, 5, which is equivalent to ¢ Cremona-reducing to h — ey — ey via the
reduction algorithm. If ¢ # h — ey — ey, then this happens if and only if ¢ reduces to
the class of the rational normal curve through r + 3 points.

(c) If r =2 and s = 9, then c is the class of a (—1)-Weyl line if and only if R = R, ,
which is equivalent to ¢ Cremona-reducing to h — ey — es via the reduction algorithm.
If ¢ # h — e; — ey, then this happens if and only if ¢ reduces to the class of the rational
normal curve through r + 3 points.

Proof:

Suppose that ¢ is a numerical (—1)-Weyl curve class in A" !; ie., (¢, F) = 3 —r and
(c,c) = 3 —2r. To detect whether ¢ is the class of a (—1)-Weyl line, we apply the algorithm
of Proposition 4.8 and arrive at a class R. We then consider R mod F € C. By Remark
4.4, if ¢ is the class of a (—1)-Weyl line, we must have R = R, ; mod F', since the subgroup
Wx fixes R, . If not, we conclude that ¢ is not the class of a (—1)-Weyl line. If so, then we
conclude that R = R, ; + kF' for some k. We note that both R and R, ; have the same linear
and quadratic invariants; they are numerical (—1)-Weyl lines too.

Now it is elementary that, for these values of the invariants, if « is any curve class, such
that (a+kF, F) = (o, F) and (a+kF,a+kF) = (a, «), then we must have k = 0. (Indeed,
the linear invariant equation suffices unless r = 2 and s = 9, since this is the only case where
(F,F)=0.)

We conclude that R = R, s, and so c reduces to R, s by applying the reduction algorithm,
and hence reduces to something with non-positive degree and non-positive multiplicities.

Finally we remark that ¢ actually must reduce to the original line class h —e; — e5 on
the way to R, ;. To see this, one makes a case-by-case analysis of each R, ;, asking what
classes could reduce to it by applying the Cremona reduction algorithm. Let us show how
this analysis goes in one case; we will leave the others (which are entirely parallel) to the
reader.

For example, consider the r = 3, s = 7 case; here R3; = (—3;0,(—1)°%) using the vector
notation; we will re-brand this class as R_3. Since the standard Cremona transformation is
an involution, one obtains all classes that could Cremona to R_3 by applying the standard
Cremona to R_3. There are two choices here (up to symmetries) for choosing the 4 points to
apply the standard Cremona transform: either we include the O-point or not. If we include
the 0-point, the Cremona transform fixes Rz 7. If we do not, the Cremona transform leads
to R_; = (—1;0% (—1)?). Hence any class that reduces to R37 must 'pass through’ R_; on
the way.

Now apply the same argument to R_; if the four chosen points include zero of the (—1)-
points, the transformation goes back to R_3. If the four chosen points include one of the
(—1)-points then it fixes R_; If the four chosen points include two of the (—1)-points, the
Cremona brings it to Ry = (1;12,05), which is the original line class. We then conclude that
any class that reduces to Rs 7 must pass through this original line class along the way.

This happens in each case in the table above; as noted, we leave this elementary check
to the reader.

Finally we note that the only class that directly reduces to h — e; — ey is the class of
the rational normal curve (r + 1; 173 057"73); hence if ¢ is not the line class already, then it
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must actually reduce to the RNC class as well, on the way.
QED
The Proposition above indicates that we must apply the Cremona reduction algorithm
to determine whether a class is the class of a (—1)-Weyl line. Of course necessary conditions
are that the class have the correct linear and quadratic invariants, and (in the r, s cases
considered above), not be Cremona reduced if the degree and multiplicities are non-negative.
These are not sufficient conditions however, as the following examples show.

Example 5.2. (a) We recall from [DM2] that the curve G = Th — 4e; — .11, ¢; is not a
(—1)-Weyl line even though it satisfies the linear and quadratic equalities (G, F') = 3—r
and (G,G) = 3 —2r. (It is Cremona reduced.) We observe that G fails the projection
inequality (2.5) in P3.

(b) We observe that even if a curve satisfies the linear and quadratic equalities and the
projection inequality it is not enough to guarantee that the curve class is a (—1) Weyl
line. Indeed, consider J := 13h—2?:1 4e; —Ziﬁ e; in P3; it does satisfy the linear and
quadratic invariants and the projection inequality (2.5). However J is not the class of

a (—1) Weyl line.

