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Abstract
In this paper we show the existence of cones over a 8-dimensional rational sphere at the
boundary of the Mori cone of the blow-up of the plane at s ≥ 13 very general points.
This gives evidence for De Fernex’s strong �-conjecture, which is known to imply Nagata’s
conjecture. This also implies the existence of a multitude of good and wonderful rays as
defined in Ciliberto et al. (Clay Math Proc 18:185–203, 2013).
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Introduction

Fix a non-negative integer s (usually we will assume that s ≥ 10). We denote by Xs the
blow-up of the complex projective plane at s very general points; let H be the divisor class
of a general line, let Ei be the class of the exceptional divisor over the i-th point, and let
Ns = Pic(Xs)⊗ZR, where Pic(Xs) is the Picard group. Observe that Ns is a real vector space
of dimension s + 1 (with basis {H , E1, . . . , Es}). The divisor class L = d H − ∑

i mi Ei

represents the plane curves of degree d having multiplicity at least mi at the i-th point.
The set of non-negative real multiples of a nonzero vector L ∈ Ns is called a ray, which

we denote by R = 〈L〉. A ray is rational if it contains an integral vector (in the H , Ei basis).
A ray is effective if it contains a (necessarily integral) vector representing an effective divisor
class. Neither the degree of a ray (the coefficient of H ) nor the intersection number of two
rays are well-defined; however the sign of these quantities are. Therefore it makes sense for
example to ask that a ray R satisfies deg(R) > 0 or R2 > 0; for example, any effective
ray must have non-negative degree. By the Riemann-Roch Theorem, if a rational ray has
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positive degree and self-intersection, then it is effective. A divisor or ray is nef if it intersects
all effective divisors non-negatively.

There are three cones in Ns that are of interest for us. The effective cone is the cone
generated by effective rays: this is the cone of all finite linear combinations of effective divisor
classes with non-negative real coefficients. The effective cone is, in general, not closed; its
closure is called the Mori cone. The dual of the Mori cone is the nef cone (consisting of nef
rays), which is a closed cone as well.

Closed cones are defined by their extremal rays, and so the identification of extremal rays
for the Mori and nef cones is of fundamental importance. Prior results constructing extremal
rays of selfintersection zero for these cones gave discrete examples (see [4, 6]) or families of
rays contained in the hyperplane orthogonal to K Xs = −3H + E1 + · · · + Es (unpublished
work by T. de Fernex for s = 10 and by J. C. Ottem for s = 12). In this paper we will
construct 9-dimensional subsets (which are quadratic cones) at the boundary of the Mori
cone for all s ≥ 10, and having positive intersection with K Xs if s ≥ 13; this illustrates the
existence of both rational and irrational extremal rays.

A key lemma that produces extremal rays is provided by [4, Lemma 3.8], which states that
if a ray R is rational, non-effective, and satisfies deg(R) ≥ 0 and R2 = 0, then R is nef, and is
extremal for the Mori cone and the nef cone. Such a ray is called good in [4]; in that paper we
also defined a wonderful ray, as one which is irrational and nef, with self-intersection zero.
Some wonderful rays are known (an early example of wonderful ray is contained in [11]);
the aforementioned examples of De Fernex and Ottem provide wonderful rays for s = 10
and s = 12, and the results of [6] imply the existence of wonderful rays for every s ≥ 10.
Wonderful rays, being irrational and extremal, prove that the Mori and nef cones are not
rational polyhedral, and provide evidence for stronger conjectures that we now describe.

Recall the canonical divisor Ks = −3H + ∑
i Ei of Xs . Define the De Fernex ray Fs

to be the ray generated by
√

s − 1H − ∑s
i=1 Ei . A ray R is said to be De Fernex positive,

negative or orthogonal according to R · Fs being positive, negative or null; this terminology
is parallel to a ray being Ks-positive, negative, or orthogonal. The Strong �-Conjecture (see
[4, Conjecture 3.10]) states that if s ≥ 11, and R is a rational De Fernex non-positive ray of
self-intersection zero, then R is not effective, and therefore is a good ray. (See [8]; there is a
refinement for the s = 10 case.) Note that R · Fs ≤ 0 implies R · Ks > 0.

