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ABSTRACT. Let Xn be the projective plane blown up at n ⩾ 10 general points. In
this paper we give several consequences of the Segre-Harbourne-Gimigliano-Hirschowitz
Conjecture, that pertain to complete linear systems on Xn. We begin by classifying such
systems |C| with general irreducible member of genus g ⩾ 2 (up to Cremona equivalence),
in terms of invariants of the adjoint systems |C + mK|. We then use this to prove that,
for fixed n ⩾ 10 and g ⩾ 2, up to the action of the Cremona group, there exist finitely
many complete linear systems on Xn whose general member is irreducible of genus g.
Further, there is a function g 7→ n(g) such that every such (effective) system is Cremona
equivalent to a system in Xn(g). The latter result is based on the explicit computation of
the minimum possible self-intersection of an irreducible linear system with given n and
dim(|C|). We classify those systems which achieve the minimal self-intersection. We
also classify the systems with C2 ⩽ 5, whether or not they have minimal C2 for the given
n and dimension. We finish by proving several statements concerning systems that are
base-point-free, and systems that give birational maps to their image.
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INTRODUCTION

Let Xn be the complex projective plane blown up at n general points. Let E1, . . . , En

be the exceptional divisors on Xn over the n blown–up points and let H be the class on
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Xn of the pull back of a line of the plane. Then a complete linear system L on Xn can
be written as |aH −

∑n
i=1 biEi| which we will abbreviate as |a; b1, . . . , bn|; a will be

called the degree of the system and b1, . . . , bn the multiplicities, and the collection of these
integers are called the numerical characters of the system. After permuting the blown–
up points, we may assume that b1 ⩾ b2 ⩾ · · · ⩾ bn. A linear system |a; b1, . . . , bn| is
Cremona reduced (or Cremona minimal) if a ⩾ b1 + b2 + b3; it is n-Cremona minimal if
it is Cremona minimal with bn ⩾ 1. (This essentially means that the linear system is not
pulled back from a blowup of the plane at fewer than n points, and is Cremona minimal.)
Two linear systems are said to be Cremona equivalent if there is a Cremona transformation
that maps one to the other.

The self-intersection of L as above is given by L2 = a2 −
∑n

i=1 b
2
i and the (arithmetic)

genus of L is

g(L) = (a− 1)(a− 2)

2
−

n∑
i=1

bi(bi − 1)

2
.

Self-intersection and genus are invariant under Cremona transformations. Cremona mini-
mal linear systems have minimal degree among their Cremona equivalent linear systems,
but, if the base points are not general, there are examples of Cremona minimal and Cre-
mona equivalent linear systems that are not projectively equivalent (see [3, Thm. 0.2]).

We make the following assumptions, while establishing some notation:

(A) The Segre-Harbourne-Gimigliano-Hirschowitz (SHGH) Conjecture holds (see [6]);
(B) L is a linear system given by |a; b1, . . . , bn| satisfying r := dim(L) ⩾ 0 and g :=

g(L) ⩾ 2.
(C) We have b1 ⩾ b2 ⩾ · · · ⩾ bn ⩾ 1 and for any (−1)–curve E on Xn, we have

L · E ⩾ 1,

If E is a (−1)–curve on Xn with L · E = 0, then after a Cremona transformation we
can reduce n, so we call systems satisfying (C) n-point systems. Thus, a Cremona minimal
system is n-Cremona minimal if and only if it is an n-point system.

With these assumptions at hand, we establish some further notations and definitions,
and make some initial observations:

(D) We let Kn denote the canonical class on Xn, whose linear system is |−3; (−1)n| (we
use exponential notation for repeated multiplicities)

(E) If E is an irreducible curve on Xn with E2 < 0, then E is a (−1)–curve (a smooth
rational curve with E2 = −1).

(F) If F is an effective divisor, and is either nef or reduced, then we have hi(Xn, F ) = 0
for i = 1, 2, and dim(|F |) = F 2 − g(F ) + 1.

We will see below (Propositions 1.6 and 1.8) that the following two statements (G) and (H)
follow from (A), (B), and (C) also:

(G) The general curve C ∈ L is irreducible.
(H) The adjoint system |C + Kn|, of dimension g(L) − 1, has no fixed components; its

general member will be denoted by C ′.

The SHGH Conjecture (A) is a strong assumption: we may view this work as providing
some consequences of that conjecture. It is well known that it implies (E) and (F), where
the dimension formula follows from cohomology vanishing by the Riemann-Roch theo-
rem; see [6, 7]. The vanishing statement for reduced effective divisors is known as Segre’s
Conjecture. It also implies that every linear system L satisfying (B) and (C) is nef.
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Let us comment further on the assumption (B). According to the SHGH Conjecture and
its consequences (E) and (F), if C is an irreducible rational curve then either it is a (−1)–
curve or C2 ⩾ 0 and |C| is base point free of dimension C2 + 1. The Cremona minimal
systems that are Cremona equivalent to such a |C| are well known by [1, Chapt. 5]. If C is
irreducible of genus 1, then |C| has dimension C2 ⩾ 0 and the Cremona minimal systems
Cremona equivalent to |C| are again well known (see [1, Chapt. 5] and [3, Prop. 10.6]);
they are |3; 1n| and |4; 22|. So, the cases g ⩽ 1 being well known, we are assuming g ⩾ 2.

Our first finiteness result is the following, which as far as we know is the first bounded-
ness statement of this type for these linear systems in the literature.

Theorem 1. Assume the SHGH conjecture holds. Given an integer g ⩾ 2, there are
finitely many sets of numerical characters |a; b1, . . . , bn| of effective Cremona minimal
linear systems L for which g(L) = g.

We pose the question of whether the finiteness noted above holds even for systems
where the points are not in general position, or even for g = 1, of dimension at least two.
(The Halphen pencils give counterexamples of degree a multiple of 3 for g = 1.) We are
not aware of any counterexamples to this.

Next we consider how the questions at hand depend on the number n of blown-up
points. Since the cases with n ⩽ 9, where the anticanonical divisor is effective, are much
better known, in the last part of the paper we focus on the cases with n ⩾ 10. We have the
following bound on the self-intersection of the systems in question.

Theorem 2. Assume that the SHGH Conjecture holds, and that n ⩾ 10. Let |C| be an
effective complete n-point linear system on Xn of genus g ⩾ 2 and dimension r ⩾ 0.
(These essentially comprise assumptions (A), (B), and (C) above.) Then:

(a) If the adjoint system |C +Kn| is a pencil or is composed with a pencil, then |C|
is Cremona equivalent to either

(i) |6; 28, 1n−8| with 8 ⩽ n ⩽ 11, in which case g = 2 and C2 = 12− n;
(ii) |g + 2; g, 1n−1| with 1 ⩽ n ⩽ 3g + 6, in which case C2 = 4g − n + 5 =

(n+ 4r)/3− 2; or
(iii) |9; 38, 22|, for which n = 10, r = 0, g = 2, and C2 = 1.

(b) If g ⩾ 3, n + r = 2h is even, and the adjoint system |C + Kn| has irreducible
general member, then C2 ⩾ h+ r − 5.

(c) If g ⩾ 3, n+ r = 2h+ 1 is odd, and the adjoint system |C +Kn| has irreducible
general member, then C2 ⩾ ⌈(6h− 7)/5⌉+ r − 5.

Note that if g = 2 then the adjoint system |C + Kn| is a pencil (|C| is hyperelliptic),
so, by observation (F), cases (a)–(c) cover all possibilities in Theorem 2.

The proof of Theorem 2 occupies Section 4 with Theorem 4.4, Theorem 4.7, and Theo-
rem 4.15 covering the cases (a), (b), and (c) respectively. The reader will notice that in the
hyperelliptic case (a), the self-intersection is determined by n and r, while in cases (b) and
(c) we only have a lower bound. Those lower bounds are sharp, and in Theorems 4.7 and
4.15 we also present the systems that achieve the minimum, in all cases except the lowest
possible values for n and r.

In Proposition 5.1 and Theorem 5.2 we determine all systems with C2 ⩽ 5, assuming
the hypotheses of (A), (B), and (C) above, and that n ⩾ 10, r ⩾ 2 (although we present
some results for r = 0, 1 as well).

The paper is organized as follows. In section 2 we classify Cremona–minimal linear
systems, following [3], which is then used in section 3 to prove Theorem 1. Section 4 is
devoted to the study of linear systems of minimal self-intersection, and culminates in the
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proof of Theorem 2. More precisely, we compute the exact minimum possible value of
C2 for a given n and r, which surprisingly (as noted above) behaves differently depending
on the parity of n + r. Finally, in section 5 we collect a few consequences of our results,
which include the classification of C2 ⩽ 5 systems noted above, as well as several remarks
including the gaps in the possible self-intersections (given (n, r)), the birationality of the
maps given by systems with minimal self-intersection, and several interesting examples
with the minimum n = 10 cases.

1. BASIC CONSEQUENCES OF THE SHGH CONJECTURE

In this section we point out a number of basic consequences of hypothesis (A), that the
SHGH Conjecture holds.

Lemma 1.1. Assume that the SHGH conjecture holds. Let L be a linear system on Xn of
dimension r ⩾ 0 and let F be an irreducible curve that is a fixed component for L. Then

F 2 = g(F )− 1.

