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ABSTRACT. In this paper we develop a technique for discovering (non-effective) irrational
rays at the boundary of the Mori cone for linear systems on a general blowup of the plane,
and give examples of such irrational rays.

INTRODUCTION

Let X be the blow-up of the complex projective plane at s very general points. We will
usually assume s > 10. Let L = L4(my, ..., myg), with d > 0, be the linear system on X
corresponding to plane curves of degree d having multiplicities at least my, ..., mg at the
given points (we will use exponential notation for repeated multiplicities). If we denote by
H the class of the pullback to X of a general line in the plane, and by E; the exceptional
divisor over the i-th point that is blown up, then the linear system £ corresponds to the
global sections of the line bundle Ox_ (dH — ), m;E;). The (projective) dimension of
the linear system is dim(H%(X;, Ox, (dH — >, m;E;))) — 1. The system is said to be
effective if the dimension is non-negative, i.e., there are effective divisors in the linear
system. If the dimension is —1, we will say that the system is non-effective, or empty.

We note that the Picard group of X is the free abelian group of rank s + 1 generated
by the classes of H and E, ..., E;. We define N = N1(X,) to be Pic(X,) ®z R; this is
a real vector space of dimension s + 1.

A ray in N is the set of all non-negative real multiples of a non-zero vector in N. Many
of the concepts applicable to elements of the Picard group Pic(X,) may be extended to V.
A ray is called effective if there is a (necessarily integral) vector in the ray that represents
an effective divisor class in Pic(Xy). The ray is called rational if it contains a nonzero
integral vector (i.e., an element of the Picard group). The degree deg(R) of a ray R,
the coefficient of H, is not well-defined, but its sign is; hence we may speak of a ray
of positive/zero/negative degree. Every effective ray R must have non-negative degree.
Similarly, if R and R’ are two rays, the intersection R - R’ is not well defined, but its
sign is. In particular this applies to the self-intersection of a ray. Any rational ray with
deg(R) > 0 and R? > 0 is effective (by Riemann-Roch).

The effective cone is the cone generated by effective rays, i.e., all finite linear combi-
nations of effective divisors with positive real coefficients. In general the effective cone
is not closed; its closure is called the Mori cone. The dual of the Mori cone is the cone
of nef divisors, or nef rays; these are divisors/rays that intersect all effective divisors non-
negatively. This nef cone is closed.

In [CHMR13], a good ray was defined as a non-effective rational ray with non-negative
degree (intersection with H) and zero self-intersection. Such a ray is extremal for the Mori
cone and the nef cone, and is nef (see [CHMR13, Lemma 3.8]).
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In that paper we also defined a wonderful ray, as a nef ray that has self-intersection zero
and is irrational. Up to this point, no wonderful ray (with all coordinates nonzero) for any
5>10 has appeared in the literature. Some of the motivation for discovering wonderful
rays is as follows.

Define the De Fernex ray Fs to be the ray generated by /s — 1H — > .°_| E;. Aray R
is said to be De Fernex positive, negative or orthogonal according to R - F; being positive,
negative or null. The Strong A-Conjecture (see [CHMR13, Conjecture 3.10]) is that if
s > 11, and R is a rational De Fernex non—positive ray of self-intersection zero, then R
is not effective, and therefore is a good ray. (See [DeF01]; there is a refinement for the
s = 10 case.) Note that R - F; < 0 implies R - K > 0, where K, = —3H + ZZ FE; is the
canonical divisor on X.

The Strong A-Conjecture would imply that an irrational De Fernex non—positive ray R
with self-intersection zero is a wonderful ray, since any such ray would then be a limit of
good rays which are nef.

This remark implies, in particular, that the Nagata ray \/sH — ), E; would be won-
derful (if s is not a square), and this would prove the Nagata Conjecture (see [N59]). Of
course the Nagata Conjecture is very important and has been shown for decades that it is
difficult to prove. However, in view of the Strong A-Conjecture, from a conceptual Mori
cone viewpoint, proving that the Nagata ray is wonderful is not philosophically more im-
portant than proving that any other De Fernex negative irrational ray with self-intersection
zero is wonderful.

In the unpublished work [DeFO1], De Fernex showed that for s = 10, all rays R of
selfintersection zero with R - K;9 = 0 are nef. Since such rays can be irrational, they
provide examples of wonderful rays according to the definition of [CHMR13], and they are
the only wonderful rays ever produced in the literature so far. Note that these are De Fernex
orthogonal, and hence not the most relevant for our motivation. After a first version of this
article appeared on math.arxiv, J. C. Ottem kindly communicated to us that he knew about
the existence of such rays in some particular cases, using completely different methods
from ours presented here. For instance, for 12 points, he could construct wonderful rays
orthogonal to K15 (so, De Fernex positive) on the blow-up of the dual Hesse configuration,
exploiting the fact ([Tot10], [RU15]) that it is the minimal desingularization of a quotient
of a well understood abelian surface. As far as we know, general constructions for arbitrary
s have not been known. In this paper we fill this gap by proving the following.

Theorem 1. For all s > 10, wonderful rays R exist. For all s > 13, wonderful rays R
with R - K¢ > 0 exist. For s = 14, for all s > 13 such that s — 4 is a square, and for all
s = 18 such that s — 2 is a square, De Fernex negative wonderful rays exist.

