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Abstract

In this paper we show the existence of cones over a 8-dimensional rational sphere at the
boundary of the Mori cone of the blow-up of the plane at s > 13 very general points.
This gives evidence for De Fernex’s strong A-conjecture, which is known to imply Nagata’s
conjecture. This also implies the existence of a multitude of good and wonderful rays as
defined in Ciliberto et al. (Clay Math Proc 18:185-203, 2013).
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Introduction

Fix a non-negative integer s (usually we will assume that s > 10). We denote by X; the
blow-up of the complex projective plane at s very general points; let H be the divisor class
of a general line, let E; be the class of the exceptional divisor over the i-th point, and let
Ns = Pic(X;) ®7zR, where Pic(Xj) is the Picard group. Observe that N is a real vector space
of dimension s + 1 (with basis {H, Ej, ..., E}). The divisor class L = dH — ), m; E;
represents the plane curves of degree d having multiplicity at least m; at the i-th point.

The set of non-negative real multiples of a nonzero vector L € Nj is called a ray, which
we denote by R = (L). A ray is rational if it contains an integral vector (in the H, E; basis).
A ray is effective if it contains a (necessarily integral) vector representing an effective divisor
class. Neither the degree of a ray (the coefficient of H) nor the intersection number of two
rays are well-defined; however the sign of these quantities are. Therefore it makes sense for
example to ask that a ray R satisfies deg(R) > 0 or R> > 0; for example, any effective
ray must have non-negative degree. By the Riemann-Roch Theorem, if a rational ray has
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positive degree and self-intersection, then it is effective. A divisor or ray is nef if it intersects
all effective divisors non-negatively.

There are three cones in N; that are of interest for us. The effective cone is the cone
generated by effective rays: this is the cone of all finite linear combinations of effective divisor
classes with non-negative real coefficients. The effective cone is, in general, not closed; its
closure is called the Mori cone. The dual of the Mori cone is the nef cone (consisting of nef
rays), which is a closed cone as well.

Closed cones are defined by their extremal rays, and so the identification of extremal rays
for the Mori and nef cones is of fundamental importance. Prior results constructing extremal
rays of selfintersection zero for these cones gave discrete examples (see [4, 6]) or families of
rays contained in the hyperplane orthogonal to Ky, = —3H + E| + - - - 4+ E, (unpublished
work by T. de Fernex for s = 10 and by J. C. Ottem for s = 12). In this paper we will
construct 9-dimensional subsets (which are quadratic cones) at the boundary of the Mori
cone for all s > 10, and having positive intersection with Kx if s > 13; this illustrates the
existence of both rational and irrational extremal rays.

A key lemma that produces extremal rays is provided by [4, Lemma 3.8], which states that
if aray R is rational, non-effective, and satisfies deg(R) > 0 and R? = 0, then R is nef, and is
extremal for the Mori cone and the nef cone. Such a ray is called good in [4]; in that paper we
also defined a wonderful ray, as one which is irrational and nef, with self-intersection zero.
Some wonderful rays are known (an early example of wonderful ray is contained in [11]);
the aforementioned examples of De Fernex and Ottem provide wonderful rays for s = 10
and s = 12, and the results of [6] imply the existence of wonderful rays for every s > 10.
Wonderful rays, being irrational and extremal, prove that the Mori and nef cones are not
rational polyhedral, and provide evidence for stronger conjectures that we now describe.

Recall the canonical divisor Ky = —3H + Zi E; of X;. Define the De Fernex ray Fj
to be the ray generated by /s — 1H — > }_, E;. A ray R is said to be De Fernex positive,
negative or orthogonal according to R - F being positive, negative or null; this terminology
is parallel to a ray being K-positive, negative, or orthogonal. The Strong A-Conjecture (see
[4, Conjecture 3.10]) states thatif s > 11, and R is a rational De Fernex non-positive ray of
self-intersection zero, then R is not effective, and therefore is a good ray. (See [8]; there is a
refinement for the s = 10 case.) Note that R - Fy; < 0 implies R - Ky > 0.

The Strong A-Conjecture implies the Nagata Conjecture [12], since it would imply that
the Nagata ray (/sH — >_; E;) would be wonderful if s is not a square. It would also
imply that, for De Fernex non-positive classes, the boundary of the Mori cone is given by the
classes with self-intersection zero. Hence finding large subsets of the boundary of the Mori
cone given by such classes is a strong measure of non-polyhedrality for the Mori cone and
provides intriguing evidence for the Strong A-Conjecture.

