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ABSTRACT. In this paper we develop a technique for discovering (non-effective) irrational
rays at the boundary of the Mori cone for linear systems on a general blowup of the plane,
and give examples of such irrational rays.

INTRODUCTION

LetXs be the blow-up of the complex projective plane at s very general points. We will
usually assume s ⩾ 10. Let L = Ld(m1, . . . ,ms), with d > 0, be the linear system on Xs

corresponding to plane curves of degree d having multiplicities at least m1, . . . ,ms at the
given points (we will use exponential notation for repeated multiplicities). If we denote by
H the class of the pullback to Xs of a general line in the plane, and by Ei the exceptional
divisor over the i-th point that is blown up, then the linear system L corresponds to the
global sections of the line bundle OXs(dH −

∑
imiEi). The (projective) dimension of

the linear system is dim(H0(Xs,OXs(dH −
∑

imiEi))) − 1. The system is said to be
effective if the dimension is non-negative, i.e., there are effective divisors in the linear
system. If the dimension is −1, we will say that the system is non-effective, or empty.

We note that the Picard group of Xs is the free abelian group of rank s + 1 generated
by the classes of H and E1, . . . , Es. We define N = N1(Xs) to be Pic(Xs)⊗Z R; this is
a real vector space of dimension s+ 1.

A ray in N is the set of all non-negative real multiples of a non-zero vector in N . Many
of the concepts applicable to elements of the Picard group Pic(Xs) may be extended to N .
A ray is called effective if there is a (necessarily integral) vector in the ray that represents
an effective divisor class in Pic(Xs). The ray is called rational if it contains a nonzero
integral vector (i.e., an element of the Picard group). The degree deg(R) of a ray R,
the coefficient of H , is not well-defined, but its sign is; hence we may speak of a ray
of positive/zero/negative degree. Every effective ray R must have non-negative degree.
Similarly, if R and R′ are two rays, the intersection R · R′ is not well defined, but its
sign is. In particular this applies to the self-intersection of a ray. Any rational ray with
deg(R) > 0 and R2 > 0 is effective (by Riemann-Roch).

The effective cone is the cone generated by effective rays, i.e., all finite linear combi-
nations of effective divisors with positive real coefficients. In general the effective cone
is not closed; its closure is called the Mori cone. The dual of the Mori cone is the cone
of nef divisors, or nef rays; these are divisors/rays that intersect all effective divisors non-
negatively. This nef cone is closed.

In [CHMR13], a good ray was defined as a non-effective rational ray with non-negative
degree (intersection withH) and zero self-intersection. Such a ray is extremal for the Mori
cone and the nef cone, and is nef (see [CHMR13, Lemma 3.8]).
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In that paper we also defined a wonderful ray, as a nef ray that has self-intersection zero
and is irrational. Up to this point, no wonderful ray (with all coordinates nonzero) for any
s>10 has appeared in the literature. Some of the motivation for discovering wonderful
rays is as follows.

Define the De Fernex ray Fs to be the ray generated by
√
s− 1H −

∑s
i=1Ei. A ray R

is said to be De Fernex positive, negative or orthogonal according to R ·Fs being positive,
negative or null. The Strong ∆-Conjecture (see [CHMR13, Conjecture 3.10]) is that if
s ⩾ 11, and R is a rational De Fernex non–positive ray of self-intersection zero, then R
is not effective, and therefore is a good ray. (See [DeF01]; there is a refinement for the
s = 10 case.) Note that R ·Fs ⩽ 0 implies R ·Ks > 0, where Ks = −3H +

∑
iEi is the

canonical divisor on Xs.
The Strong ∆-Conjecture would imply that an irrational De Fernex non–positive ray R

with self-intersection zero is a wonderful ray, since any such ray would then be a limit of
good rays which are nef.

This remark implies, in particular, that the Nagata ray
√
sH −

∑
iEi would be won-

derful (if s is not a square), and this would prove the Nagata Conjecture (see [N59]). Of
course the Nagata Conjecture is very important and has been shown for decades that it is
difficult to prove. However, in view of the Strong ∆-Conjecture, from a conceptual Mori
cone viewpoint, proving that the Nagata ray is wonderful is not philosophically more im-
portant than proving that any other De Fernex negative irrational ray with self-intersection
zero is wonderful.

In the unpublished work [DeF01], De Fernex showed that for s = 10, all rays R of
selfintersection zero with R · K10 = 0 are nef. Since such rays can be irrational, they
provide examples of wonderful rays according to the definition of [CHMR13], and they are
the only wonderful rays ever produced in the literature so far. Note that these are De Fernex
orthogonal, and hence not the most relevant for our motivation. After a first version of this
article appeared on math.arxiv, J. C. Ottem kindly communicated to us that he knew about
the existence of such rays in some particular cases, using completely different methods
from ours presented here. For instance, for 12 points, he could construct wonderful rays
orthogonal toK12 (so, De Fernex positive) on the blow-up of the dual Hesse configuration,
exploiting the fact ([Tot10], [RU15]) that it is the minimal desingularization of a quotient
of a well understood abelian surface. As far as we know, general constructions for arbitrary
s have not been known. In this paper we fill this gap by proving the following.

Theorem 1. For all s ⩾ 10, wonderful rays R exist. For all s ⩾ 13, wonderful rays R
with R ·Ks > 0 exist. For s = 14, for all s ⩾ 13 such that s − 4 is a square, and for all
s ⩾ 18 such that s− 2 is a square, De Fernex negative wonderful rays exist.

Our proof is explicit, in that for each s, we exhibit an irrational ray with self-intersection
zero, all of whose coordinates are positive, and prove that it is wonderful by proving that
it is a limit of explicit good rays. For certain values of s, as stated in Theorem 1, these
wonderful rays intersect the canonical divisor positively, and the De Fernex ray negatively
(note that all good rays known so far were isolated, and in fact the only previously known
cases of non-isolated nef rays of self-intersection zero are the unpublished examples due to
De Fernex and Ottem, so this is also the first example of accumulation of self-intersection
zero classes on the boundary of the Mori cone with R ·Ks > 0).