5.2 Lines through two points: infinite Weyl group cases

Here we want to prove that h — e; — e5 is not in the Tits cone. To see this, we will show
that running the algorithm of Proposition 4.8 does not terminate.

Lemma 5.3. Suppose r > 3, s > r+5, and ¢ = (d;my,...,ms) is a class in A" with
m; > myy1 for each i, and satisfying

(i): d < My, (ii): mg>my+t, and (iii): 2d < My + M,_,,

where My, = >\ _ymyy; and t = d — My. Then if ¢ = (d';mf,...,m)) is the class obtained

from ¢ by applying ¢ and re-ordering the multiplicities in descending order, then the degree

and multiplicities of ¢ also satisfy the above three inequalities.

Proof: The inequality (i) says that the degree strictly decreases, and (ii) implies that, in
descending order, the numerical characters (d'm’) of ¢ are:

d=d+(r—1)t=rd+ (r—1)M;

/ / / /!
=ms,my ., =my+t,mg .y =ma+1t,....,mg=mp+t

/
ml - mr+2, e ,ms_r_l

Since the multiplicities are in descending order, (iii) implies that
2d < My + A (5.4)

where A is any sum of r + 1 distinct multiplicities, since M,_, < A in that case. By adding
to this any multiple j of (i), we also have that

J+2)d<(G+1)M +A (5.5)
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for any j > 1, if A is any sum of r 4+ 1 distinct multiplicities.
We note that

- M; o if s>2r+2
' Zf:r+2mi+m1+---+mk—l—k‘t fk=2r+2—-s>1

In both cases we have that M| = A + kt where A is a sum of r + 1 distinct multiplicities
and 0 < k <r —3. (We define A and k by this, and we observe that we use s > r+5 to see
that £ <r —3.)

The persistence of (i) requires us to show that d’ < M/, which is equivalent to d+(r—1)t <
A+kt,or (r—k)d<(r—k—1)M; + A. This is (5.5) with j =7 — k — 2; since k <r — 3,
we have 7 > 1 as needed.

To show that (ii) persists, we must show that m} +t < m/. Since ¢’ = d’ — Mj, this is
equivalent to m,4o + (rd — (r — 1)M;) — (A + kt) < m,41 + t, which can be rearranged as
(r—k—1)d < (r—k—2)M;+ A+m,11 —myi2. Since m, 1 > m,2, it suffices to show that
(r—k—1)d<(r—k—2)M; + A; since r — k — 1 > 2, this follows from (5.4) (if k =r — 3)
or (5.5) (if k <r —3).

Finally to show that (iii) persists, we must show that 2d" < M] + M!_,.. We note that
M!_. = M+ (r+1)t, so this is equivalent to 2(rd — (r —1)M;) < (A+kt)+ (M, + (r+1)t).
This can be rearranged as (r —k — 1)d < (r — k — 2)M; + A which is the same inequality we
just showed above.

QED

If s =r + 4 the above proof must be modified as follows.

Lemma 5.6. Suppose r > 5, s = r+4, and ¢ = (d;my,...,ms) is a class in A" with
m; > myy1 for each i, and satisfying

(Z) d < Ml, (’LZ) mi+1t < Myi4, (ZZZ) d< N1 and (’L’U) 2d < My + M4,

where M, = Z::O Mgri, N1 = mqg + mg + mg + Z::? m;, and t = d — My. Then if
d = (d;my,...,m.) is the class obtained from c by applying ¢ and re-ordering the mul-
tiplicities in descending order, then the degree and multiplicities of ¢ also satisfy the above

three inequalities.

Proof: The inequalities (i) and (ii) imply that when we apply ¢ and re-order the multiplic-
ities, the result has the degree strictly decreasing, with ' = d + (r — 1)t = rd — (r — 1) Mjy;
and the multiplicities of ¢ are

!/ / / !/ / !/
My = Myyo, My = Myy3, M3y = Myyyg, My =My +t,mg=mo+1,...,m.y=mp1 +t

Define Ny = Z:;f m; + Myyo + Myi3 + Mmyyy, and observe that Ny > Nj since r > 5. We
note that M{ = Ny + (r — 2)t, N{ = My + (r — 2)t, and Mj = M; + (r + 1)t.