De Fernex’sresultin [8] thatfors = 10, all rays R of self-intersection zero with R- K19 = 0
are nef means that this hyperplane section of the Mori cone does have a boundary given by
the quadratic equation R? = 0. The boundary of the Mori cone of X g is so far unknown,
but it is constrained by the nefness of all classes L with L2 = L - Kjo = 0, namely a cone
over a 8-dimensional sphere.

In this paper we provide further 9-dimensional quadratic cones on the Mori cone boundary
of X for all s > 13, including some that constrain the De Fernex-negative area of the cone.
We also provide a complete determination of the boundary classes orthogonal to K.

For clarity, because the points are assumed to be very general, specifying the E; is irrele-

vant; we will therefore use the notation Ly (my,...,my) =dH —mE; — --- — myE; for
divisor classes in Pic(X;), and we will use exponential notation for repeated multiplicities.
Thus for example the canonical divisor can be written as K; = —L3(1%). The correspond-
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Quadric cones on the boundary of the Mori cone for very general...

ing linear system of singular curves in P2, sometimes identified with the projective space
P(HO(X,, Ox,(L))), willbe denotedby L = Ly(m1, ..., my). Observe that L is an effective
class if and only if the (projective) dimension of £ is non-negative.

Now we state the main results of this article.

Theorem 1 Lets > 10, and let L be a class in Pic(X,) with L2 = K- L = 0. The following
are equivalent:

(1) L is nef.

(2) There exist s — 10 disjoint (—1)-curves C1, ..., Cs_10 such that C; - L = 0 for each i.

(3) L is equivalent, by the action of the Cremona—Kantor group (see §1), to a multiple of
L3(1%,0579).

Moreover, for each fixed collection of s — 10 disjoint (—1)-curves Cy, ..., Cs_10, the rays
spanned by all classes L with L> = K - L = C; - L = 0 for all i, cover all rational points
of a cone over a 8-dimensional rational sphere.

Here a cone over a 8-dimensional rational sphere means a rational quadric of rank 10 and
signature (1, 9) contained in a 10-dimensional rational linear subspace IT of Ny = R+ and
having rational points. In practice, the quadric will always be cut out on IT by the equation
L?>=0.

Note that the second condition is empty for s = 10, so in that case our statement is
equivalent to De Fernex’s result mentioned above.

Theorem 2 Let s > 13. There exist 10-dimensional linear subspaces T C Ny such that
the intersection of the Mori cone with T1 consists of classes L € TI such that L> > 0 and
K, - L > 0, namely

MMNNEX;)={Lel|L>>0K,-L>0}.

Theorem3 Let s = k> + 4 for some integer k > 3. There exist 10-dimensional linear
subspaces T1 C Ny such that the intersection of the Mori cone with T1 consists of classes
L € I such that L*> > 0 and has non-empty intersection with the Fg-negative half space.
In particular, the conditions L € TI, L> > 0 and Fy - L < 0 define an open subset (in the
Euclidean topology) of an 8-dimensional sphere such that the cone over it is contained in
the boundary of the Mori cone.

Our starting point is De Fernex’s result on extremal rays of the Mori cone orthogonal to
Ko (that we reprove in a different way in Sect. 1 using Cremona maps), and then we proceed
with the uncollision techniques developed in [6] (see Sect. 2) to produce new families of good
and wonderful rays, in Sect. 3.

1 Nefness on K+

In this section we study classes L = Ly (my, ..., my) such that L? = L-K,; = 0with respect
to nefness. We recover by elementary methods De Fernex’s result for s = 10 that every class
with L2 = L - Ko = 0 is nef, and we extend it to describe the locus Nef? of all nef classes
with L2 = L - K, = 0 for s > 10.