Our proof is explicit, in that for each s, we exhibit an irrational ray with self-intersection
zero, all of whose coordinates are positive, and prove that it is wonderful by proving that
it is a limit of explicit good rays. For certain values of s, as stated in Theorem 1, these
wonderful rays intersect the canonical divisor positively, and the De Fernex ray negatively
(note that all good rays known so far were isolated, and in fact the only previously known
cases of non-isolated nef rays of self-intersection zero are the unpublished examples due to
De Fernex and Ottem, so this is also the first example of accumulation of self-intersection
zero classes on the boundary of the Mori cone with R - K > 0).

Specifically, we start by exploiting an infinite sequence of Cremona transformations,
which we then apply to a carefully chosen good ray, and show that the limit ray exists and
is irrational. Since Cremona transformations preserve the ’goodness’ of the rays, the limit
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is therefore a limit of good rays, and is therefore wonderful. The rays obtained in this way
are orthogonal to K.

To produce wonderful rays that meet Ks positively, and are De Fernex-negative, we
exploit a degeneration technique (described in Section 1) that allows us to coherently re-
duce K-positive and De Fernex-negative systems to the systems generating the sequence
of good rays found in the first step above. The limit of these systems then provide the
examples which prove Theorem 1.

The construction that we present and develop is a general technique for iteratively gen-
erating good rays, based on a judicious use of degeneration procedures and Cremona trans-
formations. This technique can be applied more extensively, to produce additional won-
derful rays, some of which have additional properties; we are developing this. In particular
using this same strategy, we can get many other irrational points on the boundary of the
Mori cone, though we do not present them in this paper. Our approach to the results of
this paper (namely using Cremona transformations to get wonderful rays orthogonal to the
canonical system and then applying the uncollision technology that we present in §1) ac-
tually can be shown to produce all the wonderful rays of the unpublished DeFernex paper
[DeF01] that are orthogonal to the canonical system. However we will not dwell on this
here.

The linear systems we consider will have points with at most three distinct multiplicities,
i.e., they will be of the form L£;(a®*, b, c®). This is only a technical device to simplify
computations; clearly many other examples can be found with more different multiplicities.

There is a close relationship between our results here and the possible existence of
irrational Seshadri constants. Namely, there are many rays of selfintersection zero (like the
Nagata ray) which, if proven to be wonderful, would imply that some Seshadri constant
at a blow-up of P? is irrational. The wonderful rays presented here are not among these;
however, it is possible that our techniques can be used to show the existence of such rays.
(See [HROS], [CHMR13], [DKMS16] and [HH18] for more details.)

In the first two sections, we present the technical tools used to obtain wonderful rays.
In the last three, we prove separately the three existence claims of our main Theorem.

Acknowledgements: Ciro Ciliberto is a member of GNSAGA of the Istituto Nazionale
di Alta Matematica “F. Severi”. We thank the Centre de Recerca Matematica for the hos-
pitality in arranging Ciliberto’s and Miranda’s visit to Barcelona within its “Research in
Pairs” program. This work was also partially supported by project PID202-116542GB-100
from the Spanish Ministerio de Ciencia e Innovacién.

1. COLLISION OF 72 POINTS

A key part of the construction involves a degeneration of a linear system L4 (m, ..., my)
where 72 of the s points, of equal multiplicity m, come together; following Evain, who
treated particular cases of the situation in the 90’s [E98], we call this a collision. We will
index the points so that the first 2 multiplicities are all equal to m. The analysis of this
situation for = 2 was developed in [CMO05]; here we need to allow any integer r > 2, but
the same technique combined with Nagata’s result of [N59] on square numbers of points
is enough for our purposes.

We consider a trivial family X = X,_,» x A over adisc A, and blow up a general point
in the central fiber over 0 € A to obtain the threefold X”. This produces a degeneration
of X,_,2 to a union of two surfaces, a plane (the exceptional divisor for the blowup) and
the proper transform F of the original X, fiber, which is now isomorphic to X _,2;.
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These two surfaces intersect transversely along a smooth rational curve R which is a line
in the plane and a (—1)-curve in F'.

We now choose 2 general points on the plane; extend these r? general points to the
general fiber using 72 sections of the projection of X’ to A, and blow up those 72 sections
to ruled surfaces &1, .. ., 2. This then produces a threefold ) which is a degeneration of
X, to a union of a surface P = X2 and F' = X,_,2,, intersecting transversely along
the double curve R. This smooth rational curve R is the pullback of a general line in the
surface P and remains a (—1)-curve in the surface F.

We have the line bundle corresponding to L4(m,241,...,ms) on X,_,2, and can ex-
tend it trivially to X'. If we pull that back to the first blowup X”, we see that this restricts
to the bundle corresponding to £4(0,m,211,...,ms) on the surface F, and to the triv-
ial bundle on the plane. We then pull that back to the second blowup ), and tensor by
Oy(—tP — mzz; &i), with ¢ a non—negative integer (called the twisting parameter).
This produces a line bundle M on ), which restricts to the general fiber in a bundle whose

associated linear system is the original system L4(m1, ..., ms).
The restriction of M to P is a bundle with associated linear system L (m’“2). The
restriction of M to F is a bundle with associated linear system L4(t, m,241,...,ms).