To prove that (i) persists, we must show that d’ < M;, which is equivalent to 2d <
M + Ny; this follows from (i) and (iii).

To prove that (ii) persists, we must show that m} + ¢ < m/,,, which is equivalent to
d < Ny + (m,41 — my42; this is implied by (iii) and that the multiplicities are in descending
order.
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To prove that (iii) persists, we must show that d’ < Nj, which is equivalent to (iv).

To prove that (iv) persists, we must show that 2d’ < M] 4+ M}, which is equivalent to
d < N,, and is implied therefore by (iii).

QED

Since the hypotheses of these two Lemmas are satisfied by the class h — e; — ey, they
imply that the class of a line through two points is not in the Tits cone, for the range of
parameters that enjoy an infinite Weyl group. Hence no Cremona reduced class can be in
the orbit of this class, and we have proved the analogue of Proposition 5.1 for these cases.
This covers all possible parameters then, and we have the following.

Theorem 5.7. For all parameters r, s, with r > 2 and s > r + 1, there are no Cremona-
reduced numerical (—1)-Weyl classes ¢ = (d;m) with all d, m; non-negative which are (—1)-
Weyl lines, i.e., Cremona-equivalent to h — ey — es.

Note that we are not saying that there are no curve classes with all d, m; non-negative
that are classes of (—1)-Weyl lines; there are infinitely many. The class (d;m) = (1;1?) is
one of course; so is the class of the rational normal curve (r + 1;1"3) in P" through r + 3
general points. If we allow s to increase, we can find such classes with arbitrarily high degree
using Cremona transformations.

This also gives us the following.

Proposition 5.8. Suppose that ¢ is a (—1)-Weyl line class with non-negative degree and
multiplicities, in the orbit of h — e; — es. Then c¢ is not Cremona reduced. If the degree
is larger than r, the algorithm of re-ordering the multiplicities in non-increasing order and
applying the standard Cremona transformation ¢ to the r+1 largest multiplicities will strictly
reduce the degree, and can be applied iteratively until one arrives at the class of the rational
normal curve through r+3 points. That class reduces to h—e; —es with one more application

of ¢.

This is simply the content of Lemma 3.9(d), after observing that we now know that
all classes are non-Cremona-reduced. The importance of this is that, applying Cremona
transformations as above, one reduces a (—1)-Weyl line class 'monotonically’ to the class of
a rational normal curve.

5.3 The case of a line through one point

The same principles and arguments can be applied to other interesting curve classes in A" 1.
The main difference is that this class is in the Tits cone, so the analysis must be adjusted
appropriately; it is more elementary in fact.

We first take up the case of the line through one point, whose class is h — e;. This class
represents a rational curve in P” with trivial normal bundle.

Theorem 5.9. Fizr > 3. Then the only Cremona-reduced classes ¢ = (d;m) (with all d, m;
non-negative) which are Cremona-equivalent to h — ey are the classes h — e; for 1 <i < s.
Any (0)-Weyl line with positive degree and non-negative multiplicities may be brought to
h — e1 via a series of Cremona transformations, each of which monotonically decreases the
degree, followed by a single permutation.
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Proof. Take ¢ and permute the multiplicities to be in non-increasing order. Then both
h —eymod F and cmod F are in the closure C of the positive chamber, and so we may apply
Lemma 4.10 and conclude (since they are Cremona equivalent) that they are equal mod F.
Hence we may write ¢ = aF + (h — e;) for some integers a > 0.

Since (¢, F') = (h — ey, F') = 2, this forces a(F, F) = 0. If (F, F) # 0, we conclude that
a=0.

Suppose that (F, F') =0. Then 2—r = {(¢,¢) = (h—ey,h—e1)+2alh—e1, F) =2—r+4a
and we conclude @ = 0 in this case as well.

Hence ¢ = h — ey after permuting the multiplicities, and so ¢ = h — ¢; for some j as
claimed.

The final statement follows from applying the Cremona reduction algorithm.