Proof. Since F is a fixed component for L, one has dim(|F |) = 0, and since it is reduced,
we have (using consequence (F) of SHGH) that its higher cohomology vanishes. Therefore

0 = dim(|F |) = F · (F −Kn)

2
= F 2 − g(F ) + 1

and the assertion holds. □

Lemma 1.2. Assume that the SHGH conjecture holds. Let L be a linear system on Xn of
dimension r ⩾ 0 and let F be an irreducible curve that is a fixed component for L. Then if
D ̸= F is an irreducible curve such that D is contained in a member of L, then D ·F = 0.

Proof. By the assumption, we must have dim(|D + F |) = dim(|D|). Since the SHGH
conjecture holds, and both D and D + F are reduced, we have that both their higher
cohomology vanishes (using (F)), and so

D · (D −Kn)

2
= dim(|D|) = dim(|D + F |) = (D + F ) · (D + F −Kn)

2
=

=
D · (D −Kn)

2
+

F · (F −Kn)

2
+ F ·D

and the result follows. □

Proposition 1.3. Assume that the SHGH conjecture holds. Let L be a linear system on
Xn of dimension r ⩾ 0 and let F be a (−1)–curve that is a fixed component for L. Then
L = aF + L′, with a a positive number, F not a fixed component of L′ and L′ · F = 0. In
particular L is not nef.

Conversely, if L is not nef, then there is a (−1)–curve in the fixed part of L.

Proof. The first part of the assertion is an immediate consequence of Lemma 1.2 and if
L = aF + L′ with F a (−1)–curve, then L · F = −a < 0, so L is not nef. Conversely,
if L is not nef, there is some irreducible curve F with F 2 < 0 such that L · F < 0 and F
is fixed for L. Since SHGH holds, consequence (E) implies that F must be a (−1)–curve
and the final statement follows. □

We will now focus on the case where L is a nef a linear system on Xn of dimension
r ⩾ 0, so that there is no (−1)–curve in the fixed part of L.
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Lemma 1.4. Assume that the SHGH conjecture holds. Let L be a nef linear system on Xn

of dimension r ⩾ 0 and let F be an irreducible curve that is a fixed component for L. If
there is an integer a ⩾ 2 such that aF is fixed for L then F 2 = 0, g(F ) = 1, and |F | is
Cremona equivalent to |3; 19, 0n−9|.

Proof. Since L is nef, by Proposition 1.3 the curve F is not a (−1)-curve, and hence
F 2 ⩾ 0 by consequence (E) of SHGH. Using Lemma 1.2, we have F 2 = g(F ) − 1; then
we have

0 = dim(|2F |) = F (2F −K) = 3F 2 − F (F +K) = 3F 2 − 2(g(F )− 1) = F 2,

so that g(F ) = 1. We conclude that |F | is Cremona equivalent to |3; 19, 0n−9| (see [1,
Chapt. 5]). □

Proposition 1.5. Assume that the SHGH conjecture holds. Let L be a nef linear system
on Xn of dimension r ⩾ 0 and let F be an irreducible curve that is a fixed component for
L. If F 2 = 0 (and then g(F ) = 1) there is a positive integer m such that L = {mF}, or,
equivalently, L is Cremona equivalent to |3m;m9, 0n−9| and g(L) = 1.

Proof. Let m be the maximum integer such that mF is fixed for L. By Lemma 1.2, we
have (L − mF ) · F = 0, and so L · F = 0 since we are assuming F 2 = 0. Suppose
L ≠ {mF}; then there is some irreducible curve D ̸= F such that mF +D is contained
in a member of L. Then D is not a (−1)–curve because L is nef (by Proposition 1.3) and
D · F = 0 by Lemma 1.2. Therefore D2 ⩾ 0, and if D2 > 0 we have a contradiction to
the index theorem. If D2 = 0, then D and F would be Q–numerically equivalent, which
is also impossible. The assertion follows. □

Proposition 1.6. Assume that the SHGH conjecture holds. Let L be a nef linear system
on Xn of dimension r ⩾ 0 that is not Cremona equivalent to |3m;m9, 0n−9| for some
positive integer m. Then either L has no fixed component or r = 0 and the unique curve
in L is irreducible.

Proof. Suppose first r > 0 and that there is a fixed irreducible curve F for L. By Lemma
1.3 and Proposition 1.5, one has F 2 > 0. Let |M | be the movable part of L, so that
M2 ⩾ 0. By Lemma 1.2, one has M · F = 0, which contradicts the index theorem.

Hence we must have r = 0. Notice that no multiple of F can be fixed in L by Lemma
1.4. Suppose L ̸= {F}. Then there is a curve D ̸= F such that F +D is contained in the
unique curve of L and D · F = 0. By the same reasons as above we must have D2 > 0,
which again contradicts the index theorem. □

Proposition 1.7. Assume that the SHGH conjecture holds. Let L be a nef linear system
of dimension r ⩾ 1 on Xn. Then either the general curve in L is irreducible, or L is
composed with a pencil |P | of rational curves, with P 2 = 0. In this case L is Cremona
equivalent to |d; d, 0n−1| for some integer d ⩾ 2 and g(L) = 1− d.

Proof. By Proposition 1.6, we know that L has no fixed component. If the general curve
of L is not irreducible, then there is a pencil |P | such that L = |dP |, with d ⩾ 2. First of
all we have

1 = dim(|P |) = P · (P −Kn)

2
= P 2 − g(P ) + 1

that yields P 2 = g(P ). On the other hand we have dim(|2P |) = 2, which implies

2 = dim(|2P |) = P (2P −Kn) = 2P 2 − P ·Kn = 3P 2 − 2g(P ) + 2
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so that
3g(P ) = 3P 2 = 2g(P )

which gives g(P ) = 0 = P 2. The final assertion follows from classical results (see [1,
Chapt. 5]). □

Propositions 1.6 and 1.7 show that hypotheses (A), (B), and (C) imply (G). To see this,
we first note that the three hypotheses imply that L is nef. Then Proposition 1.6 gives
that either r = 0 and the single member of L is irreducible, or r ⩾ 1 and L has no fixed
components. Then Proposition 1.7 finishes the argument, since g(L) ⩾ 2.

The following completes the argument for (H).

Proposition 1.8. Assume that the SHGH conjecture holds. Let |C| = L be a nef linear
system on Xn satisfying hypothesis (B), i.e., r ⩾ 0 and g(L) ⩾ 2. Then the adjoint system
|C +Kn|, of dimension g(L)− 1, has no fixed components.

Proof. First note that, since g(L) ⩾ 2, L ≠ |3m;m9, 0n−9|, so that by Proposition 1.6,
either L has no fixed component, or L consists of a single irreducible curve. However if
L has no fixed component, then r ⩾ 1, so that Proposition 1.7 applies, and we conclude
that either L is composed with a rational pencil (which is forbidden by g(L) ⩾ 2) or the
general curve in L is irreducible. We conclude that in any case L has an irreducible curve
C as a member. By looking at the exact sequence

0 −→ OXn
(Kn) −→ OXn

(C +Kn) −→ ωC −→ 0

and taking into account that hi(Xn,OXn(Kn)) = 0 for 0 ⩽ i ⩽ 1 and h0(C,ωC) = g(L),
we see that the adjoint system |C + Kn| has dimension g(L) − 1 ⩾ 1. Moreover it cuts
out the complete canonical system on C, which has no base points. Hence, if there is a
fixed irreducible curve E for |C + Kn|, one has E · C = 0. On the other hand we have
0 ⩽ dim(L) = C2 − g(L) + 1, thus C2 ⩾ g(L) − 1 ⩾ 1. Hence, by the index theorem,
one has E2 < 0, so (using consequence (E)) E is a (−1)–curve such that C · E = 0, a
contradiction. □

2. CREMONA MINIMALITY

In this section we will classify the effective Cremona minimal linear systems L of genus
g ⩾ 2. This has been essentially done in [3], but we think it is useful to work out here this
particular case. We keep all notation and conventions established in the Introduction.

We introduce the notation Fℓ for the minimal ruled surface over P1 with a section of
self-intersection −ℓ. The surface F0 is isomorphic to P1 × P1 and F1 is X1, the blowup of
P2 at one point.

Lemma 2.1. Assume that the SHGH Conjecture holds and let |C| be a linear system on
Xn of genus g ⩾ 2. Suppose that the m–adjoint system |C + mKn| is effective but
not nef. Then there are h ⩽ n disjoint (−1)–curves A1, . . . , Ah on Xn such that 0 >
(C + mKn) · Ai = C · Ai − m for 1 ⩽ i ⩽ h. Contracting these (−1)–curves gives a
morphism f : Xn −→ S (where either S ∼= Xn−h or S ∼= F0). If we set CS = f∗(C),
then |CS +mKS | is effective and nef, and

h0(Xn,OXn(C +mKn)) = h0(S,OS(CS +mKS)).

Proof. If |C +mKn| is effective but not nef, there is some irreducible curve A such that
A · (C +mKn) < 0. Since A2 must be strictly negative, consequence (E) implies that A
must be a (−1)–curve. Moreover, if A,B are two (−1)–curves such that A ·(C+mKn) <
0 and B · (C + mKn) < 0, one must have A · B = 0, because otherwise A + B would
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be an effective divisor which meets each of its components nonnegatively, therefore nef,
contradicting (A + B) · (C +mKn) < 0 since C +mKn is effective. The curves Ai in
the statement are then all such (−1)–curves, and there are at most n of them since they
generate a negative definite rank h lattice inside NS(Xn). This proves the first part of the
assertion.