The Strong �-Conjecture implies the Nagata Conjecture [12], since it would imply that
the Nagata ray 〈√s H − ∑

i Ei 〉 would be wonderful if s is not a square. It would also
imply that, for De Fernex non-positive classes, the boundary of the Mori cone is given by the
classes with self-intersection zero. Hence finding large subsets of the boundary of the Mori
cone given by such classes is a strong measure of non-polyhedrality for the Mori cone and
provides intriguing evidence for the Strong �-Conjecture.

DeFernex’s result in [8] that for s = 10, all rays R of self-intersection zerowith R·K10 = 0
are nef means that this hyperplane section of the Mori cone does have a boundary given by
the quadratic equation R2 = 0. The boundary of the Mori cone of X10 is so far unknown,
but it is constrained by the nefness of all classes L with L2 = L · K10 = 0, namely a cone
over a 8-dimensional sphere.

In this paper we provide further 9-dimensional quadratic cones on theMori cone boundary
of Xs for all s ≥ 13, including some that constrain the De Fernex-negative area of the cone.
We also provide a complete determination of the boundary classes orthogonal to Ks .

For clarity, because the points are assumed to be very general, specifying the Ei is irrele-
vant; we will therefore use the notation Ld(m1, . . . , ms) = d H − m1E1 − · · · − ms Es for
divisor classes in Pic(Xs), and we will use exponential notation for repeated multiplicities.
Thus for example the canonical divisor can be written as Ks = −L3(1s). The correspond-
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ing linear system of singular curves in P
2, sometimes identified with the projective space

P(H0(Xs,OXs (L))), will be denoted byL = Ld(m1, . . . , ms). Observe that L is an effective
class if and only if the (projective) dimension of L is non-negative.

Now we state the main results of this article.

Theorem 1 Let s ≥ 10, and let L be a class in Pic(Xs) with L2 = Ks · L = 0. The following
are equivalent:

(1) L is nef.
(2) There exist s − 10 disjoint (−1)-curves C1, . . . , Cs−10 such that Ci · L = 0 for each i .
(3) L is equivalent, by the action of the Cremona–Kantor group (see §1), to a multiple of

L3(19, 0s−9).

Moreover, for each fixed collection of s − 10 disjoint (−1)-curves C1, . . . , Cs−10, the rays
spanned by all classes L with L2 = K · L = Ci · L = 0 for all i , cover all rational points
of a cone over a 8-dimensional rational sphere.

Here a cone over a 8-dimensional rational sphere means a rational quadric of rank 10 and
signature (1, 9) contained in a 10-dimensional rational linear subspace � of Ns ∼= R

s+1 and
having rational points. In practice, the quadric will always be cut out on � by the equation
L2 = 0.

Note that the second condition is empty for s = 10, so in that case our statement is
equivalent to De Fernex’s result mentioned above.

Theorem 2 Let s ≥ 13. There exist 10-dimensional linear subspaces � ⊂ Ns such that
the intersection of the Mori cone with � consists of classes L ∈ � such that L2 ≥ 0 and
Ks · L > 0, namely

� ∩ N E(Xs) = {L ∈ � | L2 ≥ 0, Ks · L > 0}.
Theorem 3 Let s = k2 + 4 for some integer k ≥ 3. There exist 10-dimensional linear
subspaces � ⊂ Ns such that the intersection of the Mori cone with � consists of classes
L ∈ � such that L2 ≥ 0 and has non-empty intersection with the Fs-negative half space.
In particular, the conditions L ∈ �, L2 ≥ 0 and Fs · L < 0 define an open subset (in the
Euclidean topology) of an 8-dimensional sphere such that the cone over it is contained in
the boundary of the Mori cone.

Our starting point is De Fernex’s result on extremal rays of the Mori cone orthogonal to
K10 (that we reprove in a different way in Sect. 1 using Cremona maps), and then we proceed
with the uncollision techniques developed in [6] (see Sect. 2) to produce new families of good
and wonderful rays, in Sect. 3.