At this point we choose the twisting parameter ¢ to be the minimum ¢ such that the linear
system Et(mr2) is effective. By Nagata’s theorem, if > 3 then { > rm, and it is not
hard to see that if » < 3 then ¢ = rm. The principle of semicontinuity guarantees that the
dimension of the general linear system Lg(mq, ..., m) is at most equal to the dimension
of the linear system on the reducible surface P + F'. The linear system on the reducible
surface corresponds to the fiber product of the space of sections on P with the space of
sections on F', fibered over the restriction to the space of sections on R.

Let us investigate this in more detail in the cases » = 2, 3; we do not need a precise
description if » > 3. We note that since we are taking the minimum twist parameter ¢
to make the system on P effective, the restriction map from the space of sections on P
to the space of sections on the double curve R (which is HY(Og(t))) is injective, onto a
subspace W C HY(R, Og(t)) of codimension c. Hence the fiber product is isomorphic to
the subspace of Hp = H(F,Op(dH —tR—%";_ .., m;E;) which restricts to elements
of W. By the generality of the points chosen on P, the subspace W is transversal to the
full restriction, (see [CM98, Section 3]) and so the desired subspace also has codimension
cin H F.

If » = 2, the linear system on P is Ezm(m‘l), whose elements are sums of m conics in
the system L(1%). This system restricts to R in a linear system on R which is not complete
(being of degree 2m and dimension m); it has codimension m. This imposes the additional
matching condition on the linear system on F' = X,_3: it must restrict to divisors on R
which are members of the linear system coming from P. We see then that the fiber product
has codimension m in the system on F’; these are the additional matching’ conditions to
be imposed on the system on F' (over and above the point of multiplicity t = 2m).

If r = 3, the linear system on P is £3m(m9), which has a unique effective element,
namely the unique cubic through the 9 general points, taken with multiplicity m. This
cubic meets the double curve R in three (general) points, and will impose on the other
component X ,_g three points of certain multiplicity on the double curve. We won’t need
to explicitly determine the multiplicity of these additional points; it will be enough for our
purposes to observe that the restricted system on R has degree 3m and dimension 0, which
means that the restriction subpace W above has codimension 3m. Hence the number of
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additional *matching’ conditions imposed on F' = X,_g is at least 3m (over and above the
point of multiplicity ¢t = 3m).

In particular, whenever the linear system on F' (with the matching conditions) is empty,
the collision shows that the original system was empty. It will be useful for us to proceed
in reverse: from a system on the plane with s — r2 + 1 points, whose dimension is known,
to another system of the same degree with s points obtained replacing the first point, of
multiplicity rm, by r? points of multiplicity m. We call this an uncollision step.

We summarize this in the following.

Lemma 2. Fixr > 2, s > r? + 1, and multiplicities m, my2, 1, ..., ms.
(a) Ifr = 2 and dim L4(2m, ms, ..., ms) < m, then Lq(m*, ms, ..., my) is empty.
(b) If r = 3 and dim L4(3m, myg, ..., ms) < 3m, then Lq(m®, myg,...,mg) is
empty.
(¢) If r =2 4 and Ly(rm,m,241,...,ms) is empty, then the uncollided system
L’d(m’“Q, My241,..., M) is also empty.

Three comments are in order. First, the above reductions are sharp for » = 2, but not
for r = 3 or r > 4: there are additional matching conditions in order for a curve in the
degenerate surface P + F' to be a limit of a curve on the general fiber. In particular,
as mentioned above, by Nagata’s theorem, if » > 4 then the minimum ¢ such that the
linear system L, (mrz) is effective satisfies ¢ > rm, so it would actually be enough that
Lag(rm +1,m241,...,ms) is empty in order to conclude that Ed(m’"2 SMp2 41y e ey M)
is also empty.

Second, we note that for all r the systems before and after the collision have the same
degree and self-intersection. In particular, if one is of self-intersection zero, so is the other;
this will be important in our application.

Third, the process of considering an ’uncollision” behaves well with taking limits of
rays. Given a linear system £, and an index ¢ denoting one of the multiplicities, we may
define the uncollision Uncoll,.(L, i) as the system replacing the i-th multiplicity m; by 72
points of multiplicity m;/r. For instance,

Uncoll,.(L4(rm,m241,...,mg),1) = L'd(mrz, M2 1y ny M)

This makes sense at the level of linear systems if m; is divisible by 7, but also makes sense
as elements of NV, and additionally makes sense for rays in V. In particular, if £ is a
sequence of linear systems, giving rise to rays [L;] € N, then

(1) [Uncoll,. (L, )] = [Uncoll,.( (Lk),1)]

as rays in N. We finally note that the uncollision process is given by rational parameters,
and so preserves rationality and irrationality of rays.

lim lim
k—o0 k—o00

2. USEFUL CREMONA TRANSFORMATIONS

In this section we explore some Cremona maps that act on linear systems of the form
La(a®e,b%, ).

Consider the Cremona—Kantor (CK) group G generated by quadratic transformations
based at n general points x4, . .., x of the plane and by permutations of these points (see
[DuV36], [A02], [Doll12, Chapter 7]). The group G acts on the set of linear systems of the
type Lqg(my, ..., ms). All systems in the same (CK)-orbit (or (CK)-equivalent) have the
same expected, virtual and true dimension. A linear system Lg(my, ..., ms) is Cremona
reduced if it has minimal degree in its (CK)-orbit, and this is the case if and only if the
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degree is greater or equal to the sum of the three largest multiplicities (see [C31, p. 402-
402, Thms 8 and 10]).