Contracting the h disjoint (−1)–curves A1, . . . , Ah gives the morphism f : Xn −→
S where either S ∼= Xn−h or S ∼= F0 (which can only happen if h = n − 1). Set
ei := C · Ai; note that ei < m since Ai · (C + mKn) < 0, and Ai · Kn = −1. Then
C = f∗(CS)−

∑h
i=1 eiAi. Moreover Kn = f∗(KS) +

∑h
i=1 Ai. So

(1) C +mKn ≡ f∗(CS +mKS) +

h∑
i=1

(m− ei)Ai

which proves the final assertion. □

Remark 2.2. The preceding Lemma 2.1 can be rephrased as an explicit description of the
Zariski decomposition of C +mKn, namely:

C +mKn ∼ P +A

where

• P = f∗(CS +mKS) is nef,
• A =

∑h
i=1(m− ei)Ai is effective with negative definite intersection matrix,

• P ·Ai = 0 for every irreducible component Ai of A, and
• h0(Xn,OXn

(C +mKn)) = h0(Xn,OXn
(P )).

Next, given a linear system L = |C|, we introduce the following invariants:

• m := m(L) is the minimum (positive) integer such that |C + mKn| ≠ ∅ and
|C + (m+ 1)Kn| = ∅;

• α := α(L) = dim(|C +mKn|).
With these invariants in hand we will be able to provide the desired classification of Cre-
mona minimal linear systems.

Theorem 2.3. Assume that the SHGH conjecture holds. Let L be an effective n-point
linear system with g(L) ⩾ 2, and let m = m(L), α = α(L) be as defined above. Then L
is Cremona equivalent to one of the following n-Cremona minimal systems:

(i) |3m;m1, . . . ,mn| with m ⩾ m1 ⩾ · · · ⩾ mn ⩾ 1;
this case can occur for any m ⩾ 1, but only occurs if α = 0.

(ii) |3m+e;m+e,m+e,m3, . . . ,mn| with m−e ⩾ m3 ⩾ · · · ⩾ mn ⩾ 1, m > e > 0;
this case occurs for any m ⩾ 2 but only if α = 0.

(iii) |3m+ α;m+ α,m2, . . . ,mn| with m ⩾ m2 ⩾ · · · ⩾ mn ⩾ 1;
this case occurs for any m ⩾ 1, and any α ⩾ 1.

(iv) |3m+α+ e;m+α+ e,m+ e,m3, . . . ,mn| with m− e ⩾ m3 ⩾ · · · ⩾ mn−1 ⩾ 1,
m > e > 0;
this case occurs for any m ⩾ 2, and any α ⩾ 1.

(v) |3m+
⌊
α
2

⌋
;m1, . . . ,mn| , with m ⩾ m1 ⩾ · · · ⩾ mn ⩾ 1;

this case occurs for any m ⩾ 1 but only if α ∈ {2, 5}.
(vi) |3m+ α

2 ;m− 1 + α
2 ,m2, . . . ,mn|, with m ⩾ m2 · · · ⩾ mn ⩾ 1;

this case occurs for any m ⩾ 1 but only if α ⩾ 4 is even.
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(vii) |3m+ α+1
2 + e;m+ α−1

2 + e,m+ e+ 1,m3, . . . ,mn| with m− e ⩾ m3 ⩾ · · · ⩾
mn ⩾ 1 and m > e ⩾ 0;
this case occurs for any m ⩾ 1 but only if α ⩾ 3 is odd.

Proof. The hypotheses are essentially (A), (B), and (C) of the Introduction. The proof
follows from the analysis of three different cases, according to the behavior of the nef part
of |C +mKn|. Indeed, the Zariski decomposition above of C +mKn as P +A, where P
is nef and A is the sum of multiples of a certain number h of disjoint (−1)–curves, gives
rise to three possible cases:
(a) P = 0;
(b) P > 0 and P 2 = 0;
(c) P > 0 and P 2 > 0.

Suppose first we are in case (a), which implies that α = 0. Let us blow down the
curves in A =

∑h
i=1 eiAi (ordered so that the ei are non-increasing) via a morphism f :

Xn −→ S, where either S ∼= Xn−h or S ∼= F0; then |f∗(C)| = | −mKS |. If S ∼= Xn−h

then |f∗(C)| = |3m;mn−h| so that |C| is Cremona-equivalent to |3m;mn−h, e1, . . . , eh|
which gives (i). Note that n − h is the number of mi equal to m, and we know that
mn = eh ⩾ 1 because of assumption (C).

If S ∼= F0 (so h = n − 1), let F,G be the classes of the two rulings of F0. Then
|f∗(C)| is Cremona equivalent to a linear system of curves in |2mF + 2mG| on F0 with
points of multiplicities e1, . . . , eh with m > ei > 0 (as in the previous lemma). Set
e = m− e1. We note that the one-point blowup of F0 is isomorphic to X2, and the linear
system |aF + bG− cA1| on F0 corresponds to the system |a+ b− c; a− c, b− c| on X2.
Hence the system |2mF + 2mG− e1A1| corresponds to |4m− e1; 2m− e1, 2m− e1| =
|3m+ e;m+ e,m+ e| on X2. (Interpreting F0 as a smooth quadric in P3, this is achieved
geometrically by projecting down to P2 from the point p of largest multiplicity e1. This
contracts the two rulings through p to the two points in X2.) Since n = h + 1 we end up
with a system of type (ii) with mi = ei−1 for i ⩾ 3.

Suppose next we are in case (b). Since |P +Kn| = ∅, we see that |P | is composed with
curves of an irreducible base point free pencil |L| of rational curves, i.e., P ∼ αL. We
blow down A and then, successively, all other (−1)–curves B such that P · B = 0. This
sequence of contractions is not uniquely determined, but it eventually provides a morphism
f : Xn −→ S, where g : S −→ P1 is a relatively minimal fibration |F | with smooth
rational fibres, and |L| is the pull back to Xn of |F |. Then S ∼= Fk where either k = 1 or
k = 0, because of assumption (E). In the former case we denote by G the (−1)–curve on
F1, in the latter we denote by |G| the ruling of F0 different from |F |. We have

D := f∗(C) = −mKS + αF = 2mG+ (m(2 + k) + α)F,

(since on F1 we have K = 2G + 3F and on F0 we have K = 2G + 2F ) and f∗(L) is
a sublinear system of |D| of curves with h points of multiplicity ei ⩽ m. If k = 1 we
blow down G to a point of multiplicity D · G = m + α to end up in case (iii), whereas
if k = 0 we again project from the point of largest multiplicity e1 to obtain two points of
multiplicity m+ e and m+ α+ e where e = m− e1, so we are in case (iv). Note that in
the case e = 0 the non-uniqueness of B manifests itself: via a flip the surface S = F0 can
be replaced by S = F1 and we fall back to case (iii) with m2 = m. Thus we may assume
e > 0.

Finally, we deal with case (c). Since |P +Kn| = ∅, we see that |P | is a base point free
linear system of dimension α = P 2 + 1 > 1 of rational curves. Then there is a morphism
f : Xn −→ S, with either S ∼= P2, or S ∼= F1, or S ∼= F0 such that |P ′| = f∗(|P |) is one
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of the following:
(1) S ∼= P2 and |P ′| = |OP2(j)|, with 1 ⩽ j ⩽ 2, so that α = 2 in the former case, α = 5
in the latter;
(2) S ∼= F1 and |P ′| is of the form |d; d − 1|, with d ⩾ 2, in which case α = 2d ⩾ 4 is
even;
(3) S ∼= F0 and |P ′| is of the form |F +dG|, with d ⩾ 1, where |F |, |G| are the two rulings
of F0, in which case α = 2d + 1 ⩾ 3 is odd. These three cases clearly lead to cases (v),
(vi) and (vii) respectively. □

We mention two immediate corollaries that will be useful in the sequel. The first spe-
cializes the result to the case m = 1:

Corollary 2.4. Assume that the SHGH conjecture holds. Let L be an effective n-point
linear system with g(L) ⩾ 2 and m(L) = 1 (i.e. the biadjoint system |C + 2Kn| is empty,
and α = α(L) = dim(|C +Kn|)). Then L is Cremona equivalent to one of the following
n-Cremona minimal systems:
(i) |3 + α; 1 + α, 1n−1|;
(ii) |5; 1n| if α = 5;
(iii) (3 + α

2 ;
α
2 , 1

n−1) if α ⩾ 2 even;
(iv) |3 + α+1

2 ; α+1
2 , 2, 1n−2| if α ⩾ 3 odd.

In the first case |C ′| = |C+Kn| is trivial (if α = 0) or composed with a pencil (if α > 0);
in the last three, (C ′)2 > 0.

The second corollary is our stepping stone to prove the finiteness of Cremona minimal
linear systems of fixed genus:

Corollary 2.5. Assume that the SHGH conjecture holds. Fix an integer g ⩾ 2. Consider
all effective n-point linear systems L on Xn with g(L) = g. Suppose that the set of all
integers {m(L), α(L) : L as above} is bounded by a constant depending on g. Then the
number of points n is also bounded, and there are only finitely many numerical characters
|a; b1, . . . , bn| for n-Cremona minimal linear systems L with g(L) = g.

Proof. Using the classification given in Theorem 2.3, we see that if n, m, and α are
bounded, then there are finitely many n-Cremona minimal linear systems as claimed. We
claim that if m and α are bounded, then n is also.