1 Nefness on K⊥

In this section we study classes L = Ld(m1, . . . , ms) such that L2 = L · Ks = 0 with respect
to nefness. We recover by elementary methods De Fernex’s result for s = 10 that every class
with L2 = L · K10 = 0 is nef, and we extend it to describe the locus Nef0 of all nef classes
with L2 = L · Ks = 0 for s > 10.

Recall that, due to the Index theorem and the fact that K 2
s > 0 for s < 9, K 2

s = 0 for
s = 9 and K 2

s < 0 for s > 9, the intersection form on the space K ⊥
s of classes orthogonal

to Ks is negative definite for s < 9, it is negative semidefinite for s = 9, and it has signature
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(1, s − 1) for s > 9. Therefore, as is well known, there are in Ns nonzero classes with
L2 = Ks · L = 0 only for s ≥ 9; for s = 9 these are exactly the multiples of K9, and the ones
with non-negative degree form the ray 〈−K9〉; and for s ≥ 10 they form a rational quadratic
cone of dimension s − 1 in Ns ∼= R

s+1.
For s ≥ 9, let Q⊥

s ⊂ Ns be the locus of all classes with L2 = Ks · L = 0 and H ·
L ≥ 0 (since we are interested in effectivity and nefness, only classes meeting the class H
nonnegatively are relevant). By the previous paragraph,Q⊥

9 consists of the single ray spanned
by −K9, whereas for s ≥ 10 it is the H -nonnegative half of a rational quadratic cone, the
boundary of a convex “round” cone in the hyperplane K ⊥ of classes L with Ks · L = 0.

The Cremona–Kantor action

Consider the group CKs generated by quadratic birational transformations of P2 based at
subsets of 3 points among the s very general points and by permutations of these points (see
[1, 9, 10]). The Cremona–Kantor group acts on the set of divisor classes Ld(m1, . . . , ms)

preserving all numerical and cohomological properties (nefness, effectiveness, dimension of
the associated linear system Ld(m1, . . . , ms), etc.). A divisor class L is Cremona reduced if
it has minimal degree in its CKs-orbit, and for effective classes this is the case if and only if
the degree is greater or equal to the sum of the three largest multiplicities (see [7, p. 402–403,
Thms 8–10]; a modern and more precise treatment may be found in [2]).

The canonical class Ks = −3H +∑
Ei is fixed under the action of CKs , so CKs preserves

(and acts upon) the set Q⊥
s of all classes of selfintersection zero orthogonal to Ks .

Remark 4 Let E be the class of a (−1)-curve in Pic(Xs), hence E2 = Ks · E = −1. It is
well known that for s ≥ 3 all (−1)-curves are CKs-equivalent (here we use the fact that the
points blown up to construct Xs are very general).

Fix s ≥ 9. Each hyperplane in Ns either meets the cone Q⊥
s only at the origin, is tangent

to it along a ray, or cuts it in two regions (which can only happen for s ≥ 10). Let us consider
the case of E⊥, the hyperplane of classes orthogonal to E ; because all classes of (−1)-curves
are CKs-equivalent, which kind of intersection there is between E⊥ and Q⊥

s depends only
on s.

Assume for simplicity that E = Es is the exceptional curve of the last blowup. In that
case, a class belongs to E⊥ if and only if it is the pullback to Xs of a class in Xs−1 (via Xs →
Xs−1, the blowing-up of the last point). Since pullback preserves intersection multiplicities,
Q⊥

s ∩ E⊥ ∼= Q⊥
s−1. Therefore E⊥ meets Q⊥

s at the origin for s = 9, they are tangent along
a single ray 〈−K9〉 for s = 10, and they intersect along a lower dimensional irreducible
quadric for s > 10, cutting Q⊥

s in two regions.

Lemma 5 Let L = Ld(m1, . . . , ms) be a class satisfying L2 = Ks · L = 0 such that d
is greater or equal to the sum of the three largest multiplicities. Then s ≥ 9, and up to
reordering of the divisors Ei , L is a multiple of L3(19, 0s−9).