Specifically, we start by exploiting an infinite sequence of Cremona transformations,
which we then apply to a carefully chosen good ray, and show that the limit ray exists and
is irrational. Since Cremona transformations preserve the ’goodness’ of the rays, the limit
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is therefore a limit of good rays, and is therefore wonderful. The rays obtained in this way
are orthogonal to Ks.

To produce wonderful rays that meet Ks positively, and are De Fernex-negative, we
exploit a degeneration technique (described in Section 1) that allows us to coherently re-
duce Ks-positive and De Fernex-negative systems to the systems generating the sequence
of good rays found in the first step above. The limit of these systems then provide the
examples which prove Theorem 1.

The construction that we present and develop is a general technique for iteratively gen-
erating good rays, based on a judicious use of degeneration procedures and Cremona trans-
formations. This technique can be applied more extensively, to produce additional won-
derful rays, some of which have additional properties; we are developing this. In particular
using this same strategy, we can get many other irrational points on the boundary of the
Mori cone, though we do not present them in this paper. Our approach to the results of
this paper (namely using Cremona transformations to get wonderful rays orthogonal to the
canonical system and then applying the uncollision technology that we present in §1) ac-
tually can be shown to produce all the wonderful rays of the unpublished DeFernex paper
[DeF01] that are orthogonal to the canonical system. However we will not dwell on this
here.

The linear systems we consider will have points with at most three distinct multiplicities,
i.e., they will be of the form Ld(a

sa , bsb , csc). This is only a technical device to simplify
computations; clearly many other examples can be found with more different multiplicities.

There is a close relationship between our results here and the possible existence of
irrational Seshadri constants. Namely, there are many rays of selfintersection zero (like the
Nagata ray) which, if proven to be wonderful, would imply that some Seshadri constant
at a blow-up of P2 is irrational. The wonderful rays presented here are not among these;
however, it is possible that our techniques can be used to show the existence of such rays.
(See [HR08], [CHMR13], [DKMS16] and [HH18] for more details.)

In the first two sections, we present the technical tools used to obtain wonderful rays.
In the last three, we prove separately the three existence claims of our main Theorem.

Acknowledgements: Ciro Ciliberto is a member of GNSAGA of the Istituto Nazionale
di Alta Matematica “F. Severi”. We thank the Centre de Recerca Matemàtica for the hos-
pitality in arranging Ciliberto’s and Miranda’s visit to Barcelona within its “Research in
Pairs” program. This work was also partially supported by project PID202-116542GB-I00
from the Spanish Ministerio de Ciencia e Innovación.

1. COLLISION OF r2 POINTS

A key part of the construction involves a degeneration of a linear system Ld(m1, . . . ,ms)

where r2 of the s points, of equal multiplicity m, come together; following Évain, who
treated particular cases of the situation in the 90’s [E98], we call this a collision. We will
index the points so that the first r2 multiplicities are all equal to m. The analysis of this
situation for r = 2 was developed in [CM05]; here we need to allow any integer r ⩾ 2, but
the same technique combined with Nagata’s result of [N59] on square numbers of points
is enough for our purposes.

We consider a trivial family X = Xs−r2 ×∆ over a disc ∆, and blow up a general point
in the central fiber over 0 ∈ ∆ to obtain the threefold X ′. This produces a degeneration
of Xs−r2 to a union of two surfaces, a plane (the exceptional divisor for the blowup) and
the proper transform F of the original Xs−r2 fiber, which is now isomorphic to Xs−r2+1.
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These two surfaces intersect transversely along a smooth rational curve R which is a line
in the plane and a (−1)-curve in F .

We now choose r2 general points on the plane; extend these r2 general points to the
general fiber using r2 sections of the projection of X ′ to ∆, and blow up those r2 sections
to ruled surfaces E1, . . . , Er2 . This then produces a threefold Y which is a degeneration of
Xs, to a union of a surface P ∼= Xr2 and F ∼= Xs−r2+1, intersecting transversely along
the double curve R. This smooth rational curve R is the pullback of a general line in the
surface P and remains a (−1)-curve in the surface F .

We have the line bundle corresponding to Ld(mr2+1, . . . ,ms) on Xs−r2 , and can ex-
tend it trivially to X . If we pull that back to the first blowup X ′, we see that this restricts
to the bundle corresponding to Ld(0,mr2+1, . . . ,ms) on the surface F , and to the triv-
ial bundle on the plane. We then pull that back to the second blowup Y , and tensor by
OY(−tP − m

∑r2

i=1 Ei), with t a non–negative integer (called the twisting parameter).
This produces a line bundle M on Y , which restricts to the general fiber in a bundle whose
associated linear system is the original system Ld(m1, . . . ,ms).

The restriction of M to P is a bundle with associated linear system Lt(m
r2). The

restriction of M to F is a bundle with associated linear system Ld(t,mr2+1, . . . ,ms).
At this point we choose the twisting parameter t to be the minimum t such that the linear

system Lt(m
r2) is effective. By Nagata’s theorem, if r > 3 then t > rm, and it is not

hard to see that if r ⩽ 3 then t = rm. The principle of semicontinuity guarantees that the
dimension of the general linear system Ld(m1, . . . ,ms) is at most equal to the dimension
of the linear system on the reducible surface P + F . The linear system on the reducible
surface corresponds to the fiber product of the space of sections on P with the space of
sections on F , fibered over the restriction to the space of sections on R.

Let us investigate this in more detail in the cases r = 2, 3; we do not need a precise
description if r > 3. We note that since we are taking the minimum twist parameter t
to make the system on P effective, the restriction map from the space of sections on P
to the space of sections on the double curve R (which is H0(OR(t))) is injective, onto a
subspace W ⊂ H0(R,OR(t)) of codimension c. Hence the fiber product is isomorphic to
the subspace ofHF = H0(F,OF (dH− tR−

∑s
i=r2+1miEi) which restricts to elements

of W . By the generality of the points chosen on P , the subspace W is transversal to the
full restriction, (see [CM98, Section 3]) and so the desired subspace also has codimension
c in HF .