5.4 The case of a line through zero points
A parallel (even easier) argument can be applied to the line class h also:

Theorem 5.10. Fix r > 3. Then the only Cremona-reduced classes ¢ = (d;m) (with all d,
m; non-negative) which are Cremona-equivalent to h is the class h. Any (1)-Weyl line with
positive degree and non-negative multiplicities may be brought to h via a series of Cremona
transformations, each of which monotonically decreases the degree.

Proof. Suppose that c is such a class; permute the multiplicities again to be in non-increasing
order. Then as above we conclude that ¢ = h mod F', and we may write ¢ = aF + h for some
a > 0.

Using the bilinear form pairing with F' gives that » + 1 = (¢, F') = (h, F) + a(F, F) =
r+ 1+ a(F, F), so we conclude a = 0 if (F, F') # 0.

If (F,F)=0,then 1= (c,c)=(h+aF,h+aF)=1+2a(h,F)=1+2(r+ 1)a, and we
conclude that a = 0 in this case as well. O]

5.5 The Projection Inequality for (i)-Weyl lines

Fix i € {—1,0, 1}, and suppose that C'is an (i)-Weyl line, Cremona equivalent to h —e; —es,
h — ey, or h.

Corollary 5.11. Fiz i € {—1,0,1} and suppose that c is an (i)-Weyl line class with non-
negative degree and multiplicities. Assume ¢ # h — e; — e;, a degree one (—1)-Weyl line.
Then ¢ satisfies the projection inequality (2.3), (equivalently (3.8)) i.e. d+my < 22:2 mj+1
or (c,h —ey) > 1.

Proof. Start with ¢ = —1. This is an induction on the degree d, starting with d = r by
Lemma 3.9(b). For d = r, ¢ must be the rational normal curve, which does satisfy (2.3).
The induction step now follows from Proposition 5.8, using Proposition 3.7 to see that the
inequality is preserved.

For ¢ = 0 or i = 1, again we apply induction, using Proposition 3.7 for the induction step
and this time noting that the statement is true for h — e; and h, as starting points for the
induction. The required monotonicity is provided by Theorems 5.9 and 5.10. [
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6 Criteria for (—1)-Weyl lines

We have seen above that if ¢ is the class of a (—1)-Weyl line in A"~!(Y"), then we must have
the specific values for the linear and quadratic invariants and the projection inequality must
hold (unless it is the class h —e; — ¢;).

We have also seen in Example 5.2(b) that these numerical conditions are not sufficient.
The issue there was that the system satisfied the projection inequality, but after one Cremona
transformation, it did not. This leads us to consider a stronger version.

6.1 The Strong Projection Inequality

We first recall that the projection inequality for (i)-curves (2.3) can be re-written as in (3.8):
(c,h —ej) > 1 for every j

and this can be checked by applying it only to the largest multiplicity index j.

Given the simplicity of the planar case (see Lemma 2.6), we will assume that r > 3.

We have already seen, in Corollary 5.11, that if a class ¢ is an (i)-Weyl line class, then it
satisfies the projection inequality (unless i = —1 and the degree equals one). We can extend
this as follows.

Lemma 6.1. Let ¢ € A" YY) be an (i)-Weyl line class with positive degree and non-
negative multiplicities. Let w be an element of the Weyl group such that deg(w'(c)) > 1.
Then for every j,

(c,w(h —e€;)) > 1.

Proof. By hypothesis ¢ is in the orbit of h —e; — ey, h — ey, or h, and therefore w™!(c) is as
well. Therefore since w!(c) has degree bigger than one, Corollary 5.11 applies and we have
(w™(c),h — e;) > 1. This implies the result, because the bilinear form is invariant under
the Weyl group, so that (c,w(h — ¢;)) = (w™(c), h — ¢;). O

Definition 6.2. Let ¢ € A" YY) be a curve class. We say that ¢ satisfies the strong
projection inequality if
(c,wlh—ej)) >1

for any element w of the Weyl group for which deg(w™1(c)) > 1.
Hence any (7)-Weyl line class satisfies the strong projection inequality, by Lemma 6.1.
Definition 6.3. A curve class ¢ € A™™! is a numerical (i)-Weyl line class if
(a) (¢, F) =2+i(r —1);
(b) {c,c)=(r—1)(i—1)+1;
(¢) for any w in the Weyl group with deg(w="(c)) > 1 then (c,w(h — e;)) > 1,

i.e., ¢ has the same linear and quadratic invariants as an (i1)-Weyl line, and satisfies the
strong projection inequality.
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Corollary 6.4. Every (i)-Weyl line class in P (i.e., a class in the orbit of h — e; — eq,
h — ey, or h) is a numerical (i)-Weyl line class.