Proof We will prove that every solution (d, m1, . . . , ms) ∈ R
s+1 to the following set of

equations and inequalities:

• d2 = ∑s
i=1 m2

i• 3d = ∑s
i=1 mi

• m1 ≥ m2 ≥ · · · ≥ ms ≥ 0
• d ≥ m1 + m2 + m3
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is of the form (d, m1, . . . , ms) = (3m, m9, 0s−9) ∈ R
s+1. Since Ks = −3H + ∑s

i=1 Ei ,
the two equations are equivalent to L2 = 0 and Ks · L = 0 respectively.

All conditions and the statement are homogeneous in the parameters, so we may assume
additionally that d = 1, and we shall prove that (d, m1, . . . , ms) = (1, (1/3)9, 0s−9). We
will need the following auxiliary statement:

Claim 6 Let A = m1 + m2 + m3. For any a ∈ [0, m3],
m2

1 + m2
2 + m2

3 ≤ A2 − 4a A + 6a2.

Moreover equality holds if and only if m1 = m2 = m3 = a = A/3.

Proof Define s2 = m1m2 + m1m3 + m2m3, the second symmetric function. Expanding A2

on the right hand side and cancelling the squares, the claimed inequality is equivalent to

2s2 − 4Aa + 6a2 ≥ 0 for all a ∈ [0, m3]. (1)

For fixed A, the quantity s2 is minimized when the m’s are all equal, i.e., m1 = m2 = m3 =
A/3; in that case s2 = A2/3. Since m3 ≤ A/3, (1) is implied by the statement that

2A2/3 − 4Aa + 6a2 ≥ 0 for all a ∈ [0, A/3]. (2)

This is clear, since the left hand side factors as (2/3)(A − 3a)2, and is always non-negative.
If equality holds, then s2 must achieve its minimum, all the m’s are equal to A/3, and the

final inequality must also be an equality, forcing a = A/3 as well. ��
Now we can complete the proof of Lemma 5. Since m4 ≤ m3, the claim applies with

a = m4 and we conclude that

m2
1 + m2

2 + m2
3 ≤ A2 − 4Am4 + 6m2

4 (3)

with equality holding if and only if m1 = m2 = m3 = m4 = A/3.
By the second equation in the hypotheses,

∑s
i=4 mi = 3 − A. Therefore since the mi ’s

descend, we have
s∑

i=4

m2
i ≤ m4

s∑

i=4

mi = (3 − A)m4,

so that using the first equation in the hypotheses gives

1 =
s∑

i=1

m2
i ≤ A2 − 4Am4 + 6m2

4 + (3 − A)m4 = A2 − (5A − 3)m4 + 6m2
4. (4)

This gives a quadratic inequality form4 that implies thatm4 must lie outside the open interval

I =
(
5A − 3 − √

A2 − 30A + 33

12
,
5A − 3 + √

A2 − 30A + 33

12

)

.

However m4 must be at most A/3, and at least
∑s

4 mi/(s − 3) = (3 − A)/(s − 3), and
therefore lies in the interval [(3− A)/(s −3), A/3]. Now suppose that A ≤ 1. Then a simple
calculation shows that the left endpoint of I is at most zero; since m4 cannot be zero in
this case, we must have that m4 is greater than or equal to the right endpoint of I . However
if A ≤ 1, another calculation shows that this right endpoint is at least A/3. This forces
m4 = A/3, which forces m1 = m2 = m3 = m4 = A/3 as well. It also implies that the right
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endpoint of I is equal to A/3; this implies that A = 1. Therefore the first four multiplicities
are equal to 1/3. Now since

∑s
i=4 mi = 2 and

∑s
i=4 m2

i = 2/3, the only way this works is
to have 6 of the mi ’s for i ≥ 4 equal to 1/3 and the rest equal to zero. ��
Proposition 7 Let L = Ld(m1, . . . , ms) be a class with d, mi ∈ Z≥0 satisfying L2 =
Ks · L = 0. The following are equivalent:

• L is nef.
• L is equivalent to a multiple of L3(19, 0s−9) under the action of the Cremona–Kantor

group CKs .
• There is no (−1)-curve E with E · L < 0.