If r = 2, the linear system on P is L2m(m4), whose elements are sums of m conics in
the system L2(1

4). This system restricts toR in a linear system onRwhich is not complete
(being of degree 2m and dimensionm); it has codimensionm. This imposes the additional
matching condition on the linear system on F = Xs−3: it must restrict to divisors on R
which are members of the linear system coming from P . We see then that the fiber product
has codimension m in the system on F ; these are the additional ’matching’ conditions to
be imposed on the system on F (over and above the point of multiplicity t = 2m).

If r = 3, the linear system on P is L3m(m9), which has a unique effective element,
namely the unique cubic through the 9 general points, taken with multiplicity m. This
cubic meets the double curve R in three (general) points, and will impose on the other
component Xs−8 three points of certain multiplicity on the double curve. We won’t need
to explicitly determine the multiplicity of these additional points; it will be enough for our
purposes to observe that the restricted system on R has degree 3m and dimension 0, which
means that the restriction subpace W above has codimension 3m. Hence the number of



IRRATIONAL RAYS 5

additional ’matching’ conditions imposed on F = Xs−8 is at least 3m (over and above the
point of multiplicity t = 3m).

In particular, whenever the linear system on F (with the matching conditions) is empty,
the collision shows that the original system was empty. It will be useful for us to proceed
in reverse: from a system on the plane with s− r2 + 1 points, whose dimension is known,
to another system of the same degree with s points obtained replacing the first point, of
multiplicity rm, by r2 points of multiplicity m. We call this an uncollision step.

We summarize this in the following.

Lemma 2. Fix r ⩾ 2, s ⩾ r2 + 1, and multiplicities m, mr2+1, . . . ,ms.
(a) If r = 2 and dimLd(2m,m5, . . . ,ms) < m, then Ld(m

4,m5, . . . ,ms) is empty.
(b) If r = 3 and dimLd(3m,m10, . . . ,ms) < 3m, then Ld(m

9,m10, . . . ,ms) is
empty.

(c) If r ⩾ 4 and Ld(rm,mr2+1, . . . ,ms) is empty, then the uncollided system
Ld(m

r2 ,mr2+1, . . . ,ms) is also empty.

Three comments are in order. First, the above reductions are sharp for r = 2, but not
for r = 3 or r ⩾ 4: there are additional matching conditions in order for a curve in the
degenerate surface P + F to be a limit of a curve on the general fiber. In particular,
as mentioned above, by Nagata’s theorem, if r ⩾ 4 then the minimum t such that the
linear system Lt(m

r2) is effective satisfies t > rm, so it would actually be enough that
Ld(rm+ 1,mr2+1, . . . ,ms) is empty in order to conclude that Ld(m

r2 ,mr2+1, . . . ,ms)
is also empty.

Second, we note that for all r the systems before and after the collision have the same
degree and self-intersection. In particular, if one is of self-intersection zero, so is the other;
this will be important in our application.

Third, the process of considering an ’uncollision’ behaves well with taking limits of
rays. Given a linear system L, and an index i denoting one of the multiplicities, we may
define the uncollision Uncollr(L, i) as the system replacing the i-th multiplicity mi by r2

points of multiplicity mi/r. For instance,

Uncollr(Ld(rm,mr2+1, . . . ,ms), 1) = Ld(m
r2 ,mr2+1, . . . ,ms).

This makes sense at the level of linear systems if mi is divisible by r, but also makes sense
as elements of N , and additionally makes sense for rays in N . In particular, if Lk is a
sequence of linear systems, giving rise to rays [Lk] ∈ N , then

(1) lim
k→∞

[Uncollr(Lk, i)] = [Uncollr( lim
k→∞

(Lk), i)]

as rays in N . We finally note that the uncollision process is given by rational parameters,
and so preserves rationality and irrationality of rays.

2. USEFUL CREMONA TRANSFORMATIONS

In this section we explore some Cremona maps that act on linear systems of the form
Ld(a

sa , bsb , csc).
Consider the Cremona–Kantor (CK) group Gs generated by quadratic transformations

based at n general points x1, . . . , xs of the plane and by permutations of these points (see
[DuV36], [A02], [Dol12, Chapter 7]). The group Gs acts on the set of linear systems of the
type Ld(m1, . . . ,ms). All systems in the same (CK)-orbit (or (CK)-equivalent) have the
same expected, virtual and true dimension. A linear system Ld(m1, . . . ,ms) is Cremona
reduced if it has minimal degree in its (CK)-orbit, and this is the case if and only if the
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degree is greater or equal to the sum of the three largest multiplicities (see [C31, p. 402-
402, Thms 8 and 10]).

An element ϕ ∈ Gs, seen as a linear automorphism of Pic(Xs) = ZH⊕ZE1⊕· · ·⊕Es,
can be specified by giving its characteristic matrix, i.e., the matrix with respect to the
standard basis (H,E1, . . . , Es). The homaloidal net of ϕ (i.e., the pullback of the net
of lines by ϕ) is Ld(m1, . . . ,ms) where (d,−m1, . . . ,−ms) is the first column of the
characteristic matrix of ϕ.

Example 3. There exist four homaloidal types with homogeneous multiplicities (see [Hud27,
IV,13], [A02, 2.5.5], [Dol12, 7.2.2]). The simplest one corresponds to the (standard) qua-
dratic map on three points, whose characteristic matrix is

Q =


2 1 1 1

−1 0 −1 −1
−1 −1 0 −1
−1 −1 −1 0

 .

Any permutation of the 3 rightmost columns gives rise to a distinct quadratic Cremona
map; the given matrix is the most symmetric, and it has the property of preserving the
order of repeated multiplicities, e.g., the pullback by ϕQ of a system Ld(m,m, n) is
Ld′(m′,m′, n′).