This is clear, after observing that the degree d of the linear systems are bounded by
functions of m and α. Once d is bounded, then n cannot be more than d(d + 3)/2, since
all multiplicities are at least 1, and n > d(d + 3)/2 would cause the linear system to be
empty. □

3. FINITENESS FOR FIXED GENUS

In this section we prove our first main result. We maintain the notation m = m(L)
and α = α(L) which were introduced in the previous section. We also define the virtual
dimension of a linear system L = |d;m1, . . . ,mm| to be

virtdim(L) = d(d+ 3)/2−
∑
i

mi(mi + 1)/2;

we note that dim(L) ⩾ virtdim(L), with the difference being h1(L) when d ⩾ 0.

Proof of Theorem 1. By the results in [5], if m ⩽ 2, there are only finitely many possi-
bilities for Cremona minimal linear systems of a given genus g(L). On the other hand
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if L2 > 3g − 3 then m ⩽ 2 (see [5, Lemma 3.2]). So we will assume from now on
L2 ⩽ 3g − 3 and m ⩾ 3.

Taking into account Corollary 2.5, to prove this theorem it suffices to show that the
invariants m and α are bounded above by a function of g.

First we examine the cases n ⩽ 9, in which −Kn is effective. Actually, for n ⩽ 8,
−Kn is ample, so that for any curve C on Xn one has C · Kn < 0. For n = 9 one
has (K9)

2 = 0. So, by the index theorem, for any irreducible curve C on X9 such that
C2 > 0, one has C ·K9 < 0. In any event, if n ⩽ 9 and C ∈ L, we have C ·Kn < 0, i.e.,
C2 > 2g− 2. Now C · (C + tKn) = C2 − t(C2 − 2g+ 2) so that |C + tKn| is empty as
soon as

t >
C2

C2 − 2g + 2
= 1 +

2g − 2

C2 − 2g + 2
.

But
1 +

2g − 2

C2 − 2g + 2
⩽ 2g − 1,

and therefore m ⩽ 2g − 1. Moreover |C + mKn| is a sublinear system of |C|, hence
α ⩽ dim(|C|) = C2 − g + 1 ⩽ 2g − 2 because we are assuming now C2 ⩽ 3g − 3. In
conclusion, if n ⩽ 9, m and α are bounded, and we are done.

Next, we assume n ⩾ 10. Consider an adjoint linear system |C + tKn|, with C ∈ L
and suppose it is effective. Then

(2) dim(|C + tKn|) = virtdim(|C + tKn|) + h1(Xn,OXn
(C + tKn)),

where virtdim(|C + tKn|) is easily computed to be

(3) virtdim(|C + tKn|) = C2 − g + 1 + t
(
2g − 2− C2 − 9− n

2

)
+ t2

9− n

2
.

If there is a non–zero h1(Xn,OXn(C + tKn)), this means that there are h ⩽ n disjoint
(−1)–curves A1, . . . , Ah on Xn such that 0 > (C + tKn) · Ai for 1 ⩽ i ⩽ h, so that
ei := C · Ai < t (see Lemma 2.1). Then, since we are assuming that SHGH Conjecture
holds, one has

h1(Xn,OXn
(C+tKn)) =

h∑
i=1

h1(Ai,OAi
(C+tKn)) =

h∑
i=1

(t−ei−1) ⩽ n(t−2) < tn.

So, by (2) and (3) we have

0 ⩽ dim(|C + tKn|) < C2 − g + 1 + t
(
2g − 2− C2 − 9− 3n

2

)
+ t2

9− n

2
,

and note that the rightmost term is a quadratic in t with negative top coefficient. So that t
must be less than the largest root of that quadratic.

Taking into account that g − 1 ⩽ C2 ⩽ 3g − 3, we have

0 ⩽ dim(|C + tKn|) < 2g − 2 + t
(
g − 1− 9− 3n

2

)
+ t2

9− n

2
,

so
2− 2g − t

(
g − 1− 9− 3n

2

)
+ t2

n− 9

2
> 0.

Let us set
∆ =

(
g − 1− 9− 3n

2

)2

+ 4(n− 9)(g − 1)

so that

t ⩽
g − 1− 9−3n

2 +
√
∆

n− 9
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and therefore also

m ⩽
g − 1− 9−3n

2 +
√
∆

n− 9
.

Now an easy computation shows that

g − 1− 9−3n
2 +

√
∆

n− 9
⩽ φ(g) := g + 11 +

√
(g + 11)2 + 4(g − 1)

so that m ⩽ φ(g) is bounded by a function of g.
Similarly, we have

α = dim(|C +mKn|) < 2g − 2 +m
(
g − 1− 9− 3n

2

)
+m2 9− n

2
.

Since m ⩾ 3, we have m2 ⩾ 3m and therefore

α =dim(|C +mKn|) < 2g − 2 +m
(
g − 1− 9− 3n

2

)
+ 3m

9− n

2
=

=(m+ 2)(g − 1) + 9m,

which proves that α is also bounded by a function of g, as desired. □

4. SYSTEMS OF MINIMAL SELF-INTERSECTION

In this section we prove Theorem 2, by explicitly determining the minimal self-intersection
of a linear system satisfying assumptions (A), (B), and (C), given the dimension r and the
number of points n. Since these hold, we also have the consequences (E)–(H). We will
not repeat these assumptions and consequences in the supporting Lemma and Proposition
statements, but we will in the culminating Theorems.

It will be useful to collect below the classifications of systems of genus at most two;
these are classical results, for which one may consult Section 10 of [3] for a modern treat-
ment:

Proposition 4.1. Assume that the SHGH Conjecture holds, and |C| is a nef effective Cre-
mona minimal system on Xn with irreducible general member of genus g. Then:

(0) If g = 0, then |C| is one of the systems |2; 0n|, |t; t − 1, 0n−1| for t ⩾ 1, or
|t; t− 1, 1, 0n−2| for t ⩾ 1.

(1) If g = 1, then |C| is one of the systems |3; 1k, 0n−k| for 0 ⩽ k ⩽ 9 (r = 9 − k);
or |4; 2, 2, 0n−2| (r = 8).

(2) If g = 2, and r ⩾ 1, then |C| is one of the systems |4; 2, 1k, 0n−k−1|, 0 ⩽ k ⩽ 10,
n ⩾ k+1 (r = 11−k); or |6; 28, 1k, 0n−k−8|, 0 ⩽ k ⩽ 2, n ⩾ k+8 (r = 3−k).

4.1. The hyperelliptic case. In this subsection we will consider the case in which either
|C ′| = |C +Kn| is a pencil (hence g = 2), or the general curve in |C ′| is reducible, which
by consequence (H) implies that |C ′| is composed with a pencil |F |. In this case the curves
in |C| are hyperelliptic and C · F = 2. Since dim(|C ′|) = g − 1 ⩾ 1, we have that C ′

is nef; hence by Proposition 1.7, if |C ′| is composed with a pencil, (equal to |βF | with
β = g − 1 ⩾ 2), then F 2 = 0 (and |F | is Cremona equivalent to |1; 1, 0n−1|, with genus
zero).

Lemma 4.2. H1(F,OF (C)) = 0.

Proof. Consider the exact sequence

0 −→ OXn
(C − F ) −→ OXn

(C) −→ OF (C) −→ 0.
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By consequence (G), we have H1(Xn, OXn
(C)) = 0, so that using the long exact se-

quence it suffices to prove that H2(Xn,OXn(C−F )) = 0. By Serre duality, this is equiv-
alent to having H0(Xn,OXn(Kn +F −C)) = 0, and so we must show that Kn +F −C
is not effective.

Since F is a component of |C ′| = |Kn+C|, we have that Kn+F−C ⩽ Kn+C ′−C ≡
2Kn, which is never effective, and so neither is Kn + F − C. □

Let p be the arithmetic genus of F . By Lemma 4.2, since C · F = 2, we have
h0(OF (C)) = 2 + 1 − p = 3 − p, and is C|F is an effective divisor of degree 2, so
p ⩽ 2.

Lemma 4.3. If p = 2, then r = 0. If p ⩾ 1, then g = 2; hence β = 1 and |C ′| = |F |.

Proof. Suppose that p = 2. Then h0(F,OF (C)) = 1, and hence if r ⩾ 1 (so that C
moves), |C| must have two base points on the general curve F . Since F moves, these
points must be base points for |F | also. However then every element of |F | meets the
general C in these two points, contradicting that |F | cuts out the hyperelliptic pencil on
the general C. We conclude that if p = 2 then r = 0.

The second statement follows from the observation that if β ⩾ 2 then p = 0; hence if
p ⩾ 1 then β = 1, forcing g = 2. □

Theorem 4.4. Assume that the SHGH conjecture holds. Let L be a linear system on Xn

satisfying (B) and (C). Let g = g(L) and r = dim(L). Suppose that the adjoint linear
system |C +Kn| is a pencil or is composed with a pencil, (which is forced if g = 2). Then
L is Cremona equivalent to one of the following Cremona minimal linear systems:

(i) |6; 28, 1n−8| with 8 ⩽ n ⩽ 11; in this case
• n+ r = 11;
• g = 2;
• C2 = 12− n.

(ii) |g + 2; g, 1n−1| with 1 ⩽ n ⩽ 3g + 6; in this case
• n+ r = 3g + 6 is divisible by 3;
• g = (n+ r)/3− 2;
• C2 = 4g − n+ 5 = (n+ 4r)/3− 3.

(iii) |9; 38, 22|, for which n = 10, r = 0, g = 2, and C2 = 1.

Proof. We consider the three cases, depending on the genus p = g(F ). We let m = m(L)
and α = α(L) as defined above.