Proof The proof is algorithmic.
If d = 0, then L is nef if and only if L = 0, so we may assume that d > 0.
If d is not smaller than the sum of the three largest mi , then the previous lemma shows

that L is a permutation of a multiple of L3(19, 0s−9) (and in particular it is nef).
Alternatively, d is less than the sum of the three largest mi . Then we may perform a

quadratic Cremonamap based at the three points of largest multiplicity and the resulting class
L ′ is CKs-equivalent to L and has a smaller degree. As long as the degree and multiplicities
stay non-negative and d is less than the sum of the three largest multiplicities, we can replace
L by CKs-equivalent classes L(k) = Ld(k) (m(k)

1 , . . . , m(k)
2 ) with smaller degree. The process

finishes in one of the following ways:

• One or more of the multiplicities m(k)
i is negative. Then L(k) is not nef, as it intersects

the corresponding Ei negatively. The original L is therefore not nef (and the application
to Ei of the same quadratic Cremona maps in the reverse order produces a (−1)-curve
meeting L negatively).

• d(k) < 0. This obviously is also non-nef, and the equality 3d(k) = ∑
m(k)

i that follows

from L · Ks = 0 implies that one or more of the multiplicities m(k)
i is negative, so the

previous description applies: there is a (−1) curve meeting L negatively.
• d(k) is not less than the sum of the three largest multiplicities m(k)

i . Then by Lemma 5,
L(k) is a permutation of a multiple of L3(19, 0s−9). In particular L is equivalent to a
multiple of L3(19, 0s−9) under the action of the Cremona–Kantor group CKs , and it is
nef. ��
Wenow consider the non-nef cases, i.e., classes L = Ld(m1, . . . , ms)with L2 = Ks ·L =

0 such that there is a (−1)-curve E with L · E < 0.

Proposition 8 [De Fernex [8]] Let s = 10. Every class L = Ld(m1, . . . , ms) with d, mi ≥ 0
satisfying L2 = Ks · L = 0 is nef.

Moreover, there is a bijection φ between the set of rays spanned by such integral classes L
and the set of (−1)-curves on X10, such that φ(L) is the unique (−1)-curve E with L · E = 0.

We give a proof based on the previous results which seems to us more elementary than
De Fernex’s, cf. [8, Corollary 4.3].

Proof By Remark 4, for every (−1)-curve E the hyperplane E⊥ is tangent to Q⊥
10 along a

single ray. Therefore, the whole Q⊥
10 is contained in the half-space E+ of classes L with

L · E ≥ 0. Thus no class in Q⊥
10 meets any class of a (−1)-curve negatively and hence, by

Proposition 7, all classes on Q⊥
10 are nef.
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It remains to give the bijection φ. We have just seen that every integral class L in Q⊥
10

is nef and so, by Proposition 7, for every such L there is an element σ of the Cremona–
Kantor group mapping L to a multiple of L3(19, 0). E10 is the only (−1)-curve orthogonal
to L3(19, 0); indeed, every (−1)-curve E satisfies −1 = E · K10 = −E · L3(110), so in
order to be orthogonal to L3(19, 0) it must satisfy E · E10 = −1, which forces E = E10.
Therefore σ−1(E10) is the only (−1)-curve orthogonal to L . ��
Proposition 9 Let s > 10 and let Ws be the pullback to Xs of all classes in Q⊥

10 via the
blowing-up Xs → X10 of the last s − 10 points.

For each (−1)-curve E on Xs, let QE be the subset of Q⊥
s formed by all classes L

satisfying the inequality L · E ≤ 0. Then Q⊥
s is covered by the subcones QE (indexed by all

(−1)-curves E on Xs) and each QE satisfies:

(1) Every class in the interior of QE intersects E negatively and is non-nef.
(2) If s = 11, all classes on the boundary of QE are nef.
(3) If s > 11, the boundary of QE , namely Q⊥

s ∩ E⊥ ∼= Q⊥
s−1, is covered by subcones of

smaller dimension, on which nefness is determined by recursively applying this propo-
sition with s′ = s − 1.