Anelement ¢ € G, seen as a linear automorphism of Pic(X;) = ZHOZE; - - - D Ej,
can be specified by giving its characteristic matrix, i.e., the matrix with respect to the
standard basis (H, E1,..., Es). The homaloidal net of ¢ (i.e., the pullback of the net
of lines by ¢) is Ly4(my, ..., ms) where (d,—myq,...,—my) is the first column of the
characteristic matrix of ¢.

Example 3. There exist four homaloidal types with homogeneous multiplicities (see [Hud27,
IV,13], [A02, 2.5.5], [Dol12, 7.2.2]). The simplest one corresponds to the (standard) qua-
dratic map on three points, whose characteristic matrix is

2 1 1 1

-1 0 -1 -1

Q= -1 -1 0 -1
-1 -1 -1 0

Any permutation of the 3 rightmost columns gives rise to a distinct quadratic Cremona
map; the given matrix is the most symmetric, and it has the property of preserving the
order of repeated multiplicities, e.g., the pullback by ¢¢g of a system L4(m,m,n) is
La(m/,m' n').

Of course, the quadratic Cremona map can be applied on any subset of three points
among the set of points {p1,...,ps} that we blow up, for any s > 3; the characteristic
matrix of the corresponding element in G, is obtained from @) by adding suitably many
rows and columns of the identity matrix. Similarly, any Cremona map defined for X can
be applied to X, with s’ > s by selecting a suitable set of s points among the s, and the
matrix is obtained by adding rows and columns of the identity.

The other three homogeneous homaloidal types are attributed to Sturm, Geiser and
Bertini; as in the quadratic case, for each of them there is a unique ¢ € G, with that
type and of order 2. Their characteristic matrices are

8 3 3 3 3 3 3 3
5 2 2 2 2 2 2 -3-2-1-1-1-1-1-1

BT S S R 3-1-2-1-1-1-1-1
S=]-2-1-1 0-1-1-1]|.G = —g—%—%—%—é—%—%—%
—2-1-1-1 0-1-1]" o Tl i LTl
IR T G 3-1-1-1-1-2-1-1
SR R 3.1-1-1-1-1-2-1
~3-1-1-1-1-1-1-2

and
17 6 6 6 6 6 6 6 6
—6-3-2-2-2-2-2-2-2
—6-2-3-2-2-2-2-2-2
—6-2-2-3-2-2-2-2-2
B = —6 —2 —2 -2 -3 -2 —2 -2 —2
—6-2-2-2-2-3-2-2-2
—6-2-2-2-2-2-3-2-2
—6-2-2-2-2-2-2-3-2
—6-2-2-2-2-2-2-2-3
respectively.

Example 4. In addition to the homogeneous Cremona maps of the previous example, we
shall use as building blocks two families of quasi-homogeneous involutions. The first is
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the de Jonquieres map on 2n + 1 points with characteristic matrix

14+n n 1 1 - 1

-n 1-n -1 -1 --- -1

-1 -1 -1 0 - 0

Ol I R :
: T

-1 -1 0 - 0 -1

(this matrix is not explicitly given in [A02, 2.6.10, 3.4.3] or [Dol12, 7.2.3], but it is easy
to recover it from the fact that the de Jonquieres Cremona map is the composition of n
quadratic Cremona transformations based at points {p1, pa;, p2i+1}, fori = 1,...,n, and
permuting some points).

The second family have an even number of base points and was described by Montesano
in [Mon18] (see also [Hud27, IV.13]). The characteristic matrix defining the map with
2n + 2 base points is

14+n%2 —n+n? n noo.- n

n—-n? 2n-n? 1-n 1-n -+ 1-n

-n 1—n 0 -1 .- -1

Cn = -n 1-n -1 0 :

: : - |

—n 1—n -1 e =1 0
The reader may check that this is the result of applying a de Jonquieres map based at points
D2,D3, - - ., Panto followed by another de Jonquicres based at py,ps,...,pan4o (Where

D3, - - ., Pan+2 are the simple points of each de Jonquieres homaloidal net).

Example 5. We will use in our constructions some particular familes of Cremona maps
of infinite order, built composing maps of the previous kinds. The maps in the first family
involve s = 2n 4+ 7 points; they are obtained by composing a quintic Sturm map based

on points pa,+2, ..., Pan+7 followed by a de Jonquieres map based on (disjoint) points
P1,-..,Pan+1. Extending the matrices .J,, and S with the suitable number of rows and
columns and multiplying, one obtains the corresponding characteristic matrix, namely

5+5n n 1 1:-- 1 242n 242n 242n 242n 242n 2+4+2n

—-5nl-n—-1-1-- -1 —2n —2n —2n —2n —2n —2n

-5 —1-1 0-- 0 -2 -2 -2 -2 -2 -2

-5 -1 0-1" : : : : : :

S S S R S S S :

JS, = -5 -1 0+ 0-1 -2 -2 -2 -2 -2 -2

-2 0 0-- 0 0 0 -1 -1 -1 -1 -1

-2 0 0-- 0 0 -1 0 -1 -1 -1 -1

-2 0 0-- 0 0 -1 -1 0 -1 -1 -1

-2 0 0-- 0 0 -1 -1 -1 0o -1 -1

-2 0 0-- 0 0 -1 -1 -1 -1 0 -1

-2 0 0-- 0 0 -1 -1 -1 -1 -1 0

In particular, the homaloidal systems of these maps have the form L5 5, (5n,5%",25). We
note that if we transform a linear system £ whose parameters have the *shape’ £4(a, b*", c%),
then the result is a linear system with that same shape.