Of course, the quadratic Cremona map can be applied on any subset of three points
among the set of points {p1, . . . , ps} that we blow up, for any s ⩾ 3; the characteristic
matrix of the corresponding element in Gs is obtained from Q by adding suitably many
rows and columns of the identity matrix. Similarly, any Cremona map defined for Xs can
be applied to Xs′ with s′ > s by selecting a suitable set of s points among the s′, and the
matrix is obtained by adding rows and columns of the identity.

The other three homogeneous homaloidal types are attributed to Sturm, Geiser and
Bertini; as in the quadratic case, for each of them there is a unique ϕ ∈ Gs with that
type and of order 2. Their characteristic matrices are

S =


5 2 2 2 2 2 2

−2 0 −1 −1 −1 −1 −1
−2 −1 0 −1 −1 −1 −1
−2 −1 −1 0 −1 −1 −1
−2 −1 −1 −1 0 −1 −1
−2 −1 −1 −1 −1 0 −1
−2 −1 −1 −1 −1 −1 0

, G =


8 3 3 3 3 3 3 3

−3 −2 −1 −1 −1 −1 −1 −1
−3 −1 −2 −1 −1 −1 −1 −1
−3 −1 −1 −2 −1 −1 −1 −1
−3 −1 −1 −1 −2 −1 −1 −1
−3 −1 −1 −1 −1 −2 −1 −1
−3 −1 −1 −1 −1 −1 −2 −1
−3 −1 −1 −1 −1 −1 −1 −2


and

B =


17 6 6 6 6 6 6 6 6
−6 −3 −2 −2 −2 −2 −2 −2 −2
−6 −2 −3 −2 −2 −2 −2 −2 −2
−6 −2 −2 −3 −2 −2 −2 −2 −2
−6 −2 −2 −2 −3 −2 −2 −2 −2
−6 −2 −2 −2 −2 −3 −2 −2 −2
−6 −2 −2 −2 −2 −2 −3 −2 −2
−6 −2 −2 −2 −2 −2 −2 −3 −2
−6 −2 −2 −2 −2 −2 −2 −2 −3


respectively.

Example 4. In addition to the homogeneous Cremona maps of the previous example, we
shall use as building blocks two families of quasi-homogeneous involutions. The first is
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the de Jonquières map on 2n+ 1 points with characteristic matrix

Jn =



1 + n n 1 1 · · · 1
−n 1− n −1 −1 · · · −1
−1 −1 −1 0 · · · 0

−1 −1 0 −1
. . .

...
...

...
...
. . .

. . . 0
−1 −1 0 · · · 0 −1


(this matrix is not explicitly given in [A02, 2.6.10, 3.4.3] or [Dol12, 7.2.3], but it is easy
to recover it from the fact that the de Jonquières Cremona map is the composition of n
quadratic Cremona transformations based at points {p1, p2i, p2i+1}, for i = 1, . . . , n, and
permuting some points).

The second family have an even number of base points and was described by Montesano
in [Mon18] (see also [Hud27, IV.13]). The characteristic matrix defining the map with
2n+ 2 base points is

Cn =



1 + n2 −n+ n2 n n · · · n
n− n2 2n− n2 1− n 1− n · · · 1− n

−n 1− n 0 −1 · · · −1

−n 1− n −1 0
. . .

...
...

...
...

. . .
. . . −1

−n 1− n −1 · · · −1 0


.

The reader may check that this is the result of applying a de Jonquières map based at points
p2, p3, . . . , p2n+2 followed by another de Jonquières based at p1, p3, . . . , p2n+2 (where
p3, . . . , p2n+2 are the simple points of each de Jonquières homaloidal net).

Example 5. We will use in our constructions some particular familes of Cremona maps
of infinite order, built composing maps of the previous kinds. The maps in the first family
involve s = 2n + 7 points; they are obtained by composing a quintic Sturm map based
on points p2n+2, . . . , p2n+7 followed by a de Jonquières map based on (disjoint) points
p1, . . . , p2n+1. Extending the matrices Jn and S with the suitable number of rows and
columns and multiplying, one obtains the corresponding characteristic matrix, namely

JSn =



5+5n n 1 1 ··· 1 2+2n 2+2n 2+2n 2+2n 2+2n 2+2n
−5n 1−n −1 −1 ··· −1 −2n −2n −2n −2n −2n −2n
−5 −1 −1 0 ··· 0 −2 −2 −2 −2 −2 −2

−5 −1 0 −1
...

...
...

...
...

...
...

...
...

...
...
...

... 0
...

...
...

...
...

...
−5 −1 0 ··· 0 −1 −2 −2 −2 −2 −2 −2
−2 0 0 ··· 0 0 0 −1 −1 −1 −1 −1
−2 0 0 ··· 0 0 −1 0 −1 −1 −1 −1
−2 0 0 ··· 0 0 −1 −1 0 −1 −1 −1
−2 0 0 ··· 0 0 −1 −1 −1 0 −1 −1
−2 0 0 ··· 0 0 −1 −1 −1 −1 0 −1
−2 0 0 ··· 0 0 −1 −1 −1 −1 −1 0


.

In particular, the homaloidal systems of these maps have the form L5+5n(5n, 5
2n, 26). We

note that if we transform a linear system L whose parameters have the ’shape’ Ld(a, b
2n, c6),

then the result is a linear system with that same shape.
An additional useful family, involving s = 2n + 8 points for n ⩾ 1, can be ob-

tained by composing an octic Geiser map based on points p2, . . . , p8 followed by a quasi-
homogeneous map with characteristic matrix Cn+3 based on all points p1, . . . , p2n+8. Ex-
tending the matrix S with the suitable number of rows and columns and multiplying, one
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obtains the corresponding characteristic matrix CGn, which we omit for brevity, noting
only that its homaloidal system is L8n2+27n+17

(
8n2 + 19n+ 6, (8n+ 6)7, (8n+ 3)2n

)
.

Cremona maps with characteristic matrix JSn and CGn will be used extensively in the
sequel. For simplicity we fix the notation ϕn (or simply ϕ if n is understood) for a map
with characteristic matrix JSn, and ψn (or simply ψ if n is understood) for a map with
characteristic matrix CGn.