Recall that, due to the Index theorem and the fact that K2 > 0 fors < 9, K2 = 0 for
s =9and K? < 0 fors > 9, the intersection form on the space K- of classes orthogonal
to K is negative definite for s < 9, it is negative semidefinite for s = 9, and it has signature
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(1,5 — 1) for s > 9. Therefore, as is well known, there are in Ny nonzero classes with
L? = K- L = 0only fors > 9; for s = 9 these are exactly the multiples of K9, and the ones
with non-negative degree form the ray (—Kpo); and for s > 10 they form a rational quadratic
cone of dimension s — 1 in Ny = RS+,

For s > 9, let Qﬁ- C N; be the locus of all classes with L2 = K, - L = 0 and H -
L > 0 (since we are interested in effectivity and nefness, only classes meeting the class H
nonnegatively are relevant). By the previous paragraph, le consists of the single ray spanned
by — K9, whereas for s > 10 it is the H-nonnegative half of a rational quadratic cone, the
boundary of a convex “round” cone in the hyperplane K1 of classes L with K, - L = 0.

The Cremona-Kantor action

Consider the group CK generated by quadratic birational transformations of P based at
subsets of 3 points among the s very general points and by permutations of these points (see
[1, 9, 10]). The Cremona—Kantor group acts on the set of divisor classes Lg(my, ..., my)
preserving all numerical and cohomological properties (nefness, effectiveness, dimension of
the associated linear system L4 (my, ..., my), etc.). A divisor class L is Cremona reduced if
it has minimal degree in its CKg-orbit, and for effective classes this is the case if and only if
the degree is greater or equal to the sum of the three largest multiplicities (see [7, p. 402—403,
Thms 8-10]; a modern and more precise treatment may be found in [2]).

The canonical class Ky = —3H + ) E; is fixed under the action of CKCy, so CK; preserves
(and acts upon) the set Qﬁ- of all classes of selfintersection zero orthogonal to K.

Remark 4 Let E be the class of a (—1)-curve in Pic(X,), hence E2 = K, - E = —1. It is
well known that for s > 3 all (—1)-curves are CK -equivalent (here we use the fact that the
points blown up to construct X are very general).

Fix s > 9. Each hyperplane in N either meets the cone Qﬁ- only at the origin, is tangent
to it along a ray, or cuts it in two regions (which can only happen for s > 10). Let us consider
the case of EL, the hyperplane of classes orthogonal to E; because all classes of (—1)-curves
are CKs-equivalent, which kind of intersection there is between E-- and Q;- depends only
ons.

Assume for simplicity that E = Ej is the exceptional curve of the last blowup. In that
case, a class belongs to E-Lifand only if it is the pullback to X of aclassin X;_ (via Xy —
X,—1, the blowing-up of the last point). Since pullback preserves intersection multiplicities,
QSL NE+ = QSL_I. Therefore E+ meets Qsl at the origin for s = 9, they are tangent along
a single ray (—Kpo) for s = 10, and they intersect along a lower dimensional irreducible
quadric for s > 10, cutting Q;- in two regions.

Lemma5 Let L = Ly(my, ..., mg) be a class satisfying L? = K, - L = 0 such that d
is greater or equal to the sum of the three largest multiplicities. Then s > 9, and up to
reordering of the divisors E;, L is a multiple of L3(1°,0°79).

Proof We will prove that every solution (d,m1,...,mg) € Rt to the following set of
equations and inequalities:

2 _ s 2
o dm=3im
e 3d=Y":_m
e my>my>--->m; >0
o d>my +my+m3
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is of the form (d,m1, ..., ms) = Gm,m°?,0°=%) € R*tL. Since K, = —3H + Y Ei.
the two equations are equivalent to L> = 0 and K - L = 0 respectively.

All conditions and the statement are homogeneous in the parameters, so we may assume
additionally that d = 1, and we shall prove that (d, my, ..., ms) = (1, (1/3)9, 0°79). We
will need the following auxiliary statement:

Claimé6 Let A = m| + my + m3. For any a € [0, m3],
m%+m%+m% < A% —4aA + 64>,
Moreover equality holds if and only if m; =my =m3 =a = A/3.