An additional useful family, involving s = 2n + 8 points for n > 1, can be ob-
tained by composing an octic Geiser map based on points ps, . . ., pg followed by a quasi-
homogeneous map with characteristic matrix C,, ;3 based on all points p1, . .., papts. Ex-
tending the matrix .S with the suitable number of rows and columns and multiplying, one
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obtains the corresponding characteristic matrix C'G,,, which we omit for brevity, noting
only that its homaloidal system is Ls,2 27,117 (8n% + 191 + 6, (8n + 6)7, (8n + 3)2").

Cremona maps with characteristic matrix J.5,, and CG,, will be used extensively in the
sequel. For simplicity we fix the notation ¢,, (or simply ¢ if n is understood) for a map
with characteristic matrix JS,,, and 1, (or simply % if n is understood) for a map with
characteristic matrix CG,,.

3. WONDERFUL RAYS IN K

Because the intersection of the Mori cone with any hyperplane of the form d = constant
is compact, any infinite set of rays on the Mori cone has some accumulation ray. This
simple observation is enough to provide many interesting rays on the boundary of the Mori
cone. Indeed, if s > 9 then every divisor class not multiple of K has an infinite orbit
under the action of the Cremona group, and if R is a ray of selfintersection zero on the
boundary of the Mori cone, then every ray in its orbit also has selfintersection zero and
lies on the boundary of the Mori cone. As a consequence there exist accumulation rays of
selfintersection zero on the boundary of the Mori cone for every s > 10, an important fact
which has not received much attention before. A careful choice of Cremona maps allows
us to obtain explicit irrational rays with such properties:

Proposition 6. Let n be an integer, and consider o, = /n(n — 1) and 8,, = v/49n? — 28.
The rays generated by

142n 2n+7
Woaa = (5n*+4n)H—n (3n + 20,) E1—(3n + 2ar,) Z Ei—n(2+4+n—ay,) Z E;
=2 1=2n-+2

on Xryyon ifn 2 2 and by

Weven = 14n (8n% +2Tn + 16)H — Tn (n + 2) (9n + B, + 6) B4

8 2n+8
—n(21n® = 3nf, + 126n — 26, +84) > E; — T (In+ B, +6) Y _ E;
1=2 =9

on Xgiop if n > 1 are wonderful.
Corollary 7. For every s > 10 there exist wonderful rays on X.

Remark 8. For s = 10, De Fernex [DeF01] proved that every ray of selfintersection zero
in K{; is nef. It can be proved that every such ray is a limit of rays in the orbit of the nef
class £3(1%,0) under the action of the Cremona-Kantor group. Also for other even s > 9,
our methods do provide many other wonderful rays, some of which are simpler than W,
on X,; we choose this divisor because it will be useful later on, to construct De Fernex
negative wonderful rays.

Proof. Let us tackle the odd case first. We are assuming that n > 2, so «, is irrational;
moreover the selfintersection of the given system is readily computed to be zero. We only
have to show that it is nef, or equivalently, that the ray it spans is a limit of nef rays.

Let ¢ be the Cremona map with characteristic matrix JS,, given in Example 5. The
image under ¢ of a linear system of the form L£4(a,b*",c%) is again of that form, and is
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computed multiplying the matrix JS,, by (d, —a, (—b)?", (—c)®); the result has the param-
eters (d', —a’, (—b')*", (—c’)%) where

d Sn+5 —n  —2n —12n—12\ [d
al| 5n. 1—-n —2n —12n a
ool ) -1 -1 —12 b
d 2 0 0 -5 c

So Lg(a,b*, %) is mapped to L (a’, (b')?", (¢)®). This matrix diagonalizes with eigen-
values 1 and 2n + «,, — 1; thus applied iteration of ¢ to a general (d, a, b, ¢) converges to
the eigenspace of the dominant eigenvalue 2n + o, — 1, and this eigenspace is spanned by

(5n2 +4n, 3n? 4 2nay,, 3n + 2a,,n (2 +n — ozn)) .

Since the vector (1,0, 0,0) corresponding to the ample class £1(0?"*7) does not belong
to the span of the eigenspaces of eigenvalues 1 and 2n — «,, — 1, the iterated application
of ¢ to £1(02"*7) (which gives the homaloidal systems of the powers of ¢, obviously nef)
converges to the claimed ray.

The even case is treated similarly; it is enough to show a sequence of nef classes con-
verging to the given ray, and these nef classes will be the homaloidal classes of the powers
of a suitable Cremona map. In this case we use the Cremona map v with characteristic ma-
trix CG,, of Example 5. The image under v of a linear system of the form L4(a, b”, c¢*")
is L (a’, (b')7,(c')?"™), where in this case

d 8n2+2Tn+17 —n?2—-5n—6 —21n?2—T70n—42 —2n2—6n d
a| | 8?+19n+6 -n®—4n—-3 —-21n*—49n—14 -2n?’—4n| |a
ol 8n + 6 -n—2 —21n — 15 —2n b
c 8n + 3 -n—2 —21ln -7 —2n+1 c

This matrix diagonalizes with dominant eigenvalue (n3, + 7n? — 2)/2, and associated
eigenspace spanned by

(14n(8n* + 27n + 16), Tn(n + 2)(9n + B, + 6),
n(21n® — 3nB, + 126n — 28, + 84), Tn(In + B, +6)) . O

The reader may check that the wonderful classes of Proposition 6 are orthogonal to the
canonical divisor. In fact, this will be the case for every wonderful ray constructed by iterat-
ing Cremona maps, because on one hand, a converging sequence of such classes necessar-
ily have increasing degrees, and on the other hand, Cremona maps preserve the canonical
class and the intersection product. This implies that lim (K - (¢*(£))/ deg(¢*(L))) = 0,
or, in other words, the limit ray is orthogonal to the canonical class.