3. WONDERFUL RAYS IN K⊥
s

Because the intersection of the Mori cone with any hyperplane of the form d = constant
is compact, any infinite set of rays on the Mori cone has some accumulation ray. This
simple observation is enough to provide many interesting rays on the boundary of the Mori
cone. Indeed, if s ⩾ 9 then every divisor class not multiple of Ks has an infinite orbit
under the action of the Cremona group, and if R is a ray of selfintersection zero on the
boundary of the Mori cone, then every ray in its orbit also has selfintersection zero and
lies on the boundary of the Mori cone. As a consequence there exist accumulation rays of
selfintersection zero on the boundary of the Mori cone for every s ⩾ 10, an important fact
which has not received much attention before. A careful choice of Cremona maps allows
us to obtain explicit irrational rays with such properties:

Proposition 6. Let n be an integer, and considerαn =
√
n(n− 1) and βn =

√
49n2 − 28.

The rays generated by

Wodd = (5n2+4n)H−n (3n+ 2αn)E1−(3n+ 2αn)

1+2n∑
i=2

Ei−n (2 + n− αn)

2n+7∑
i=2n+2

Ei

on X7+2n if n ⩾ 2 and by

Weven = 14n
(
8n2 + 27n+ 16

)
H − 7n (n+ 2) (9n+ βn + 6)E1

−n(21n2 − 3nβn + 126n− 2βn + 84)

8∑
i=2

Ei − 7n (9n+ βn + 6)

2n+8∑
i=9

Ei

on X8+2n if n ⩾ 1 are wonderful.

Corollary 7. For every s ⩾ 10 there exist wonderful rays on Xs.

Remark 8. For s = 10, De Fernex [DeF01] proved that every ray of selfintersection zero
in K⊥

10 is nef. It can be proved that every such ray is a limit of rays in the orbit of the nef
class L3(1

9, 0) under the action of the Cremona-Kantor group. Also for other even s > 9,
our methods do provide many other wonderful rays, some of which are simpler than Weven

on Xs; we choose this divisor because it will be useful later on, to construct De Fernex
negative wonderful rays.

Proof. Let us tackle the odd case first. We are assuming that n ⩾ 2, so αn is irrational;
moreover the selfintersection of the given system is readily computed to be zero. We only
have to show that it is nef, or equivalently, that the ray it spans is a limit of nef rays.

Let ϕ be the Cremona map with characteristic matrix JSn given in Example 5. The
image under ϕ of a linear system of the form Ld(a, b

2n, c6) is again of that form, and is
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computed multiplying the matrix JSn by (d,−a, (−b)2n, (−c)6); the result has the param-
eters (d′,−a′, (−b′)2n, (−c′)6) where

d′

a′

b′

c′

 =


5n+ 5 −n −2n −12n− 12
5n 1− n −2n −12n
5 −1 −1 −12
2 0 0 −5



d
a
b
c

 .

So Ld(a, b
2n, c6) is mapped to Ld′(a′, (b′)2n, (c′)6). This matrix diagonalizes with eigen-

values 1 and 2n± αn − 1; thus applied iteration of ϕ to a general (d, a, b, c) converges to
the eigenspace of the dominant eigenvalue 2n+αn − 1, and this eigenspace is spanned by(

5n2 + 4n, 3n2 + 2nαn, 3n+ 2αn, n (2 + n− αn)
)
.

Since the vector (1, 0, 0, 0) corresponding to the ample class L1(0
2n+7) does not belong

to the span of the eigenspaces of eigenvalues 1 and 2n − αn − 1, the iterated application
of ϕ to L1(0

2n+7) (which gives the homaloidal systems of the powers of ϕ, obviously nef)
converges to the claimed ray.

The even case is treated similarly; it is enough to show a sequence of nef classes con-
verging to the given ray, and these nef classes will be the homaloidal classes of the powers
of a suitable Cremona map. In this case we use the Cremona map ψ with characteristic ma-
trix CGn of Example 5. The image under ψ of a linear system of the form Ld(a, b

7, c2n)
is Ld′(a′, (b′)7, (c′)2n), where in this case
d′

a′

b′

c′

 =


8n2 + 27n+ 17 −n2 − 5n− 6 −21n2 − 70n− 42 −2n2 − 6n
8n2 + 19n+ 6 −n2 − 4n− 3 −21n2 − 49n− 14 −2n2 − 4n

8n+ 6 −n− 2 −21n− 15 −2n
8n+ 3 −n− 2 −21n− 7 −2n+ 1



d
a
b
c

 .

This matrix diagonalizes with dominant eigenvalue (nβn + 7n2 − 2)/2, and associated
eigenspace spanned by(

14n(8n2 + 27n+ 16), 7n(n+ 2)(9n+ βn + 6),

n(21n2 − 3nβn + 126n− 2βn + 84), 7n(9n+ βn + 6)
)
. □

The reader may check that the wonderful classes of Proposition 6 are orthogonal to the
canonical divisor. In fact, this will be the case for every wonderful ray constructed by iterat-
ing Cremona maps, because on one hand, a converging sequence of such classes necessar-
ily have increasing degrees, and on the other hand, Cremona maps preserve the canonical
class and the intersection product. This implies that lim(Ks · (ϕk(L))/ deg(ϕk(L))) = 0,
or, in other words, the limit ray is orthogonal to the canonical class.

4. WONDERFUL RAYS IN K+
s

By the Cone Theorem, the shape of the Mori cone on the half-space K−
s of classes

which intersect the canonical divisor negatively is governed by the rays generated by (−1)-
curves. On the orthogonal K⊥

s hyperplane this is no longer quite the case, as shown by the
existence of wonderful rays, but these wonderful rays are very particular, as they are also
limits of (−1)–rays (indeed, if C is a (−1)–curve whose class does not belong to a certain
linear space, then the class of ϕk(C) converges to the wonderful ray of Proposition 6 as
well). So it will be much more compelling evidence in favor of the Strong ∆-Conjecture
to show wonderful rays on K+

s .
To construct a sequence of good rays converging to a wonderful ray in K+

s , we will use
again the Cremona maps ϕ and ψ introduced in Example 5, and the uncollision described
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in Section 1. We are guided by the commutativity of taking limits and uncollisions, as
noted in (1).