Proof Define s, = mmy + mims + moms3, the second symmetric function. Expanding A2
on the right hand side and cancelling the squares, the claimed inequality is equivalent to
255 — 4Aa + 64> > 0 for all a € [0, m3]. 1)

For fixed A, the quantity s> is minimized when the m’s are all equal, i.e., m| = my = m3 =
A/3;in that case so = A2/3. Since m3 < A/3, (1) is implied by the statement that

2A%/3 —4Aa +6a*> > Oforalla € [0, A/3]. )

This is clear, since the left hand side factors as (2/3)(A — 3a)?, and is always non-negative.
If equality holds, then s, must achieve its minimum, all the m’s are equal to A/3, and the
final inequality must also be an equality, forcing a = A/3 as well. O

Now we can complete the proof of Lemma 5. Since my4 < m3, the claim applies with
a = my4 and we conclude that

m3 +m3 4+ m3 < A> — 4Amy + 6m3 3)

with equality holding if and only if m| = my =m3 =my4 = A/3.
By the second equation in the hypotheses, > ;_, m; = 3 — A. Therefore since the m;’s
descend, we have

s )
domP<my Y mi=(3— Amy,
i—4 i—4

so that using the first equation in the hypotheses gives
N
1= "m} < A> —4Ams+6m; + (3 — Aymg = A> — (5A — 3)my + 6m3.  (4)

i=1

This gives a quadratic inequality for m4 that implies that m4 must lie outside the open interval

<5A—3—\/A2—30A+33 5A—3+\/A2—30A+33>

- 12 12

However m4 must be at most A/3, and at least ZZ mi/(s —3) = 3—A)/(s —3), and
therefore lies in the interval [(3 — A)/(s —3), A/3]. Now suppose that A < 1. Then a simple
calculation shows that the left endpoint of / is at most zero; since m4 cannot be zero in
this case, we must have that my4 is greater than or equal to the right endpoint of /. However
if A < 1, another calculation shows that this right endpoint is at least A/3. This forces
my4 = A/3, which forces m; = my = m3 = mgqg = A/3 as well. It also implies that the right
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endpoint of / is equal to A/3; this implies that A = 1. Therefore the first four multiplicities
are equal to 1/3. Now since > ;_,m; =2and ) ;_, ml2 = 2/3, the only way this works is

to have 6 of the m;’s for i > 4 equal to 1/3 and the rest equal to zero. O
Proposition7 Let L = Ly(my, ..., ms) be a class with d,m; € Zxo satisfying L? =
K - L = 0. The following are equivalent:
e L is nef.
o L is equivalent to a multiple of L3(1°,0°=°) under the action of the Cremona—Kantor
group CK;.

e There is no (—1)-curve E with E - L < Q.

Proof The proof is algorithmic.

If d = 0, then L is nef if and only if L = 0, so we may assume that d > 0.

If d is not smaller than the sum of the three largest m;, then the previous lemma shows
that L is a permutation of a multiple of L3(1°,0°7%) (and in particular it is nef).

Alternatively, d is less than the sum of the three largest m;. Then we may perform a
quadratic Cremona map based at the three points of largest multiplicity and the resulting class
L’ is CK¢-equivalent to L and has a smaller degree. As long as the degree and multiplicities
stay non-negative and d is less than the sum of the three largest multiplicities, we can replace
L by CKs-equivalent classes LK = L, (mgk), RV m;k)) with smaller degree. The process
finishes in one of the following ways:

e One or more of the multiplicities mgk) is negative. Then L% is not nef, as it intersects

the corresponding E; negatively. The original L is therefore not nef (and the application
to E; of the same quadratic Cremona maps in the reverse order produces a (—1)-curve
meeting L negatively).

e d® < (. This obviously is also non-nef, and the equality 3d®) = > mfk) that follows

from L - K; = 0 implies that one or more of the multiplicities ml(k) is negative, so the
previous description applies: there is a (—1) curve meeting L negatively.

e d™ is not less than the sum of the three largest multiplicities mfk) . Then by Lemma 5,
L™ is a permutation of a multiple of L3(1%,0°=). In particular L is equivalent to a
multiple of L3(1°, 0°~?) under the action of the Cremona—Kantor group CK;, and it is
nef. O

We now consider the non-nef cases, i.e., classes L = Lg(my, ..., mg) withL? = KL =
0 such that there is a (—1)-curve E with L - E < 0.

Proposition 8 [De Fernex [8]] Lets = 10. Everyclass L = Lg(my, ..., mg) withd, m; > 0
satisfying L?> = Ky - L = 0 is nef.

Moreover; there is a bijection ¢ between the set of rays spanned by such integral classes L
and the set of (—1)-curves on X ¢, such that ¢ (L) is the unique (—1)-curve E with L-E = 0.

We give a proof based on the previous results which seems to us more elementary than
De Fernex’s, cf. [8, Corollary 4.3].