If p = 2, then r = 0, g = 2, and |C ′| = |F | by Lemma 4.3. We also have that
|F | has dimension one (it is a pencil) so that Proposition 4.1(2) applies to |F |, since F is
nef; we conclude that |F | must be one of the dimension one systems |4; 2, 111, 0n−12| or
|6; 28, 12, 0n−10|. Hence |C = F−K| must be either |7; 3, 211, 1n−12| or |9; 38, 22, 1n−10|.
The degree 7 system is not effective, and we conclude that |C| is this degree 9 system, with
only n = 10 giving r = 0.

If p = 1, we again have g = 2 and |C ′| = |F |. Then, up to a Cremona transformation,
|F | is the pencil |3; 18, 0n−8| (see [1, Sect. 5.4]) and therefore |C| = |F −Kn| is Cremona
equivalent to |6; 28, 1n−8|, with n ⩾ 8. This system has dimension r = 27− 24−n+8 =
11− n, so n ⩽ 11.

If p = 0, so that |C ′| is composed with a pencil of rational curves, then |C ′ + K| =
|C+2K| is empty and therefore m(L) = 1. Therefore Corollary 2.4 applies, and we must
be in the first case (i) there, since |C ′| is composed with a pencil. Since α = g−1, this gives
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that |C| is Cremona equivalent to |g+2; g, 1n−1|. One computes then that C2 = 4g−n+5
and r = 3g − n+ 6, completing the proof. □

Note that, in the hyperelliptic systems classified in this subsection, the self-intersection
is determined by n and r. We will see that this is not true in the non-hyperelliptic case.

4.2. The self-intersection of non-hyperelliptic systems. The question of the minimum
self-intersection possible, for a given n and r, is more complex for the non-hyperelliptic
case. In this case, as we will see below, the self-intersection depends on n, r, and the genus
of the adjoint system.

Although this was not needed in the hyperelliptic case analysis of the previous subsec-
tion, for the non-hyperelliptic cases we will assume that we are not in the weak del Pezzo
situation: we will assume that n ⩾ 10.

Consider the case in which |C| is an effective complete linear system on Xn of dimen-
sion r ⩾ 0 with g ⩾ 3, and its adjoint system |C ′| is not composed with a pencil, so that
by (H), the general curve of |C ′| is irreducible. We may expect that in this case the general
curve in |C| is not hyperelliptic, though this is not really guaranteed. However, as we will
a posteriori see, if C2 is minimal (or close to minimal), in this case the general curve in
|C| is indeed not hyperelliptic. Therefore we will call this the non–hyperelliptic case.

We denote by g′ the arithmetic genus of C ′.

Proposition 4.5. In the above set–up, we have

C2 =
n+ 3r + g′

2
− 5.

Proof. Consider the exact sequence

0 −→ OXn(−Kn) −→ OXn(C) −→ OC′(C) −→ 0.

Since h1(Xn, OXn
(C)) = 0 (consequence (F)) and

h2(Xn,OXn
(−Kn)) = h0(Xn,OXn

(2Kn)) = 0,

the long exact sequence implies that h1(C ′,OC′(C)) = 0. Since h0(Xn,OXn(−Kn)) =
0 (here we use n ⩾ 10), we have

h0(C ′,OC′(C)) = r + 1 + h1(Xn,OXn
(−Kn)).

As χ(−Kn) = K2
n + 1 = 10− n, we find

h0(C ′,OC′(C)) = r + 1− (10− n) = r + n− 9.

Since, as we saw, h1(C,OC(C)) = 0 and h0(C,OC(C)) = r, we deduce that r =
C2 − g + 1, i.e., g = C2 − r + 1. One has

C · C ′ = 2g − 2 = 2C2 − 2r.

Hence
r + n− 9 = h0(C ′,OC′(C)) = 2C2 − 2r − g′ + 1

and therefore
2C2 = 3r + n− 10 + g′

as claimed. □
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Because of this Proposition, the analysis splits in two, according to the parity of n+ r,
which is also the parity of g′. We take up these two cases in the next two subsections,
where we may assume that g ⩾ 3.

In seeking the minimum self-intersection for such linear systems, we clearly seek such
systems with minimum g′. If we write n+ r = 2h+ ϵ, with ϵ ∈ {0, 1}, by Proposition 4.5
we have

(4) C2 = h+ r − 5 +
g′ + ϵ

2
.

Then g′ = ϵ is the minimum possible (that gives integer values for C2).
We note that, using the sequence

(5) 0 −→ OXn
−→ OXn

(C) −→ OC(C) −→ 0,

we see that h0(OC(C)) = r, and has degree C2; it also has no H1, using (F). Hence by
Riemann-Roch, we have r = C2 + 1 − g, or C2 − r + 1 = g ⩾ 2. Then C2 ⩾ r + 1,
which implies, by Proposition 4.5, that (n+ r + g′)/2 ⩾ 6, or h+ (g′ + ϵ)/2 ⩾ 6.

In any case we see the following immediate conclusion, from (4):

C2 ⩾

{
h+ r − 5 if n+ r = 2h is even;
h+ r − 4 if n+ r = 2h+ 1 is odd.

4.3. Non-hyperelliptic systems with n+ r even. In this subsection we will prove that in
the case that n+ r is even, the bound given above is almost always achieved, and we will
classify the systems that achieve the bound (up to Cremona equivalence). Any system that
achieves the bound must have g′ = 0, and we start by analyzing such systems.

Lemma 4.6. In the non-hyperelliptic case with g ⩾ 3, if g′ = 0, n ⩾ 10, and |C| is
n-Cremona minimal, then ϵ = 0, n + r = 2h is even, and |C| is equal to one of the
following:

(a) |5; 1n|; here r = 20− n, h = 10, g = 6, and C2 = 25− n, for 10 ⩽ n ⩽ 20.
(b) |t + 3; t, 1n−1| for t ⩾ 1 and 10 ⩽ n ⩽ 4t + 10; here h is odd, equal to 2t + 5,

with r = 4t− n+ 10, g = 2t+ 1, and C2 = 6t− n+ 10.
(c) |t+ 3; t, 2, 1n−2| for t ⩾ 2 and 10 ⩽ n ⩽ 4t+ 8; here h is even, equal to 2t+ 4,

with r = 4t− n+ 8, g = 2t, and C2 = 6t− n+ 7.

Proof. The non-hyperelliptic systems with rational adjoint system are classified, see [1,
Sect. 5.3]. The result is that |C ′| must be (up to a Cremona transformation) one of the
systems of Proposition 4.1(0). Therefore |C| = |C ′ −K| is Cremona equivalent to either
|5; 1n|; |t + 3; t, 1n−1|, or |t + 3; t, 2, 1n−2| as claimed, with the stated values for r, g, h,
and C2 in each case. (The restriction in (c) that t ⩾ 2 is because if t = 1 then the system
is the hyperelliptic system |4; 2, 19|, which has g = 2, and we are assuming g ⩾ 3.) □

Lemma 4.6 now allows us to state the main result.

Theorem 4.7. Suppose that the SHGH Conjecture holds, as well as assumptions (B) and
(C) for an effective linear system |C|. Assume further that n ⩾ 10, g ⩾ 2, and n+ r = 2h
is even. Then:

(A) If we are in the non-hyperelliptic case, so that the adjoint linear system |C ′| has
irreducible general member, then n + r ⩾ 14, and the minimum self-intersection
C2 with these assumptions is h + r − 5. An n-Cremona-minimal linear system
achieves this minimum if and only if it is one of the systems listed in Lemma 4.6.
All values of (n, r) with n + r ⩾ 14 occur on this list, i.e., for any n ⩾ 10
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and r ⩾ 0 with n + r = 2h ⩾ 14 even, n-Cremona minimal systems |C| with
C2 = h+ r − 5 exist and all are listed above.

(B) If n+ r = 10 or 12, then g = 2, with the following cases:
(10,0) If n = 10 and r = 0, the minimum C2 for any system (hyperelliptic or

not) is 1; the only Cremona-minimal system with C2 = 1 is the hyperelliptic
system |9; 38, 22|.

(12,0) If n = 12 and r = 0, the minimum C2 for any system (hyperelliptic or
not) is 1; the only Cremona-minimal system with C2 = 1 is the hyperelliptic
system |4; 2, 111|.

(11,1) If n = 11 and r = 1, the minimum C2 for any system (hyperelliptic or
not) is 2; the only Cremona-minimal system with C2 = 2 is the hyperelliptic
system |4; 2, 110|.

(10,2) If n = 10 and r = 2, the minimum C2 for any system (hyperelliptic or
not) is 3; the only Cremona-minimal system with C2 = 3 is the hyperelliptic
system |4; 2, 19|.

Proof. To prove (A), we need only address the final statement, that all such (n, r) with
n + r ⩾ 14 are possible. If we write n + r = 2h and h is odd, then since n + r ⩾ 14,
we must have h ⩾ 7. Hence we may set t = (h − 5)/2 for some t ⩾ 1. In that case the
system |t + 3; t, 1n−1| of (b) exists with the given n and r: we have r = 4t − n + 10 =
2(h− 5)− n+ 10 = 2h− n as required.

If h is even, we must have h ⩾ 8; in this case set t = (h − 4)/2. Then the system
|t+3; t, 2, 1n−2| of (c) exists with the given n and r: r = 4t−n+8 = 2(h−4)−n+8 =
2h− n as required.