The nef locus Nef0 on Q⊥
s is the topological closure of all CKs -translates of the ray

〈L3(19, 0s−9)〉, and it coincides with the union of all CKs -translates of Ws , which are 9-
dimensional quadratic cones. At each rational ray belonging to Nef0, exactly s −9 translates
of Ws meet.

Recall thatQ⊥
s is a (s − 1)-dimensional quadratic cone, and eachQE is the cone over a ball

whose boundary is a (s − 2)-dimensional quadratic cone.

Proof It is clear that every class in the interior ofQE intersects E negatively, and by Remark
4, the boundary is isomorphic to the pullback of Q⊥

s−1.
The fact that such cones coverQ⊥

s follows from Proposition 7: every ray onQ⊥
s is a limit

of rational rays, and for every integral L ∈ Q⊥
s either there is a (−1)-curve E such that

L belongs to the interior of QE or it belongs to the orbit of a multiple of 3H − ∑9
i=1 Ei ,

in which case there are (−1)-curves E to which it is orthogonal, and so it belongs to the
boundary of QE .

Finally, the ray spanned by L3(19, 0s−9) is orthogonal to exactly s − 9 (−1)-curves,
namely E10, . . . , Es , and so it belongs to s − 9 translates ofWs , which we callW(1)

s ,W(2)
s ,

…, W(s−9)
s . Since every L ∈ Nef0 is the translate of a multiple of L3(19, 0s−9) by some

σ ∈ CKs , it belongs to s −9 distinct translates ofWs , namely σ−1(W(1)
s ), …, σ−1(W(s−9)

s ).
��

Proof of Theorem 1 If s = 10, the claims are equivalent to Proposition 8 and also follow from
Proposition 7. If s > 10, we use Proposition 9 and induction on s. Indeed, if L belongs to
the interior of some cone QE then it clearly does not satisfy conditions (1) and (3) in the
statement of the Theorem. It does not satisfy (2) either: each collection of s − 10 disjoint
(−1)-curves C1, . . . , Cs−10 can be blown down Xs → X ′ to a surface X ′ isomorphic to X10

(because it is a generic rational surface with Picard number 10, see also [8, Corollary 2.5])
and L being orthogonal to them would imply that L is the pullback to Xs of a well-defined
class in Q⊥

10, therefore nef by Proposition 8. Thus we may assume that L belongs to the
boundary of QE for some E , in which case we may blow down E ; the result is isomorphic
to Xs−1, and there is a class Ls−1 on Xs−1 whose pullback to Xs is L . It is easy to see that
L2

s−1 = Ls−1 · Ks−1 = 0 and the equivalence of (1)-(3) follows by induction.
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Finally, since each collection of s − 10 disjoint (−1)-curves C1, . . . , Cs−10 can be blown
down to X ′ ∼= X10, and the classes L with Ci · L = 0 for i = 1, . . . , s − 10 cover the
image M of the pullback map N (X ′) → N (Xs), which is a linear isomorphism onto its
image, it follows that the subset cut out on M by the additional equations L2 = K · L = 0
is isomorphic to Q⊥

10, namely a 9-dimensional rational quadratic cone. ��

2 Collision of r2 points

Our method to construct round parts of the boundary of the Mori cone which are not orthog-
onal to the anticanonical divisor relies on a degeneration of Xs where r2 of the s blown-up
points, of equal multiplicity m in certain divisor class

L = Ld(mr2 , mr2+1, . . . , ms),

come together. This kind of collision was explained in detail in [6] using the technique of
[5], and we give a brief sketch of what we need here.

We consider a trivial family X = Xs−r2 × � over a disc �, and blow up a general point
in the central fiber over 0 ∈ � to obtain the threefold X ′. This produces a degeneration of
Xs−r2 to a union of two surfaces, a plane (the exceptional divisor for the blowup) and the
proper transform F of the original Xs−r2 fiber, which is now isomorphic to Xs−r2+1. These
two surfaces intersect transversely along a smooth rational curve R which is a line in the
plane and a (−1)-curve in F .