Proof By Remark 4, for every (—1)-curve E the hyperplane E= is tangent to Qllo along a
single ray. Therefore, the whole Qf-o is contained in the half-space E™ of classes L with
L - E > 0. Thus no class in QLO meets any class of a (—1)-curve negatively and hence, by
Proposition 7, all classes on Q7 are nef.
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It remains to give the bijection ¢. We have just seen that every integral class L in Qf-o
is nef and so, by Proposition 7, for every such L there is an element o of the Cremona—
Kantor group mapping L to a multiple of L3(1°, 0). E g is the only (—1)-curve orthogonal
to L3(1%,0); indeed, every (—1)-curve E satisfies —1 = E - Kj9p = —FE - L3(119), so in
order to be orthogonal to L3(1%, 0) it must satisfy E - Ejg = —1, which forces E = Eg.
Therefore o 1 (E ) is the only (—1)-curve orthogonal to L. ]

Proposition9 Ler s > 10 and let W be the pullback to X of all classes in Qf‘o via the
blowing-up Xy — X9 of the last s — 10 points.

For each (—1)-curve E on X, let Qp be the subset of Qsl formed by all classes L
satisfying the inequality L - E < 0. Then Q- is covered by the subcones Q. (indexed by all
(=1)-curves E on X) and each QF satisfies:

(1) Every class in the interior of QF intersects E negatively and is non-nef.

(2) If s = 11, all classes on the boundary of Qf are nef.

(3) If s > 11, the boundary of Qp, namely QAJ,- NEL = Qf;l, is covered by subcones of
smaller dimension, on which nefness is determined by recursively applying this propo-
sition with s’ = s — 1.

The nef locus Nef® on Qi is the topological closure of all CKy-translates of the ray
(L3(12,0°=%)), and it coincides with the union of all CKs-translates of Wy, which are 9-
dimensional quadratic cones. At each rational ray belonging to Nef®, exactly s — 9 translates
of Wy meet.

Recall that QSL is a (s — 1)-dimensional quadratic cone, and each QF is the cone over a ball
whose boundary is a (s — 2)-dimensional quadratic cone.

Proof 1t is clear that every class in the interior of O intersects E negatively, and by Remark
4, the boundary is isomorphic to the pullback of Qﬁ-_l.

The fact that such cones cover Qsl follows from Proposition 7: every ray on QSL is a limit
of rational rays, and for every integral L € Q- either there is a (—1)-curve E such that
L belongs to the interior of Qf or it belongs to the orbit of a multiple of 3H — Z?:l E;,
in which case there are (—1)-curves E to which it is orthogonal, and so it belongs to the

boundary of Q.
Finally, the ray spanned by L3(1%,0°~) is orthogonal to exactly s — 9 (—1)-curves,
namely Ejo, ..., Es, and so it belongs to s — 9 translates of W, which we call Wx(l), W§2),

Ws(sfg). Since every L € Nef? is the translate of a multiple of L3(19, 05_9) by some
o € CKg, it belongs to s — 9 distinct translates of W,, namely o~} (Ws(l)), ol (Ws(sfg)).
[m}

Proof of Theorem 1 If s = 10, the claims are equivalent to Proposition 8 and also follow from
Proposition 7. If s > 10, we use Proposition 9 and induction on s. Indeed, if L belongs to
the interior of some cone Qpf then it clearly does not satisfy conditions (1) and (3) in the
statement of the Theorem. It does not satisfy (2) either: each collection of s — 10 disjoint
(—=1)-curves Cy, ..., Cy_1o can be blown down Xy — X’ to a surface X’ isomorphic to X g
(because it is a generic rational surface with Picard number 10, see also [8, Corollary 2.5])
and L being orthogonal to them would imply that L is the pullback to X of a well-defined
class in Qﬁ)’ therefore nef by Proposition 8. Thus we may assume that L belongs to the
boundary of Qf for some E, in which case we may blow down E; the result is isomorphic
to Xs—1, and there is a class Ly_; on X;_1 whose pullback to X is L. It is easy to see that
L?_l = Ly_1 - Ks—1 = 0 and the equivalence of (1)-(3) follows by induction.