4. WONDERFUL RAYS IN K

By the Cone Theorem, the shape of the Mori cone on the half-space K of classes
which intersect the canonical divisor negatively is governed by the rays generated by (—1)-
curves. On the orthogonal K;- hyperplane this is no longer quite the case, as shown by the
existence of wonderful rays, but these wonderful rays are very particular, as they are also
limits of (—1)-rays (indeed, if C'is a (—1)—curve whose class does not belong to a certain
linear space, then the class of ¢*(C) converges to the wonderful ray of Proposition 6 as
well). So it will be much more compelling evidence in favor of the Strong A-Conjecture
to show wonderful rays on K.

To construct a sequence of good rays converging to a wonderful ray in K, we will use
again the Cremona maps ¢ and 1) introduced in Example 5, and the uncollision described
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in Section 1. We are guided by the commutativity of taking limits and uncollisions, as
noted in (1).

Remark 9. If W is an R-divisor class with W - K, = 0 and W’ is obtained from W
by uncolliding a point of multiplicity rm > 0 to r? > 4 points of multiplicity m, then
W' K421 > 0. Indeed, writing W = dL — > m; F; wehave W - K, = > " m; — 3d
and

W’-KS+T2_1:Zmi—rm+r2m—3d:W-Ks+(r2—r)m>W-Ks.

It would be convenient if we could simply uncollide the wonderful rays found in Section
3 and prove that those rays were also wonderful; by the above remark, they would lie in
K :+7,2_1. However the collision/uncollision analysis and construction is only available for
actual linear systems, and not for irrational rays.

Hence we must finesse this, by uncolliding each (integral) linear system in the sequence,
and show that the limit of these uncollided systems is wonderful. Indeed, since the con-
structions of the uncollision are relatively simple linear transformations of the parameters,
it is elementary that the limit ray of the uncollided systems will be the formal uncollision
of the wonderful ray found earlier, as noted in (1).

We can codify this approach with the following:

Lemma 10. Suppose that { L}, } is a sequence of linear system rays such that Uncoll,. (L, 1)
is good for all large k, and the limit ray R = limyg_ o Ly is irrational. Then W =
Uncoll,.(R, 1) is a wonderful ray.

Proof. Using (1), we see that the ray W is the limit of the sequence of eventually good
rays Uncoll,.(Lg, 1); hence W is nef. It is also irrational, since R is. O

Our first application of this is to consider the matrix

5n+5 —n —2n —12n—12

A — on 1-n —2n —12n
" 5 -1 -1 —12
2 0 0 =5

associated to the Cremona map ¢ introduced in Example 5, and define integer numbers
dn,k'7 Qn k> bn,ka Cn,k by

Ak 1
ank | _ 4k |1
bn k =4, 0
Cn,k 0

Proposition 11. For everyn > 0 and every k > 0 the linear system
Prg = La, , (., b?]fky C?z,k)

is a pencil of rational curves having self-intersection zero. For every n > 2, and every
k > 1 the linear system

_ 4 2n 6
g”vk - £’2dn.k (a'rn,k? 2bn,k’ 2Cn,k)

whose self-intersection is again zero, is empty and all its multiples mG,, j, are empty for
m > 1.
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Proof. The first claim is obvious, because Py, , = ok (Pn,0) is a Cremona transform of the
pencil P,, o = L£1(1,02"%6) of lines through the first point.

To prove that m@G,, j, is empty, we collide its four points of multiplicity ma,, » and apply
Lemma 2(a). It suffices therefore to show that dim Lopa,, 1 (2may, , 2mbf{fk7 2mce8 ;) <
man, ;. This system is exactly 2m’P,, i, which is composed with the pencil P, 1, and has
dimension 2m. Hence it suffices to prove that a,, ), > 2 (forn > 2and k > 1).

The vectors v = (1,—1,0, —2) and w = (0, —1,n,0) satisfy vA,, = v and wA,, = w,
so the quantities d,,  — an 1 — 2¢p k and nby, . — a, i are independent of £, and looking
at the case k = 0 we see that they equal 0, and —1, respectively. So to see that a,, ; =
1+nb,, 1 > 2 it will be enough to see that by, ;, > 0for k > 1 (because n > 2). On the other
hand P, 1, is a pencil, so in particular it is nef, and therefore d, i, an, k., bn i, Cn, i = O; thus
it only remains to prove that b,, j, # 0 for & > 1.