Remark 9. If W is an R-divisor class with W · Ks = 0 and W ′ is obtained from W
by uncolliding a point of multiplicity rm > 0 to r2 ⩾ 4 points of multiplicity m, then
W ′ ·Ks+r2−1 > 0. Indeed, writing W = dL−

∑
miEi we have W ·Ks =

∑
mi − 3d

and

W ′ ·Ks+r2−1 =
∑

mi − rm+ r2m− 3d =W ·Ks + (r2 − r)m > W ·Ks.

It would be convenient if we could simply uncollide the wonderful rays found in Section
3 and prove that those rays were also wonderful; by the above remark, they would lie in
K+

s+r2−1. However the collision/uncollision analysis and construction is only available for
actual linear systems, and not for irrational rays.

Hence we must finesse this, by uncolliding each (integral) linear system in the sequence,
and show that the limit of these uncollided systems is wonderful. Indeed, since the con-
structions of the uncollision are relatively simple linear transformations of the parameters,
it is elementary that the limit ray of the uncollided systems will be the formal uncollision
of the wonderful ray found earlier, as noted in (1).

We can codify this approach with the following:

Lemma 10. Suppose that {Lk} is a sequence of linear system rays such that Uncollr(Lk, 1)
is good for all large k, and the limit ray R = limk→∞ Lk is irrational. Then W =
Uncollr(R, 1) is a wonderful ray.

Proof. Using (1), we see that the ray W is the limit of the sequence of eventually good
rays Uncollr(Lk, 1); hence W is nef. It is also irrational, since R is. □

Our first application of this is to consider the matrix

An =


5n+ 5 −n −2n −12n− 12
5n 1− n −2n −12n
5 −1 −1 −12
2 0 0 −5


associated to the Cremona map ϕ introduced in Example 5, and define integer numbers
dn,k, an,k, bn,k, cn,k by 

dn,k
an,k
bn,k
cn,k

 = Ak
n


1
1
0
0

 .

Proposition 11. For every n ⩾ 0 and every k ⩾ 0 the linear system

Pn,k = Ldn,k
(an,k, b

2n
n,k, c

6
n,k)

is a pencil of rational curves having self–intersection zero. For every n ⩾ 2, and every
k ⩾ 1 the linear system

Gn,k = L2dn,k
(a4n,k, 2b

2n
n,k, 2c

6
n,k)

whose self–intersection is again zero, is empty and all its multiples mGn,k are empty for
m ⩾ 1.
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Proof. The first claim is obvious, because Pn,k = ϕk(Pn,0) is a Cremona transform of the
pencil Pn,0 = L1(1, 0

2n+6) of lines through the first point.
To prove thatmGn,k is empty, we collide its four points of multiplicityman,k and apply

Lemma 2(a). It suffices therefore to show that dimL2mdn,k(2man,k, 2mb
2n
n,k, 2mc

6
n,k) <

man,k. This system is exactly 2mPn,k, which is composed with the pencil Pn,k, and has
dimension 2m. Hence it suffices to prove that an,k > 2 (for n ⩾ 2 and k ⩾ 1).

The vectors v = (1,−1, 0,−2) and w = (0,−1, n, 0) satisfy vAn = v and wAn = w,
so the quantities dn,k − an,k − 2cn,k and nbn,k − an,k are independent of k, and looking
at the case k = 0 we see that they equal 0, and −1, respectively. So to see that an,k =
1+nbn,k > 2 it will be enough to see that bn,k > 0 for k > 1 (because n ⩾ 2). On the other
hand Pn,k is a pencil, so in particular it is nef, and therefore dn,k, an,k, bn,k, cn,k ⩾ 0; thus
it only remains to prove that bn,k ̸= 0 for k ⩾ 1.

Again using that an,k−1 = 1+nbn,k−1 and dn,k−1 = an,k−1+2cn,k−1 = 1+nbn,k−1+
2cn,k−1, we have

(
bn,k
cn,k

)
=

(
5 −1 −1 −12
2 0 0 −5

)
dn,k−1

an,k−1

bn,k−1

cn,k−1

 =

(
4n− 1 −2
2n −1

)(
bn,k−1

cn,k−1

)
+

(
4
2

)
.

This immediately shows that bn,k − cn,k = (2n − 1)bn,k−1 − cn,k−1 + 2, which allows
us to prove by induction that bn,k > cn,k ⩾ 0. For k = 1, a direct computation gives
bn,1 = 4 > cn,1 = 2. For k > 1, we then have

bn,k − cn,k = (2n− 1)bn,k−1 − cn,k−1 + 2 > (2n− 2)bn,k−1 + 2 > 0,

as needed. □

We now apply Lemma 10 with r = 2 and Lk = Pn,k; it follows that the rays generated
by Gn,k = Uncoll2(2Pn,k, 1) and Uncoll2(Pn,k, 1) coincide, and the above shows that
[Gn,k] is good for all n ⩾ 2, k ⩾ 1. Since limk→∞ Pn,k corresponds to the eigenvector for
the dominant eigenvalue for the matrix An, we have that this limit is Wodd . We conclude
that the ray generated by the limit of the Gn,k is wonderful, and this limit is equal to
Uncoll2(Wodd , 1), which we denote by W+

even :

Corollary 12. Each ray spanned by the class Gn,k is good for every n ⩾ 2, k ⩾ 1.
Therefore their limit is wonderful; it is the ray spanned by

W+
even = (10n2 + 8n)H − n (3n+ 2αn)

4∑
i=1

Ei

− (6n+ 4αn)

4+2n∑
i=5

Ei − 2n (2 + n− αn)

10+2n∑
5+2n

Ei

where αn =
√
n(n− 1).