To prove (B)(10,0), we then have h = 5, and the bound above is that C2 ⩾ 0. If C2 = 0,
then g′ = 0, so Lemma 4.6 applies; none of those systems have r = 0 though. If C2 = 1,
then g′ = 2, and r′ = dim(|C ′|) ⩾ g − 1 ⩾ 2, so the classification of genus two systems
from Proposition 4.1(2) gives that |C ′| must be one of the systems listed there, and we
conclude that |C| is one of the systems |7; 3, 2k, 19−k| (r = 35−6−3k−(9−k) = 20−2k),
|8; 4, 3, 18| (r = 44− 10− 6− 8 = 20), |9; 38, 2k, 12−k| (r = 54− 48− 3k − (2− k) =
4 − 2k), or |12; 48, 32| (r = 90 − 80 − 12 < 0). The system of degree 7 does not have
r = 0 for any k ⩽ 9; the system of degree 8 has r > 0, and the system of degree 12 does
not exist The system of degree 9 with k = 2 is the only possibility: |9; 38, 22| works and
this does have C2 = 81− 72− 8 = 1 (but is hyperelliptic as noted in Theorem 4.4).

For the case (n, r) = (12, 0), we have h = 6, so the lower bound for C2 is 1. If the
system is not hyperelliptic, with C2 = 1, then we must have g′ = 0, and again Lemma 4.6
applies, with none of the systems having r = 0. Hence C2 ⩾ 2 for any non-hyperelliptic
system.

The hyperelliptic system |4; 2, 111| has C2 = 1 and is therefore the unique system with
this minimal self-intersection, for (n, r) = (12, 0).

For the case (B)(11,1), we have again h = 6, so that the bound for a non-hyperelliptic
system is that C2 ⩾ 2. If C2 = 2, then 1 = r = C2 + 1 − g = 3 − g, so g = 2 and
the system cannot be non-hyperelliptic. Therefore we conclude that the minimum self-
intersection for any such system will be 2, and occurs only with the hyperelliptic system
|4; 2, 110|.

Finally for the case (B)(10,2), again we have h = 6, so the bound for a non-hyperelliptic
system gives C2 ⩾ 3. However if C2 = 3, then 2 = r = C2 + 1 − g = 4 − g and again
g = 2, forcing the hyperelliptic system |4; 2, 19|.

□
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Remark 4.8. In the above case where n + r is even, for n ⩾ 19 the linear system |C| of
dimension r with |C ′| not composed with a pencil and with minimal self-intersection is
unique up to Cremona transformation. For 10 ⩽ n ⩽ 18 the system is not unique. Indeed
we have the system |5; 1n| of case (a) of Lemma 4.6, with r = 20−n and self-intersection
25 − n. But we have also the system |6; 3, 2, 1n−2| of case (c) of that Lemma, (t = 3
with this system) with the same dimension and self-intersection and the two are Cremona
minimal and not Cremona equivalent.

4.4. Non-hyperelliptic systems with n + r odd. If n + r is odd, by Proposition 4.5, we
will achieve the minimum self-intersection for the non-hyperelliptic case if we can arrange
that g′ = 1; using the notation of the prior section, we will then have ϵ = 1, so that we
may write n+ r = 2h+ 1. We would then be seeking systems |C| with C2 = h+ r − 4.

We can try to analyze this case as in the n + r even case, where we looked for g′ = 0
systems. In that case we were able to find systems for every relevant pair of integers (n, r)
with n+ r ⩾ 14. However we will see that the analysis ends up being quite different: with
n+ r odd there are only finitely many systems with g′ = 1.

Lemma 4.9. We assume n ⩾ 10 and g ⩾ 3 as above. In the non-hyperelliptic case, if
g′ = 1, and |C| is n-Cremona minimal, then ϵ = 1, n + r = 2h + 1 is odd, and |C| is
equal to one of the following:

(a) |6; 2m, 1n−m|, for some m ∈ {0, . . . , 7}; here r = 27 − 2m − n, h = 13 − m,
g = 10−m, and C2 = 36− 3m− n, with n ⩽ 27− 2m.

(b) |7; 32, 1n−2|; here r = 25− n, h = 12, g = 9, and C2 = 33− n, with n ⩽ 25.

Proof. If g′ = 1 one has ϵ = 1 by (4). In this case of g′ = 1, as we noted in the
Introduction, |C ′| must be (up to a Cremona transformation), a linear system of the form
|3; 1m|, with 0 ⩽ m ⩽ 9, or |4; 22|. Therefore |C| = |C ′ −K| is Cremona equivalent to
either |6; 2m, 1n−m|, or |7; 32, 1n−2|, as claimed, with the stated values therefore for r, g,
h, and C2 in each case. In case (a) we must have m ⩽ 7 since g ⩾ 3. The bounds on n are
a result of r ⩾ 0 in both cases. □

Remark 4.10. Also in this case with n + r odd, the linear system |C| of dimension r
with |C ′| not composed with a pencil and with minimal self-intersection is not unique up
to Cremona transformation for g = 9. In fact we have the two systems |6; 2, 1n−1| and
(7, 32, 1n−2) for 10 ⩽ n ⩽ 25, both having r = 25 − n and minimal selfintersection
33− n, both Cremona minimal and not Cremona equivalent.

We see then that for large n and r with n+ r odd, we cannot hope to achieve the value
of h+ r−4 for C2; this would require g′ = 1 and as seen above that leads to systems with
bounded n and r.

We could try to analyze the g′ = 3 cases but it turns out that this will also not produce
all examples; indeed, in this case of n + r odd, we need to allow g′ to increase without
bound as n and r increase.

To see this we require a more refined lower bound for C2 than Proposition 4.5 provides.
For this purpose we recall the following result originally due to Castelnuovo and Enriques
(see [8] for a modern reference):

Theorem 4.11. Let X be a smooth, irreducible, projective surface. Let D be an irreducible
curve on X . Set ρ := dim(|D|) and let γ be the arithmetic genus of D. Assume that there
is no smooth rational curve F on X such that F 2 = 0 and D ·F = 1. Then ρ ⩽ 3γ+5+η,
where η = 1 if γ = 1 otherwise η = 0.
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We apply this theorem to the adjoint linear system |C ′|, in order to prove the following.

Proposition 4.12. Fix n ⩾ 10, r ⩾ 0, with n+ r = 2h+ 1 odd. Suppose that the general
member of the adjoint linear system is irreducible of genus g′ ⩾ 3. Then

(6) C2 ⩾ r +

⌈
6h− 7

5

⌉
− 5.

Proof. Since n+ r is odd we must have g′ odd by Proposition 4.5; let us write g′ = 2a−1
with a ⩾ 2. Then C2 = (n + r + g′)/2 + r − 5 = h + a + r − 5. Riemann-Roch for
OC(C) implies that r− 1 = C2 − g, which implies g = h+ a− 4. However we also have
g = dim(|C ′|) + 1. We can apply Theorem 4.11 with D = C ′, since the surface Xn is
rational and C ′ is not, so that there is certainly no smooth rational curve F with C ′ ·F = 1.
In that case we have (in the notation of the Theorem) ρ = g − 1, γ = g′, and η = 0, and
we conclude that g − 1 ⩽ 3g′ + 5, or h+ a− 5 ⩽ 3(2a− 1) + 5, i.e., h ⩽ 5a+ 7, or

a ⩾

⌈
h− 7

5

⌉
.

Hence

C2 = h+ a+ r − 5 ⩾ h+ r − 5 +

⌈
h− 7

5

⌉
= r +

⌈
6h− 7

5

⌉
− 5

as claimed. □

Remark 4.13. Keep the notation of Proposition 4.12. If we set h − 7 = 5b − m, with
0 ⩽ m ⩽ 4, then we have ⌈

h− 7

5

⌉
= b

and we have equality in (6) if and only if a = b (here a = (g′ + 1)/2).

We see from the above argument that we cannot hope to bound g′ as we could for the
n+ r even case, since the quantity a grows with h.

We now show that the bound for C2 given in the above Proposition is sharp.

Lemma 4.14. Consider the linear system |C| = |2b+ 4; 2b, 2m, 1k| with b ⩾ 1, 0 ⩽ m ⩽
4, and 9−m ⩽ k ⩽ 10b− 3m+ 14. Then:

n = m+ k + 1; r = 10b− 3m− k + 14;

n+ r = 10b− 2m+ 15 (so that h = 5b−m+ 7);

g = 6b−m+ 3; g′ = 2b− 1 (so that a = b); C2 = 16b− 4m− k + 16,

and this system achieves the bound of Proposition 4.12.