Againusing that @, ;,—1 = 14nby -1 and dp k-1 = @ g—1+2Cn k-1 = 14+nby 1+
2¢y, k-1, we have

dn,kfl
bar) _ (5 1 =1 =12 fangor | _ (dn—1 <2 (busa) (4
Cn,k “\2 0 0 ) b k-1 N 2n -1 Cnk—1 2/
Cn,k—1

This immediately shows that b,, ;; — ¢, & = (2n — 1)by, k—1 — ¢n k—1 + 2, which allows
us to prove by induction that b, > ¢, > 0. For k = 1, a direct computation gives
bn,1 =4 > cp,1 = 2. For k > 1, we then have

bn,k —Cpk = (2n — 1)bn,k71 —Cnk—1 T 2> (2n — 2)bn,k71 +2>0,
as needed. ([l

We now apply Lemma 10 with = 2 and Ly, = P,, x; it follows that the rays generated
by G, = Uncolla (2P, k, 1) and Uncollz(P,, k, 1) coincide, and the above shows that
[Gn.k] is good for all n > 2, k > 1. Since limy_, o Py, 1 corresponds to the eigenvector for
the dominant eigenvalue for the matrix A,,, we have that this limit is W,44. We conclude
that the ray generated by the limit of the G,  is wonderful, and this limit is equal to
Uncolla (W44, 1), which we denote by W,

+ .
even-*

Corollary 12. Each ray spanned by the class G, is good for every n > 2, k > 1.
Therefore their limit is wonderful; it is the ray spanned by

4
Wk, = (10n2 4 8n)H — n (3n + 2ay,) Z E;

i=1

442n 10+2n
— (6n + 4ay,) Z Ei—2n(24+n—ay,) Z E;
i=5 5+2n

where a,, = y/n(n —1).

Computing the intersection with the De Fernex ray, we see that it is negative for n = 2;
this gives us the following.

Corollary 13. For every even s > 14 there exist wonderful rays R on X with R- K, > 0.
For s = 14, there is such a wonderful ray that is De Fernex negative.
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Now to take care of the odd cases, consider the matrix
8n2+2m+17 —n?—-5n—6 —21n%>—70n—42 —2n?%—6n
82 +19n+6 —n?—4n—-3 —2In%2—49n —14 —2n? —4n

& + 6 —-n —2 —21n —15 —2n

8+ 3 —-n—2 —2In -7 —2n +1
associated to the Cremona map ¢ introduced in Example 5, and define integer numbers
d:z,kv a%,kv b;L,kv C;L,k‘ by

Bn =

dr, x 1
ane |l el
o | =P o
ch ok 0

Proposition 14. For every n > 1 and every k > 0 the linear system
Pvlv,,k = Ed;k (a;L,k’? (bil,,k)’?? (C;L,k,)Qn)

is a pencil of rational curves, of self-intersection zero. For everyn > 1, and every k > 1
the linear system

g;z,k = £2d;,k ((a;,k)[lv (2b2,k)7> (20;1,1@)2”)

has zero self-intersection, is empty and all its multiples mG,, , are empty for m > 1.

Proof. The proof follows along the same lines as in the previous proposition. The asser-
tions about ), , are obvious.

To prove that mg;% . is empty, we collide its four points of multiplicity ma;h > and
using Lemma 2(a) again we need to prove that a;% s > 2, whenevern > land k > 1.

The vectors v = (3,0,—7,—3n — 2) and w = (0,1,0, —n — 2) satisfy vB, = v
and wB,, = w, so the quantities 3d,, , — 70/, , — (3n + 2)c, , and a}, ., — (n + 2)c], .
are independent of k, and looking at the case k = 0 we see that the}; equal 3, and 1,
respectively. So to see that a;, , = 1+ (n + 2)c;, ;. > 2 it will be enough to see that
¢y, > 0for k > 1. On the other hand P;, ; is nef, and therefore d, ;, a;, ., b;, 1., ¢, = 0;
thus it only remains to prove that c;% i 7 0fork > 1.

Againusing thatd;, , , = (7/3)b;, ;. +(3n+2)c, , +3anda, , = 14+(n+2)c], ,;,

we have
Vo _ [(—In—1 T4 1n b1 n ™+ 4
k) —In m?+In-1 Crk—1 m+1)"

We will use this expression to show that 3¢, ; > b;, ; > 0, which will finish the proof. For
k =1wehavel] ; = Tn+4,c, ; = Tn+1 satistying the inequality (because n > 1). For
k > 1 we can argue by induction on k. Indeed, it follows from the latter matrix equality
that

) 14
3¢k — bk > (14n2 +t3n— 3) Coke1 — <3” - 1) by ko1 >

14
<3n - 1) (3¢ i1 —bpj1) >0,

and we are done. O

Again Lemma 10 applies, with » = 2 and £}, = P;L, > we again have that the rays
generated by G, ;. and Uncolly(P,, ;, 1) coincide. The above shows that [G;, ;] is good for
alln > 1, k > 1, so that since limy_,o P’ & = Weven, we have that the limit of the g;’k

n
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generates a wonderful ray and this limit is equal to Uncolls (W44, 1), which we denote by
wh.:

Corollary 15. Each ray spanned by the class g;% i is good for everyn > 1, k > L
Therefore their limit is wonderful; it is the ray spanned by

4
W,y = 28n(8n® + 270+ 16)H — Tn(n + 2)(9n + B, + 6) > _ E;
=1
11 11+2n
—2n(21n* — 30, + 1260 — 2B, +84) Y " E; — 14n(9n + B, +6) > E;
1=5 12

where 3, = \/49n2 — 28.

A computation shows that it is De Fernex negative for n = 1. Hence we have:

Corollary 16. For every odd s > 13 there exist wonderful rays R on X5 with R - K¢ > 0.
For s = 13, there is such a wonderful ray that is De Fernex negative.