@ Springer



C. Ciliberto et al.

Finally, since each collection of s — 10 disjoint (—1)-curves Cy, ..., Cs_jo can be blown
down to X’ = X, and the classes L with C; - L = 0 fori = 1,...,s — 10 cover the
image M of the pullback map N(X’) — N(Xj), which is a linear isomorphism onto its
image, it follows that the subset cut out on M by the additional equations L> = K - L = 0
is isomorphic to be, namely a 9-dimensional rational quadratic cone. O

2 Collision of r? points

Our method to construct round parts of the boundary of the Mori cone which are not orthog-
onal to the anticanonical divisor relies on a degeneration of X; where r2 of the s blown-up
points, of equal multiplicity m in certain divisor class

2
L=Lym" ,mpa,q,...,myg),

come together. This kind of collision was explained in detail in [6] using the technique of
[5], and we give a brief sketch of what we need here.

We consider a trivial family X = X, _,» x A over adisc A, and blow up a general point
in the central fiber over 0 € A to obtain the threefold X”. This produces a degeneration of
X,_,2 to a union of two surfaces, a plane (the exceptional divisor for the blowup) and the
proper transform F of the original X, fiber, which is now isomorphic to X > . These
two surfaces intersect transversely along a smooth rational curve R which is a line in the
plane and a (—1)-curve in F.

We now choose > general points on the plane; extend these > general points to the general
fiber using 72 sections of the projection of X’ to A, and blow up those 2 sections to ruled
surfaces &1, ..., £.2. This then produces a threefold ) which is a degeneration of Xy, to a
union of a surface P = X,» and F = X >, intersecting transversely along the double
curve R. This smooth rational curve R is the pullback of a general line in the surface P and
remains a (—1)-curve in the surface F.

We have the line bundle Oy , (L) correspondingto L' = Ly(m,2,1, ..., mg)on X_,2,
and can extend it trivially to X. If we pull that back to the first blowup X’, we see that this
restricts to the bundle corresponding to Ly (m,2 1, ..., mg, 0) on the surface FF = X2,
and to the trivial bundle on the plane. We then pull that back to the second blowup ), and tensor
by Oy(—tP —m Zil &), with ¢ a non-negative integer (called the twisting parameter).
This produces a line bundle M on ), which restricts to the general fiber as the original bundle
Ogx, (L). The principle of semicontinuity guarantees that the dimension of the general linear
system Ly (m’z, m,,q,..., M) is at most equal to the dimension of the linear system on
the reducible surface P U F, and in particular L is not effective as soon as M| pyF is not
effective, i.e., it has no nonzero sections, for some choice of twisting parameter 7.

Fix t = mr as twisting parameter. The restrictions of M to P = X2 andto FF = X2
are

Mlp = Ox ) (Lur (m")),

M|F :OX37,2+1(Ld(rm’ M2 yqy .o ms)),

respectively. The space of global sections of M|pyr is the fiber product of the space of
sections on P with the space of sections on F, fibered over the restriction to the space of
sections on R. Therefore to prove that L is not effective it suffices to prove that this fibre
product is zero. As an application, we have:
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Lemma 10 Fixr > 2 and multiplicities m, m,2 |, ..., my. If either

(a) r =2and h°(Ox, ;(Lg2m,ms, ..., mg)) < m, or
(b) r =3and h°(Ox_, (La(rm,myy,....my) <1,

2 . .
then Lg(m" ,m,2,, ..., my) is non-effective.

Proof Cases r = 2,3 are parts (a) and (b) from [6, Lemma 2]. For r > 4, recall that, as
explained in [6, end of Sect. 1], Nagata’s theorem guarantees that if » > 4 then all classes
of the form L,,, (m" 2) are non-effective; thus the bundle on P has no nonzero sections, and
therefore the fibre product corresponds to the subsystem Ly (rm + 1,m,2,y, ..., mg) on F.
So we have to prove that this is empty. Now, by [3, Proposition 2.3], this is a proper subsystem
of Ly(rm,m,2y, ..., my) and therefore it is empty (indeed, if Ly(rm,m,2 4, ..., my) is
non-empty, its general member has the first point of multiplicity exactly rm). O

We note that the divisors before and after the collision have the same self-intersection. In
particular, if one is zero, so is the other; this will be important in our application.