Proof. The inequalities on k ensure that n ⩾ 10 and r ⩾ 0. We leave to the reader the
calculation of these quantities for the system; we simply note that, with these parameters,
we have 6h− 7 = 30b− 6m+ 35 = 5(6b−m+ 7)−m so that⌈

6h− 7

5

⌉
= 6b−m+ 7

for all values of m ∈ {0, . . . , 4}. Hence the lower bound is r + (6b − m + 7) − 5 =
16b− 4m− k + 16, which is the value for C2. □

Theorem 4.15. Suppose that the SHGH Conjecture holds, as well as assumptions (B), and
(C) for an effective linear system |C|. Assume further that n ⩾ 10, g ⩾ 3, n+r = 2h+1 is
odd, and the adjoint linear system |C ′| has irreducible general member of genus g′. Then:
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(A) If n+r ⩾ 13, the minimum self-intersection C2 with these characters is the bound
of (6). An n-Cremona-minimal linear system with these characters has minimal
self-intersection if and only if it is one of the following:
(a) |6; 2ℓ, 1n−ℓ|, for some ℓ ∈ {0, . . . , 7}; here r = 27 − 2ℓ − n, h = 13 − ℓ,

g = 10− ℓ, and C2 = 36− 3ℓ− n, with n ⩽ 27− 2ℓ.
(b) |7; 32, 1n−2|; here r = 25 − n, h = 12, g = 9, and C2 = 33 − n, with

n ⩽ 25.
(c) |7; 2ℓ, 1k| with ℓ + k = n and 0 ⩽ ℓ ⩽ 4; here r = 35 − 3ℓ − k and

C2 = 49− 4ℓ− k.
(d) |8; 3, 2ℓ, 1k| with n = ℓ + k + 1 and 0 ⩽ ℓ ⩽ 1; here r = 38 − 3ℓ − k and

C2 = 55− 4ℓ− k.
(e) |2b+4; 2b, 2m, 1k| with 0 ⩽ m ⩽ 4, b ⩾ 1, and 9−m ⩽ k ⩽ 10b−3m+14;

here n = m+ k + 1, r = 10b− 3m− k + 14, n+ r = 10b− 2m+ 15, and
C2 = 16b− 4m− k + 16. (These are the systems of Lemma 4.14.)

All values of (n, r) with n ⩾ 10, r ⩾ 0, n+ r ⩾ 13 and odd occur on this list; the
only missing systems with n + r odd are the cases with n + r = 11, namely the
systems with (n, r) = (10, 1) or (11, 0).

(B) (10,1) If (n, r) = (10, 1), the non-hyperelliptic Cremona minimal systems with
minimal self-intersection have C2 = 3, and are either |10; 4, 39| or |12; 48, 3, 2|.
(We note that there is the hyperelliptic system |6; 28, 12| with C2 = 2, though.)

(11,0) If (n, r) = (11, 0), the Cremona minimal system with minimal self-intersection
has C2 = 2, and is |9; 37, 24|. (We note that there is the hyperelliptic system
|6; 28, 13| with C2 = 1, though.)

Proof. We begin with the case (A), where n + r ⩾ 13. Since n + r is odd, we must have
g′ odd as well, and if g′ = 1 we have the classification of Lemma 4.9, which gives us cases
(a) and (b). Hence we can assume that g′ ⩾ 3, and we only need to show that there are
no other systems except those of cases (c)-(e) with these parameters, having the minimal
self-intersection.

Consider now a linear systems |C| for which the equality holds in (6). By taking into
account the proof of Proposition 4.12 and Remark 4.13, setting b = ⌈(h − 7)/5⌉ and
m = 5b − h + 7 as there, we have g′ = 2b − 1 and g = h + b − 4, (hence dim(|C ′|) =
g − 1 = h+ b− 5), so

3g′ + 5− dim(|C ′|) = 3(2b− 1) + 5− (h+ b− 5) = 5b− h+ 7 = m ∈ {0, . . . , 4}.

By the Riemann–Roch theorem and since consequence (G) implies that h1(C ′,OC′(C ′)) =
0, one has dim(|C ′|) = (C ′)2 − g′ + 1, so we have

m = 3g′ + 5− dim(|C ′|) = 3g′ + 5− ((C ′)2 − g′ + 1) = 4g′ + 4− (C ′)2,

thus
4g′ ⩽ (C ′)2 ⩽ 4g′ + 4.

Hence, by the Riemann–Roch theorem, if C ′ ∈ |C + Kn| is a general curve, the linear
series cut out by |C +Kn| on C ′ has no base points and determines a birational map to its
image. So the map determined by the adjoint system |C + Kn| is a birational morphism
of Xn to its image. Then if g′ ⩾ 7, the results of [4, Thm. 1.2 and §3.1] imply that |C ′|
is a linear system on Xn of the form |g′ + 2; g′, 1m, 0k| = |2b + 1; 2b − 1, 1m, 0k|, with
n = m + k + 1 and 0 ⩽ m ⩽ 4. This implies that |C| is one of the linear systems
|2b + 4; 2b, 2m, 1k| as in Lemma 4.14 and part (e) of the theorem, for which the equality
holds in (6) and therefore have minimal self-intersection.
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If g′ = 3, [4, Thm. 1.2 and §3.1] implies that for |C ′|, besides the same formula as
above with b = 2 (which leads again to case (e)), we have another possibility. Namely |C ′|
can be also of the form |4; 1m, 0k| with m+k = n and 0 ⩽ m ⩽ 4 (see [4, Example 3.2]),
so that for |C| we have the further possibility |7; 2m, 1k| which leads to case (c).

If g′ = 5, again [4, Thm. 1.2 and §3.1] implies that for |C ′|, besides the same possibility
as above with b = 3 (which leads to case (e)), we also have another possibility to consider.
This is that |C ′| can be also of the form |5; 2, 1m, 0k| with m+ k+ 1 = n and 0 ⩽ m ⩽ 1
(see [4, Example 3.5]), so that for |C| we have the further possibility |8; 3, 2m, 1k| which
leads to case (d).

Finally we have to prove the final statement that all (n, r) are possible as long as n+r ⩾
13. Given n and r, we have n + r = 2h + 1. Since n + r ⩾ 13, we have h ⩾ 6 and if
h = 6, then either (n, r) = (10, 3) or (n, r) = (11, 2). The case (n, r) = (10, 3) is
covered for instance, in (a) for m = 7, n = 10. The case (n, r) = (11, 2) is covered in (a)
for m = 7, n = 11. If h = 7, the possible cases are (10, 5), (11, 4), (12, 3), (13, 2) that
are respectively covered by the systems |6; 26, 1s|, with 4 ⩽ s ⩽ 7 (all in (a)). If h ⩾ 8,
we set h− 7 = 5b−m, with b ⩾ 1, 0 ⩽ m ⩽ 4; then the system |2b+4; 2b, 2m, 1n−m−1|
has the given n and r.

This finishes the proof of (A); we now address (B).
We note that in the two missing cases with n + r = 11, we have h = 5. If there is a

system with g ⩾ 3 with the minimum self-intersection then (in the notation of Proposition
4.12 and Remark 4.13) we would have b = ⌈(h − 7)/5⌉ = 0, and therefore a = 0 as
well. This would imply that g = h + a − 4 = 1, a contradiction. Hence in these cases a
non-hyperelliptic system cannot achieve the theoretical bound.

Suppose (n, r) = (10, 1), so that h = 5, with g ⩾ 3. The bound given above is C2 ⩾ 2,
and we have noted above that C2 = 2 is not possible (since r− 1 = C2− g, forcing g = 2
and the system would be hyperelliptic). Hence C2 ⩾ 3.

If C2 = 3, then g = g′ = 3, and we compute that C · Kn = 1, r′ = 2. The second
adjoint C ′′ = C + 2Kn has genus g′′ = 2 and dimension r′′ = 2. In that case we have
the possibilities |C ′′| = |4; 2, 19| or |6; 28, 1, 0|, leading to |C ′| = |7; 3, 29| or |9; 38, 2, 1|,
hence |C| = |10; 4, 39| or |12; 48, 3, 2|.

Suppose that (n, r) = (11, 0), so that h = 5 with g ⩾ 3. Again the minimal C2 is larger
than the bound given above (which is zero). Since g = C2 − r+1, we must have C2 ⩾ 2.

If C2 = 2, again a computation with the second adjoint (which will have genus one and
dimension two) leads to the system |C| = |9; 37, 24| as claimed. □

Remark 4.16. We note that the minimum C2 grows like:
(a) (1/3)n+ (4/3)r in the hyperelliptic case;
(b) (1/2)n+ (3/2)r in the non-hyperelliptic case, n+ r even;
(c) (3/5)n+ (8/5)r in the non-hyperelliptic case, n+ r odd.

5. REMARKS, APPLICATIONS, OBSERVATIONS

In this final section we assume the hypotheses (A)–(C), which then imply that we have
the consequences (E)–(H). We will also uniformly assume that n ⩾ 10 and r ⩾ 0. We will
refer to these as the full set of hypotheses.

5.1. Systems with low self-intersection. We now want to classify those systems with
C2 ⩽ 5, whether or not they have minimal C2 for the given n and r, which we do in
Theorem 5.2 below. We begin by collecting (from Theorems 4.4, 4.7, and 4.15) the systems
with minimal C2, at most five.
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Proposition 5.1. Suppose that the full set of hypotheses hold. Suppose that C2 ⩽ 5 and is
the minimum possible for that n and r. Then the system is on the following list.