We now choose r2 general points on the plane; extend these r2 general points to the general
fiber using r2 sections of the projection of X ′ to �, and blow up those r2 sections to ruled
surfaces E1, . . . , Er2 . This then produces a threefold Y which is a degeneration of Xs , to a
union of a surface P ∼= Xr2 and F ∼= Xs−r2+1, intersecting transversely along the double
curve R. This smooth rational curve R is the pullback of a general line in the surface P and
remains a (−1)-curve in the surface F .

We have the line bundleOXs−r2
(L ′) corresponding to L ′ = Ld(mr2+1, . . . , ms) on Xs−r2 ,

and can extend it trivially to X . If we pull that back to the first blowup X ′, we see that this
restricts to the bundle corresponding to Ld(mr2+1, . . . , ms, 0) on the surface F ∼= Xs−r2+1,
and to the trivial bundle on the plane.We then pull that back to the secondblowupY , and tensor
by OY (−t P − m

∑r2
i=1 Ei ), with t a non-negative integer (called the twisting parameter).

This produces a line bundleM onY , which restricts to the general fiber as the original bundle
OXs (L). The principle of semicontinuity guarantees that the dimension of the general linear

system Ld(mr2 , mr2+1, . . . , ms) is at most equal to the dimension of the linear system on
the reducible surface P ∪ F , and in particular L is not effective as soon as M|P∪F is not
effective, i.e., it has no nonzero sections, for some choice of twisting parameter t .

Fix t = mr as twisting parameter. The restrictions ofM to P ∼= Xr2 and to F ∼= Xs−r2+1
are

M|P =OXr2
(Lmr (m

r2)),

M|F =OXs−r2+1
(Ld(rm, mr2+1, . . . , ms)),

respectively. The space of global sections of M|P∪F is the fiber product of the space of
sections on P with the space of sections on F , fibered over the restriction to the space of
sections on R. Therefore to prove that L is not effective it suffices to prove that this fibre
product is zero. As an application, we have:
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Lemma 10 Fix r ≥ 2 and multiplicities m, mr2+1, . . . , ms. If either

(a) r = 2 and h0(OXs−3(Ld(2m, m5, . . . , ms)) ≤ m, or
(b) r ≥ 3 and h0(OXs−r2+1

(Ld(rm, mr2+1, . . . , ms))) ≤ 1,

then Ld(mr2 , mr2+1, . . . , ms) is non-effective.

Proof Cases r = 2, 3 are parts (a) and (b) from [6, Lemma 2]. For r ≥ 4, recall that, as
explained in [6, end of Sect. 1], Nagata’s theorem guarantees that if r ≥ 4 then all classes
of the form Lrm(mr2) are non-effective; thus the bundle on P has no nonzero sections, and
therefore the fibre product corresponds to the subsystem Ld(rm + 1, mr2+1, . . . , ms) on F .
So we have to prove that this is empty. Now, by [3, Proposition 2.3], this is a proper subsystem
of Ld(rm, mr2+1, . . . , ms) and therefore it is empty (indeed, if Ld(rm, mr2+1, . . . , ms) is
non-empty, its general member has the first point of multiplicity exactly rm). ��

We note that the divisors before and after the collision have the same self-intersection. In
particular, if one is zero, so is the other; this will be important in our application.

Given a divisor class L ∈ Pic(Xs+1), and an index i denoting one of the multiplicities,
in [6] we defined the uncollision Uncollr (L, i) as the class Uncollr (L, i) ∈ Pic(Xs+r2)

obtained replacing the i-th multiplicity mi by r2 points of multiplicity mi/r . This makes
sense at the level of divisor classes if mi is divisible by r , but it also makes sense as a
map N (Xs+1) → N (Xs+r2). Observe as well that the process of considering an uncollision
behaves linearly with respect to multiplicities and degrees, and the corresponding linear map
is injective. This will be key in our application, and additionally it means that uncollision
makes sense applied to rational rays in N (Xs+1).