Given a divisor class L € Pic(X11), and an index i denoting one of the multiplicities,
in [6] we defined the uncollision Uncoll, (L, ) as the class Uncoll, (L, i) € Pic(X,,,2)
obtained replacing the i-th multiplicity m; by r? points of multiplicity m; /r. This makes
sense at the level of divisor classes if m; is divisible by r, but it also makes sense as a
map N (Xsy1) — N(X,,2). Observe as well that the process of considering an uncollision
behaves linearly with respect to multiplicities and degrees, and the corresponding linear map
is injective. This will be key in our application, and additionally it means that uncollision
makes sense applied to rational rays in N (X;1).

3 Quadratic sections of ONE in K;"

By the Cone Theorem, the shape of the Mori cone on the half-space K of classes which
intersect the canonical divisor negatively is governed by the rays generated by (—1)-curves.
On the orthogonal hyperplane K SJ- this is no longer quite the case, but we saw in the previous
section that nefness is still characterized by intersection with (—1)-rays, and there are no
good rays on K;-.

In this section we show how to exploit uncollisions to build 9-dimensional quadric cones
in the boundary of the Mori cone consisting entirely of good and wonderful rays. Since the
collision/uncollision analysis and construction is only available for divisor classes of rational
rays but not for irrational rays, we work on rational rays to obtain good rays and then use the
closed convex nature of the nef cone to obtain families of good and wonderful rays.

Remark 11 If D is an R-divisor class with D - K; = 0 and D’ is obtained from D by
uncolliding a point of multiplicity rm > 0tor? > 4 points of multiplicity m, then D’- K > 0.
Indeed, writing D = dL — Y m; E; wehave D - K; =Y m; — 3d and

D/-Ks:Zm,-—rm+r2m—3d:D-Ks+(r2—r)m>D-KS.

Proposition 12 Let L be a nef class in QF. For everyi = 1,...,s such that m; # 0 and
every r > 2 the ray (Uncoll, (L, i)) is good.

Proof By Proposition 9, L is CKs-equivalent to L3, (@®, 0°~9) for some integer a > 0, and
therefore its space of global sections has dimension 1. Therefore by Lemma 10 Uncoll, (L, i)
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is not effective, and the same holds for its multiples, which are uncollisions of multiples of
L, which themselves have 1-dimensional global sections. O

Proof of Theorem 2 Let s’ = s — 3 > 10. By Theorem 1, each collection of s” — 10 disjoint
(=1)-curves Cy, ..., Cy_jo determines a 10-dimensional linear subspace I1" C Ny (of
those classes orthogonal to Ky and to the C;) such that each D € IT' with D* =0is
nef, and the rays spanned by such D cover a 9-dimensional rational quadratic cone. By
Proposition 12, foreachi =1, ..., s, every such class D gives rise by uncollision to a good
ray (Uncoll(D, i)) in Ny of self-intersection zero. Consider Uncolly (-, i) as a linear map
IT" — N, and let T1 be its image. By linearity and injectivity, the good rays obtained as
images of the nef rays (D) with D? =0 coverthecone {L € [T|L2=0,H - L > 0}, and
therefore TN NE(X,) ={L € T1|L>>0,H - L > 0}.

By Remark 11, all rational classes L on the cone C = {L € IT| L = 0} satisfy L- K, > 0.
Now C* := CN K} is the intersection of a rational quadratic cone with a rational hyperplane,
thus either it is a rational quadratic cone, or it consists only of the single point at the origin.
However, we know that C1 contains no rational ray, so it must be reduced to a point, and we
conclude that L - K > 0 for every nonzero L € C. O

The 9-dimensional quadratic cones of good and wonderful rays in K ;- we just constructed
do not in general consist of De Fernex negative classes. However, the wonderful De Fernex
negative rays constructed in [6] are uncollisions of nef rays in K Yl so they do belong to some
of these 9-dimensional cones, which is the basis for the proof of Theorem 3.

Proof of Theorem 3 Proposition 17 in [6] exhibits De Fernex negative wonderful rays (D) on
X2, 4 for every k > 3 by uncolliding classes L on Qzlk_’_4 (use n = k — 2 in [6, Propo-
sition 17]). By Proposition 9, for every such L there is a rational 9-dimensional quadratic
cone C of nef classes in Qj-k 44 containg L. Therefore, by Proposition 12, the uncollision
Uncollx—1 (L, 1) spans a good ray for every L in C; these rays cover the 9-dimensional cone
over a 8-dimensional sphere and at least one such ray is De Fernex negative. Since being
De Fernex negative is an open condition, the claim follows. m}
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