Computing the intersection with the De Fernex ray, we see that it is negative for n = 2;
this gives us the following.

Corollary 13. For every even s ⩾ 14 there exist wonderful rays R on Xs with R ·Ks > 0.
For s = 14, there is such a wonderful ray that is De Fernex negative.
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Now to take care of the odd cases, consider the matrix

Bn =


8n2 + 27n+ 17 −n2 − 5n− 6 −21n2 − 70n− 42 −2n2 − 6n
8n2 + 19n+ 6 −n2 − 4n− 3 −21n2 − 49n− 14 −2n2 − 4n

8n+ 6 −n− 2 −21n− 15 −2n
8n+ 3 −n− 2 −21n− 7 −2n+ 1


associated to the Cremona map ψ introduced in Example 5, and define integer numbers
d′n,k, a

′
n,k, b

′
n,k, c

′
n,k by 

d′n,k
a′n,k
b′n,k
c′n,k

 = Bk
n


1
1
0
0

 .

Proposition 14. For every n ⩾ 1 and every k ⩾ 0 the linear system

P ′
n,k = Ld′

n,k
(a′n,k, (b

′
n,k)

7, (c′n,k)
2n)

is a pencil of rational curves, of self–intersection zero. For every n ⩾ 1, and every k ⩾ 1
the linear system

G′
n,k = L2d′

n,k
((a′n,k)

4, (2b′n,k)
7, (2c′n,k)

2n)

has zero self–intersection, is empty and all its multiples mG′
n,k are empty for m ⩾ 1.

Proof. The proof follows along the same lines as in the previous proposition. The asser-
tions about P ′

n,k are obvious.
To prove that mG′

n,k is empty, we collide its four points of multiplicity ma′n,k, and
using Lemma 2(a) again we need to prove that a′n,k > 2, whenever n ⩾ 1 and k ⩾ 1.

The vectors v = (3, 0,−7,−3n − 2) and w = (0, 1, 0,−n − 2) satisfy vBn = v
and wBn = w, so the quantities 3d′n,k − 7b′n,k − (3n + 2)c′n,k and a′n,k − (n + 2)c′n,k
are independent of k, and looking at the case k = 0 we see that they equal 3, and 1,
respectively. So to see that a′n,k = 1 + (n + 2)c′n,k > 2 it will be enough to see that
c′n,k > 0 for k > 1. On the other hand P ′

n,k is nef, and therefore d′n,k, a
′
n,k, b

′
n,k, c

′
n,k ⩾ 0;

thus it only remains to prove that c′n,k ̸= 0 for k ⩾ 1.
Again using that d′n,k−1 = (7/3)b′n,k−1+(3n+2)c′n,k−1+3 and a′n,k = 1+(n+2)c′n,k,

we have (
b′n,k
c′n,k

)
=

(
− 7

3n− 1 7n2 + 16
3 n

− 7
3n 7n2 + 7

3n− 1

)(
b′n,k−1

c′n,k−1

)
+

(
7n+ 4
7n+ 1

)
.

We will use this expression to show that 3c′n,k > b′n,k ⩾ 0, which will finish the proof. For
k = 1 we have b′n,1 = 7n+4, c′n,1 = 7n+1 satisfying the inequality (because n ⩾ 1). For
k > 1 we can argue by induction on k. Indeed, it follows from the latter matrix equality
that

3c′n,k − b′n,k >

(
14n2 +

5

3
n− 3

)
c′n,k−1 −

(
14

3
n− 1

)
b′n,k−1 >(

14

3
n− 1

)
(3c′n,k−1 − b′n,k−1) > 0,

and we are done. □

Again Lemma 10 applies, with r = 2 and Lk = P ′
n,k; we again have that the rays

generated by G′
n,k and Uncoll2(P ′

n,k, 1) coincide. The above shows that [G′
n,k] is good for

all n ⩾ 1, k ⩾ 1, so that since limk→∞ P ′
n,k = Weven, we have that the limit of the G′

n,k
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generates a wonderful ray and this limit is equal to Uncoll2(Wodd, 1), which we denote by
W+

odd :

Corollary 15. Each ray spanned by the class G′
n,k is good for every n ⩾ 1, k ⩾ 1.

Therefore their limit is wonderful; it is the ray spanned by

W+
odd = 28n(8n2 + 27n+ 16)H − 7n(n+ 2)(9n+ βn + 6)

4∑
i=1

Ei

−2n(21n2 − 3nβn + 126n− 2βn + 84)

11∑
i=5

Ei − 14n(9n+ βn + 6)

11+2n∑
12

Ei

where βn =
√
49n2 − 28.

A computation shows that it is De Fernex negative for n = 1. Hence we have:

Corollary 16. For every odd s ⩾ 13 there exist wonderful rays R on Xs with R ·Ks > 0.
For s = 13, there is such a wonderful ray that is De Fernex negative.

5. DE FERNEX NEGATIVE WONDERFUL RAYS

In the previous section we used uncollision of a point to four points on a wonderful ray,
to obtain a wonderful ray on K+

s ; in the initial cases of each sequence (n = 2 in Corollary
12 or n = 1 in Corollary 15) the resulting ray is De Fernex negative, but for larger n
the multiplicities obtained become too inhomogeneous and the rays become De Fernex
positive. This can be remedied by using an uncollision to a variable number of points, to
obtain infinite sequences of De Fernex negative wonderful rays at the price of covering
only some special values of s.

Proposition 17. For every n ⩾ 1, and every k ⩾ 1 the linear systems

G′′
n,k = L(n+1)d′

n,k
((a′n,k)

(n+1)2 , ((n+ 1)b′n,k)
7, ((n+ 1)c′n,k)

2n)

G′′′
n,k = L(n+2)d′

n,k
((a′n,k)

(n+2)2 , ((n+ 2)b′n,k)
7, ((n+ 2)c′n,k)

2n)

have zero self–intersection, are empty and all of their multiples are empty.