5. DE FERNEX NEGATIVE WONDERFUL RAYS

In the previous section we used uncollision of a point to four points on a wonderful ray,
to obtain a wonderful ray on K ; in the initial cases of each sequence (n = 2 in Corollary
12 or n = 1 in Corollary 15) the resulting ray is De Fernex negative, but for larger n
the multiplicities obtained become too inhomogeneous and the rays become De Fernex
positive. This can be remedied by using an uncollision to a variable number of points, to
obtain infinite sequences of De Fernex negative wonderful rays at the price of covering
only some special values of s.

Proposition 17. For everyn > 1, and every k > 1 the linear systems
2
G = Linynya, , (an,1) "7 ((n+ 1Y, )7, (04 1€, 1))

2
e = Linraya, , ((an )" (04 2)b, 07, (04 2)er, 1))
have zero self-intersection, are empty and all of their multiples are empty.

Proof. The claim for G’} = G ; has already been proved.

For mG", and mGy k we collide the 9 points of multiplicity ma,, , to a point of mul-
tiplicity Sm/a’m x With oo = ?ﬂnazj,,,,c matching conditions, as explainéd in Section 1; the
resulting system is 3m737’L’ , With « additional conditions. Since we already proved that
a, x> 2, we get @ = 3ma,, ; > 6m > dim(3mP/, ), we can apply Lemma 2(b), and
conclude that the system is empty.

For all other cases, write 7 = n + 1 (in the case of G”) or r = n + 2 (in the case of
G, and collide the r2 points of multiplicity may, ;. to a point of multiplicity ¢ > rmay, ;.
because 7 > 3. The resulting linear system is the subsystem of rmP), ; formed by the
curves with a point of multiplicity ¢ at the first point. But curves in the rational pencil 737’% &
have multiplicity exactly a;l’ & at the first point, so curves in rmP,’l, «» being sums of rm
curves in P, ;, have multiplicity at most 7may, ;. < t; we conclude that collided system is
empty, and hence by Lemma 2(c), we have the result. [

Using the notation we’ve introduced, we see that G/, = Uncoll,,41(P}, ,1) and

n
G,/ = Uncoll, 12(P;, ;, 1) as rays. The above shows that these systems are good. The

limit of the P/, . systems is the irrational ray W,,.,. Hence using Lemma 10, we conclude
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that the two formal uncollisions of the limit of the W,,,, rays are wonderful. We denote

these two uncollisions by WSZ 4 and W;;Q, and so we have the following.

Corollary 18. The rays spanned by the classes G, ;. and G, are good for every n > 1,
k > 1. Therefore their limits for k — oo are wonderful; these are the rays spanned by

(n+1)®
n+2
W, = 14n(8n? + 27n + 16)L — 7nm(9n + Bn +6) ; E;
(n+1)247 (n+2)24+4
—n(21n® = 3nB, +126n — 28, +84) > Ei—Tn(9n+B,+6) > E
i=(n+1)24+1 (n+1)248
and
(n+2)?
Who = 14n(8n® + 2Tn + 16)L — Tn(9n + B, +6) > E;
=1
(n+2)247 (n+3)242
—n(21n® = 3nB, +126n — 28, +84) > Ei—Tn(9n+B,+6) > E
i=(n+2)2+1 (n+2)2+8

respectively, where 3, = v/49n? — 28.

Note that the first (n + 2)2 and the last 2n points have the same multiplicity in W;;z,
so this class is a permutation of

7
Who = 14n(8n® + 27Tn + 16)L — n(21n° — 3nB, + 126n — 28, + 84) Y _ E;
i=1
(n+3)242
= (9n + B, + 6) Z E;.
8

We were led to these examples since in the wonderful ray Weyer,, the first multiplicity
is exactly equal to n + 2 times the multiplicity of the last 2n points. This means that
uncolliding that first point to a collection of (n+2)? points will yield a wonderful ray with
only two distinct multiplicities, which is more uniform. A closer examination reveals that
these rays intersect the De Fernex ray negatively:

Proposition 19. The classes WS';4 and WS'ZQ are De Fernex negative.

Proof. Since the classes WSJ;4 and W;ﬂ and the De Fernex rays are given explicitly in
terms of n, this is essentially a calculus exercise. We indicate explicitly how to obtain the
inequality in the case of W;;Q, leaving the other class to the interested reader.

The computation of the intersection product as a function of n is straightforward and
gives
Wio Fuis)rie = —63n* —567n® — 1386n” — 756n

S

+14(8n® + 27n” 4+ 16n)v/n? + 6n + 10 — 7(n” + 3n + 2)1/49n* — 28n2.
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We check by hand that this is negative for n = 1,2, 3, 4. On the other hand it is clear that
Vn2+6n+10 <n+ 3+ 1/2n and vV49n4 — 28n2 > 7n? — 3 for all n > 1. Therefore

+14(8n® +27n” + 16n) (n + 34 1/2n) — 7(n® + 3n + 2) (7Tn* — 3)
=T7(=7n*+24n +22),

Wy Flassy2ee < —63n — 567n® — 1386n° — 756n

which is negative for n > 5. O

These two sets of examples give the following.

Corollary 20. For every s > 13 such that s — 4 is a square and every s > 18 such that
s — 2 is a square there exist De Fernex negative wonderful rays.

This is the final ingredient in the proof of Theorem 1, which follows from Corollary 7,
Corollary 13, Corollary 16, and Corollary 20.
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