3 Quadratic sections of @NE in K+
s

By the Cone Theorem, the shape of the Mori cone on the half-space K −
s of classes which

intersect the canonical divisor negatively is governed by the rays generated by (−1)-curves.
On the orthogonal hyperplane K ⊥

s this is no longer quite the case, but we saw in the previous
section that nefness is still characterized by intersection with (−1)-rays, and there are no
good rays on K ⊥

s .
In this section we show how to exploit uncollisions to build 9-dimensional quadric cones

in the boundary of the Mori cone consisting entirely of good and wonderful rays. Since the
collision/uncollision analysis and construction is only available for divisor classes of rational
rays but not for irrational rays, we work on rational rays to obtain good rays and then use the
closed convex nature of the nef cone to obtain families of good and wonderful rays.

Remark 11 If D is an R-divisor class with D · Ks = 0 and D′ is obtained from D by
uncolliding a point ofmultiplicity rm > 0 to r2 ≥ 4 points ofmultiplicitym, then D′ ·Ks > 0.
Indeed, writing D = d L − ∑

mi Ei we have D · Ks = ∑
mi − 3d and

D′ · Ks =
∑

mi − rm + r2m − 3d = D · Ks + (r2 − r)m > D · Ks .

Proposition 12 Let L be a nef class in Q⊥
s . For every i = 1, . . . , s such that mi �= 0 and

every r ≥ 2 the ray 〈Uncollr (L, i)〉 is good.

Proof By Proposition 9, L is CKs-equivalent to L3a(a9, 0s−9) for some integer a > 0, and
therefore its space of global sections has dimension 1. Therefore by Lemma 10 Uncollr (L, i)
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is not effective, and the same holds for its multiples, which are uncollisions of multiples of
L , which themselves have 1-dimensional global sections. ��

Proof of Theorem 2 Let s′ = s − 3 ≥ 10. By Theorem 1, each collection of s′ − 10 disjoint
(−1)-curves C1, . . . , Cs′−10 determines a 10-dimensional linear subspace �′ ⊂ Ns′ (of
those classes orthogonal to Ks′ and to the Ci ) such that each D ∈ �′ with D2 = 0 is
nef, and the rays spanned by such D cover a 9-dimensional rational quadratic cone. By
Proposition 12, for each i = 1, . . . , s′, every such class D gives rise by uncollision to a good
ray 〈Uncoll2(D, i)〉 in Ns of self-intersection zero. Consider Uncoll2(·, i) as a linear map
�′ → Ns and let � be its image. By linearity and injectivity, the good rays obtained as
images of the nef rays 〈D〉 with D2 = 0 cover the cone {L ∈ � | L2 = 0, H · L ≥ 0}, and
therefore � ∩ N E(Xs) = {L ∈ � | L2 ≥ 0, H · L ≥ 0}.

By Remark 11, all rational classes L on the cone C = {L ∈ � | L2 = 0} satisfy L ·Ks > 0.
Now C⊥ := C∩ K ⊥

s is the intersection of a rational quadratic cone with a rational hyperplane,
thus either it is a rational quadratic cone, or it consists only of the single point at the origin.
However, we know that C⊥ contains no rational ray, so it must be reduced to a point, and we
conclude that L · Ks > 0 for every nonzero L ∈ C. ��

The 9-dimensional quadratic cones of good and wonderful rays in K ⊥
s we just constructed

do not in general consist of De Fernex negative classes. However, the wonderful De Fernex
negative rays constructed in [6] are uncollisions of nef rays in K ⊥

s , so they do belong to some
of these 9-dimensional cones, which is the basis for the proof of Theorem 3.

Proof of Theorem 3 Proposition 17 in [6] exhibits De Fernex negative wonderful rays 〈D〉 on
Xk2+4 for every k ≥ 3 by uncolliding classes L on Q⊥

2k+4 (use n = k − 2 in [6, Propo-
sition 17]). By Proposition 9, for every such L there is a rational 9-dimensional quadratic
cone C of nef classes in Q⊥

2k+4 containg L . Therefore, by Proposition 12, the uncollision
Uncollk−1(L, 1) spans a good ray for every L in C; these rays cover the 9-dimensional cone
over a 8-dimensional sphere and at least one such ray is De Fernex negative. Since being
De Fernex negative is an open condition, the claim follows. ��
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