Proof. The claim for G′′
1,k = G′

1,k has already been proved.
For mG′′′

1,k and mG′′
2,k, we collide the 9 points of multiplicity ma′n,k to a point of mul-

tiplicity 3ma′n,k with α = 3ma′n,k matching conditions, as explained in Section 1; the
resulting system is 3mP ′

n,k with α additional conditions. Since we already proved that
a′n,k > 2, we get α = 3ma′n,k > 6m > dim(3mP ′

n,k), we can apply Lemma 2(b), and
conclude that the system is empty.

For all other cases, write r = n + 1 (in the case of G′′) or r = n + 2 (in the case of
G′′′), and collide the r2 points of multiplicity ma′n,k to a point of multiplicity t > rma′n,k,
because r > 3. The resulting linear system is the subsystem of rmP ′

n,k formed by the
curves with a point of multiplicity t at the first point. But curves in the rational pencil P ′

n,k

have multiplicity exactly a′n,k at the first point, so curves in rmP ′
n,k, being sums of rm

curves in P ′
n,k, have multiplicity at most rman,k < t; we conclude that collided system is

empty, and hence by Lemma 2(c), we have the result. □

Using the notation we’ve introduced, we see that G′′
n,k = Uncolln+1(P ′

n,k, 1) and
G′′′
n,k = Uncolln+2(P ′

n,k, 1) as rays. The above shows that these systems are good. The
limit of the P ′

n,k systems is the irrational ray Weven. Hence using Lemma 10, we conclude
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that the two formal uncollisions of the limit of the Weven rays are wonderful. We denote
these two uncollisions by W+

sq4 and W+
sq2, and so we have the following.

Corollary 18. The rays spanned by the classes G′′
n,k and G′′′

n,k are good for every n ⩾ 1,
k ⩾ 1. Therefore their limits for k → ∞ are wonderful; these are the rays spanned by

W+
sq4 = 14n(8n2 + 27n+ 16)L− 7n

n+ 2

n+ 1
(9n+ βn + 6)

(n+1)2∑
i=1

Ei

−n(21n2 − 3nβn + 126n− 2βn + 84)

(n+1)2+7∑
i=(n+1)2+1

Ei − 7n(9n+ βn + 6)

(n+2)2+4∑
(n+1)2+8

Ei

and

W+
sq2 = 14n(8n2 + 27n+ 16)L− 7n(9n+ βn + 6)

(n+2)2∑
i=1

Ei

−n(21n2 − 3nβn + 126n− 2βn + 84)

(n+2)2+7∑
i=(n+2)2+1

Ei − 7n(9n+ βn + 6)

(n+3)2+2∑
(n+2)2+8

Ei

respectively, where βn =
√
49n2 − 28.

Note that the first (n + 2)2 and the last 2n points have the same multiplicity in W+
sq2,

so this class is a permutation of

W+
sq2 = 14n(8n2 + 27n+ 16)L− n(21n2 − 3nβn + 126n− 2βn + 84)

7∑
i=1

Ei

−7n(9n+ βn + 6)

(n+3)2+2∑
8

Ei.

We were led to these examples since in the wonderful ray Weven , the first multiplicity
is exactly equal to n + 2 times the multiplicity of the last 2n points. This means that
uncolliding that first point to a collection of (n+2)2 points will yield a wonderful ray with
only two distinct multiplicities, which is more uniform. A closer examination reveals that
these rays intersect the De Fernex ray negatively:

Proposition 19. The classes W+
sq4 and W+

sq2 are De Fernex negative.

Proof. Since the classes W+
sq4 and W+

sq2 and the De Fernex rays are given explicitly in
terms of n, this is essentially a calculus exercise. We indicate explicitly how to obtain the
inequality in the case of W+

sq2, leaving the other class to the interested reader.
The computation of the intersection product as a function of n is straightforward and

gives

W+
sq2 · F(n+3)2+2 = −63n4 − 567n3 − 1386n2 − 756n

+14
(
8n3 + 27n2 + 16n

)√
n2 + 6n+ 10− 7

(
n2 + 3n+ 2

)√
49n4 − 28n2.
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We check by hand that this is negative for n = 1, 2, 3, 4. On the other hand it is clear that√
n2 + 6n+ 10 < n+ 3 + 1/2n and

√
49n4 − 28n2 > 7n2 − 3 for all n ⩾ 1. Therefore

W+
sq2 · F(n+3)2+2 < −63n4 − 567n3 − 1386n2 − 756n

+14
(
8n3 + 27n2 + 16n

)
(n+ 3 + 1/2n)− 7

(
n2 + 3n+ 2

)
(7n2 − 3)

= 7(−7n2 + 24n+ 22),

which is negative for n ⩾ 5. □

These two sets of examples give the following.

Corollary 20. For every s ⩾ 13 such that s − 4 is a square and every s ⩾ 18 such that
s− 2 is a square there exist De Fernex negative wonderful rays.

This is the final ingredient in the proof of Theorem 1, which follows from Corollary 7,
Corollary 13, Corollary 16, and Corollary 20.
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[HR08] B. Harbourne, J. Roé, Discrete behavior of Seshadri constants on surfaces. J. Pure Appl. Algebra 212
(2008), no. 3, 616–627.

[Hud27] , H. P. Hudson. Cremona Transformations in Plane and Space. Cambridge University Press, 1927.
xx+454 pp.

[Mon18] D. Montesano, Su le corrispondenze birazionali piane emisimmetriche. Napoli Rend. (3) 24, 31-78
(1918).

[N59] M. Nagata, On the fourteenth problem of Hilbert, Amer. J. Math. 81 (1959), 766–772.
[RU15] X. Roulleau, G. Urzı̈¿½a, Chern slopes of simply connected complex surfaces of general type are dense
in [2, 3]. Ann. of Math. (2) 182 (2015), no. 1, 287–306.

[Tot10] B. Totaro, Burt The cone conjecture for Calabi-Yau pairs in dimension 2. Duke Math. J. 154 (2010), no.
2, 241–263.



16 CIRO CILIBERTO, RICK MIRANDA, AND JOAQUIM ROÉ
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