This follows immediately from Corollary 3.6 Lemma 6.1.
We will leave the following as an open question in P".

Question 6.5. Is the converse true? Are the two notions of (i)-Weyl line class (i.e., a class
in the orbit of h — ey — ea, h — ey, or h) and numerical (i)-Weyl line class (i.e., satisfying
the above three numerical conditions) equivalent in P"?¢

We devote the next section to the study of curves in P3. We generalize Max Noether’s
inequality for planar curves to curves in P? and provide a positive answer to this question
for classes on general blowups of P3.

6.2 M. Noether’s inequality for curves in P3

The aim of this section is to answer affirmatively Question (6.5) in IP® by proving a Noether
type inequality for curves, which was originally proved by M. Noether for planar curves. The
same proof was later generalized to divisors in P" [DO, DP]. We show below that the proof
also applies for curves in P3.

We remark that for numerical (i)-classes in P? the projection inequality reads m; <
(d—1)/2 by (2.5).

Theorem 6.6 (M. Noether’s inequality for curves in P3). Fix i € {—1,0,1}. Let ¢ =
dh =3, m; € AX(Y?) be a curve class, with degree d greater than one. Assume that

1. (¢, F)=2i+2. (This gives 2d = ;_,m; +i+1.)
2. {c,c) <2i—1. (This gives d* <2 ;_ m?+2i—1.)
3. my < (d—1)/2 for any k € {1,...,s}.

Then my + mo + m3 +my > d.

Proof. 1f s < 4 then the first condition implies m;+...+my=2d—1—1>2d—2. If d > 3
then 2d — 2 > d + 1 > d, which suffices. If d = 2 then 2d —i — 1 < d only if i = 1; and in
that case the second condition says that 3 <2 m?. However the third condition forces all
multiplicities to be zero, giving a contradiction.

We consider now s > 5. We put the multiplicities in non-increasing order: my > m,, for
k <p. For any j € {1,...,s}, we define

m?—i—...—i—mz

m;+ ...+ mg

q; =

and observe that m; > ¢; for any j € {1,..., s}, which follows from the decreasing order of
the multiplicities, since >3 mymy > 37 mi.
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Notice that

mf—}—...—l—mg

= my+ ...+ mg
2 o
2d —1—1
- d
4
The last inequality is equivalent to d(1+4) > (4i — 2) which holds for =1 <i <1 and d > 1.
Define r, = my — qi for all k; note that r, > 0. Define p, = ﬁ for k£ > 1. Note
that ‘

Q-1 — Th—1Pk = k-1 — (Mp—1 — Qkfl)pk
= —mp_1Pk + Qe—1(1 + pi)
Mp—1 + = My
My + -+ M
mip_q + -+ +m? (6.8)
Mg+ =+ 4 Mg
—mi_y+mi_; 4+ m?
My + -+ +ms

= —Mp_1Pr + Gr—1

= —Mg_1Pk +

= Gk
This implies that

Q-1+ 7Th-1+ N@p = -1 + 76-1 + N(@r-1 — Tr—1Pk)

= (N 4+ 1)gr—1 +7r-1(1 — Npg) (6.9

for any N.

Several of these quantities 1 — Np; are non-negative. To see this first note that 2d —
4my — 1 — 1 > 0, since this is equivalent to m; < % + %, which follows from assumption
3, given that ¢ € {—1,0,1}. Since m is the largest multiplicity, this implies that

2d—k—i—1>0 (6.10)

for k equal to the sum of any four multiplicities.
Now we see the following:

—3my +mg+ - +my 2d—4m1—i—1>

1—3]92: = _O,
m2+...+m8 m2+...+ms
—2 s 2d— —3mg—1—1
| _opy— —cMedms e AT T T L g (6.11)
mz—+ -+ my M3+ -+ m
—ms+mMa+---+mg 2d—mq;—myg—2mg—1—1
1_p4: - 207
my + -+ + My my + -+ + My

all of which use (6.10) applied to the numerator.
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Now compute, using (6.7), (6.8), (6.9), and (6.11):

my+mg+ms+mg > (g +r1)+ (@+r2) + (g3 +73) +aqu
= (¢ +71)+ (g2 +72) + 25+ 75 (1 —pyg)
> (q1+71) + (g2 +72) + 2g3
= (q1 +71) + 3q2 + r2(1 — 2p3)
> (g1 +71) + 3¢
=4q; +r1(1 — 3p9)
>4q; > d

]

Hence any class satisfying the hypotheses of Theorem 6.6 is not Cremona reduced, and we
may apply a standard Cremona transformation at the four points with largest multiplicities
to strictly reduce the degree.

Remark 6.12. An (i)-Weyl line in Y2 satisfies the hypotheses of Theorem 6.6 since it has
has the correct linear and quadratic invariants and satisfies the third condition by Lemma
6.1.

6.3 A numerical criterion for Weyl curves in P?

We are now in a position to prove the main result of this section.

Theorem 6.13. Let C' be an irreducible curve in Y2 with class ¢ = dh — Y, m;e; € A*(Y?)
such that d > 1 (and all multiplicities non-negative). Then the following are equivalent:

(a) 1. (c,F)=2i+2.
2. {c,c) =2i — 1.
3. {e,w(h —ey)) > 1 for any w in the Weyl group with deg(w=(c)) > 1.

(b) c is a (i)-Weyl line class and represents an irreducible (i)-curve C' in Y2 which is
Cremona-equivalent to a line through 1 — v points.

Proof. We have seen that (b) implies (a) via Corollary 6.4. We claim now that (a) implies
(b); we will prove this by induction on the degree d.

1. Base Step. We assumed that C' is a curve of degree d > 2. The first observation
is that there exist no curve of degree d = 2 satisfying condition (a) (1), (2), (3); if i = +1
then (a)(2) requires d to be odd, and if ¢ = 0 there is no integer solution to (1) and (3). If
d = 3, the only integer solution to the assumptions is the twisted cubic with multiplicity one
at 5 — i points: ¢ = 3h — >, " e

2. Induction Step. Assume now that d > 4, and we assume the statement holds for
any curve D with 3 < deg(D) < d — 1. We will prove the result for a curve C' of degree d,
with non-negative multiplicities, which we may arrange in non-increasing order. We assume
then that such a C satisfies (a)(1,2,3).
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The assumption (a)(3) (applied with the identity Weyl group element and k = 1) implies
that my; < (d — 1)/2 and therefore (a) implies that hypothesis of Theorem 6.6 are satisfied.
Therefore the class ¢ is not Cremona reduced. Since d = deg(C) > 3 we also have that C
is non-degenerate, by Lemma 3.9(c). Hence the standard Cremona transformation ¢ will
reduce the degree of C. If we let D := ¢(C), then D is also an irreducible curve: C' cannot
be contracted by ¢ since it is non-degenerate. We also have deg(D) < deg(C).

Furthermore, (D, F) = (¢(D),¢(F)) = (C,F) = 2i+ 2 and (D, D) = (C,C) = 2i — 1.
Therefore (1) and (2) of (a) hold for D; we claim now that (3) is also true for D.

To see this, fix any w in the Weyl group with deg(w='(D)) > 1. We then have

(D, w(h —ex)) = (D), (¢ ow)(h — ex)) = {C,n(h — ex))

where 1 = ¢ o w. We claim now that deg(n'(C)) > 1. Indeed, ¢ is an involution, so

deg ™! (C) = deg((¢ 0 w)~'(C))
— deg(w™! 0 6)(C)
— deg ™ (6(C)) (6.14)
= degw (D)
> 1.

This proves the claim, and therefore by the hypothesis (a)(3) on C, we have (C, n(h—ey)) > 1.
Since

(D, w(h = ex)) = (6(C), p(n(h —ex))) = (C,n(h —ex)) = 1,

the hypothesis (a)(3) also holds for D as well. Hence by induction, we conclude that D is a
(1)-Weyl line, i.e., in the orbit of a line through 1 — i points; therefore so is C'.

m
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