System hyperelliptic? n r C2 g g′

|9; 38, 22| hyp. 10 0 1 2 2
|6; 28, 13| hyp. 11 0 1 2 1
|4; 2, 111| hyp. 12 0 1 2 0
|6; 28, 12| hyp. 10 1 2 2 1
|4; 2, 110| hyp. 11 1 2 3 0
|6; 27, 16| non-hyp. 13 0 2 3 1
|4; 114| non-hyp. 14 0 2 3 1
|5; 3, 114| hyp. 15 0 2 3 −
|4; 2, 19| hyp. 10 2 3 2 0
|6; 27, 15| non-hyp. 12 1 3 1 1
|4; 113| non-hyp. 13 1 3 3 0
|5; 3, 113| hyp. 14 1 3 3 −
|5; 22, 114| non-hyp. 16 0 3 4 0
|6; 4, 117| hyp. 18 0 3 4 −
|6; 27, 14| non-hyp. 11 2 4 3 1
|4; 112| non-hyp. 12 2 4 3 0
|5; 3, 112| hyp. 13 2 4 3 −
|5; 22, 113| non-hyp. 15 1 4 4 0
|6; 25, 112| non-hyp. 17 0 4 5 1
|6; 4, 116| hyp. 17 1 4 4 −
|7; 5, 120| hyp. 21 0 4 5 −
|6; 27, 13| non-hyp. 10 3 5 3 1
|4; 111| non-hyp. 11 3 5 3 0
|5; 3, 111| hyp. 12 3 5 3 −
|5; 22, 112| non-hyp. 14 2 5 4 0
|6; 25, 111| non-hyp. 16 1 5 1 1
|6; 4, 115| hyp. 16 2 5 4 −
|6; 24, 115| non-hyp. 19 0 5 6 1
|5; 120| non-hyp. 20 0 5 6 0

|6; 3, 2, 118| non-hyp. 20 0 5 6 0
|7; 5, 19| hyp. 20 1 5 5 −
|8; 6, 123| hyp. 24 0 5 6 −

(If g′ is indicated as ’-’, this means that the adjoint system is composed with a pencil.)

Proof. If the system is hyperelliptic, Theorem 4.4 gives a classification. For the systems
(i) there, we have C2 ⩾ 1; for the systems (ii), we have that C2 = (n/3) + (4r/3)− 3 ⩾
(10/3)− 3 > 0; since the self-intersection of |9; 38, 22| is 1, we have C2 ⩾ 1 in all cases.

If C2 = 1, we either have the system of degree 6 with n = 11 in case (i), or in case (ii),
we have n + 4r = 12, which forces n = 12 and r = 0, hence g = 2, giving |4; 2, 111|.
Case (iii) gives the system of degree 9.

If C2 = 2, the case (i) gives the system |6; 28, 12|; the case (ii) forces n + 4r = 15,
so we must have (n, r) = (11, 1) or (15, 0), leading to the systems |4; 2, 110| or |5; 3, 114|
indicated above.

If C2 ⩾ 3, we must be in case (ii) of Theorem 4.4. If C2 = 3 we then have n+4r = 18,
so (n, r) = (10, 2), (14, 1), (18, 0), giving the three systems above. If C2 = 4, we must
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then have n + 4r = 21, and the only possibilities are (n, r) = (13, 2), (17, 1), (21, 0),
giving the three systems in the list.

Finally if C2 = 5, then n+4r = 24; the only possibilities are (n, r) = (12, 3), (16, 2),
(20, 1), (24, 0) giving the four systems in the final section.

We will see (by listing the minimal self-intersection non-hyperelliptic systems below)
that all of these hyperelliptic systems give the minimal C2 for their (n, r) among all sys-
tems (hyperelliptic or not). Hence they all belong on the list above.

If the system is non-hyperelliptic with n + r even, then Theorem 4.7 and Lemma 4.6
give the classification. In case (a) of Lemma 4.6, the only system with minimum C2 ⩽ 5
is |5; 120|, which has C2 = 5.

In case (b) of Lemma 4.6 the t = 1, n = 11, 12, 13, 14 cases give the four systems
|4; 1n| (with C2 = 16 − n and r = 14 − n) and the t = 2, n = 17, 18 cases give the two
systems |5; 2, 1n−1| (with C2 = 22−n and r = 18−n); all other cases have C2 ⩾ 6. For
both of the t = 2 cases however, there are hyperelliptic systems with smaller C2, so they
do not go on the list. The t = 1 cases do.

In case (c) of the Lemma the t = 2, n = 14, 15, 16 cases give the three systems
|5; 22, 1n−2| (with C2 = 19 − n and r = 16 − n); the t = 3, n = 20 case gives the
system |6, 3, 2, 118| (with C2 = 5 and r = 0). All other cases have C2 ⩾ 6. All of these
go on the list. We note that the system of degree 6 has the same parameters (n, r, C2, g) =
(20, 0, 5, 6) as the system |5; 120| that we have seen before; here we have an example where
the minimal system is not unique.

This produces all the systems of case (A) of Theorem 4.7; case (B) adds no new non-
hyperelliptic systems.

If the system is non-hyperelliptic with n+ r odd, then Theorem 4.15 gives the classifi-
cation, and we first analyze those systems coming from case (A)(a) of that theorem which
have self-intersection C2 ⩽ 5.

In that case (A)(a) we have C2 = 36 − 3ℓ − n and since n ⩽ 27 − 2ℓ, we see that
C2 ⩾ (36 − 3ℓ) − (27 − 2ℓ) = 9 − ℓ. This leads to ten of the systems given above, with
ℓ ∈ {4, 5, 6, 7}, and 36−3ℓ−n ⩽ 5, or 31−3ℓ ⩽ n ⩽ 27−2ℓ. We see that (ℓ, n) is in the
set {(4, 19), (5, 16), (5, 17), (6, 13), (6, 14), (6, 15), (7, 10), (7, 11), (7, 12), (7, 13)}. The
(6, 13), (6, 14), and (6, 15) cases lead to systems with C2 = 5, 4, 3 respectively, and for
these (n, r) parameters we already have systems with C2 = 4, 3, 2 respectively, of the
form |5; 3, 1n−1|. The other seven cases lead to the seven non-hyperelliptic systems of
degree 6, with n+ r odd, listed above that have only simple or double base points.

Finally we observe that in the other cases of Theorem 4.15, the minimal self-intersection
is greater than five.

In case (A)(b) of that Theorem the minimum C2 is 8. In case (A)(c) the minimum is
achieved with ℓ = 4, which forces k ⩽ 23; the minimum C2 is then 49 − 4ℓ − k =
33 − 23 = 10. In case (A)(d) we get minimum C2 by taking ℓ = 1 and k = 33, which
gives C2 = 18. In case (A)(e) the minimum C2 is achieved with m = 4; then r ⩾ 0
implies that k ⩽ 10b+2, so that the minimum C2 for fixed b is achieved with k = 10b+2.
This gives C2 = 16b − 16 − 10b − 2 + 16 = 6b − 2, so we only have C2 ⩽ 5 if b = 1.
However the b = 1 case is covered with the cases of (A)(a).

Finally the cases (B) of Theorem 4.15 have either (n, r) = (10, 1) with C2 = 3 or
(n, r) = (11, 0) with C2 = 2 so they do not have minimal self-intersection and don’t
belong in the list.

The genus of each system and of its adjoint are immediate to compute. □
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We can now proceed to the classification of systems with C2 ⩽ 5. For the cases C2 ⩾ 3,
we will restrict ourselves to those systems with r ⩾ 2. These systems are the ones that
give dominant maps, which we are primarily interested in. The classification of the r ⩽ 1
systems is considerably more complicated.

Proposition 5.1 gives us the systems with C2 ⩽ 5 that have minimal C2 for their pa-
rameters (n, r). Our procedure for classifying the full set of systems with C2 ⩽ 5 is to
analyze systems with a given C2 which are not on the list above. For such a system with
a given (n, r), if we are dealing with the case C2 = s, then we can restrict ourselves to
parameters (n, r) which appear on the above list with self-intersection strictly less than s:
if the system is not on the list for that given (n, r), then it is not minimal for that (n, r),
and hence the minimal system with that (n, r) is on the list with a lower C2.

Theorem 5.2. Suppose the full set of hypotheses hold, in particular n ⩾ 10, r ⩾ 0, and
g ⩾ 2. Let |C| be a complete linear system satisfying these, with C2 ⩽ 5. Then:

(a) C2 ⩾ 1, and if C2 = 1, then |C| is hyperelliptic, equal to |9; 38, 22|, |6; 28, 13| or
|4; 2, 111|.

(b) If C2 = 2, then either |C| is on the Proposition 5.1 list, or is equal to one of
the non-hyperelliptic systems |15; 57, 43|, |18; 68, 5, 3|, |9; 37, 24|, |7; 3, 29, 12|, or
|9; 38, 2, 13|.

(c) If C2 = 3, and r ⩾ 1, then either |C| is on the Proposition 5.1 list, or is equal to
one of the systems |10; 4, 39|, |12; 48, 3, 2|, |7; 3, 29, 1|, or |9; 38, 2, 12|.

(d) If C2 = 4, and r ⩾ 2, then either |C| is on the Proposition 5.1 list, or C is equal
to one of the systems |7; 3, 29|, or |9; 38, 2, 1|.

(e) If C2 = 5, and r ⩾ 2, then either |C| is on the Proposition 5.1 list, or |C| is equal
to one of the systems |7; 3, 28, 13|, |9; 38, 14|, |12; 47, 33|, |15; 58, 4, 2|, |6; 26, 17|,
|7; 211|, or |9; 37, 23, 1|.

These systems are collected in the list below.

System hyperelliptic? n r C2 g g′

|15; 57, 43| non-hyp. 10 0 2 3 4
|18; 68, 5, 3| non-hyp. 10 0 2 3 4
|9; 37, 24| non-hyp. 11 0 2 3 3
|7; 3, 29, 12| non-hyp. 12 0 2 3 2
|9; 38, 2, 13| non-hyp. 12 0 2 3 2
|10; 4, 39| non-hyp. 10 1 3 3 3
|12; 48, 3, 2| non-hyp. 10 1 3 3 3
|7; 3, 29, 1| non-hyp. 11 1 3 3 2
|9; 38, 2, 12| non-hyp. 11 1 3 3 2
|7; 3, 29| non-hyp. 10 2 4 3 2
|9; 38, 2, 1| non-hyp. 10 2 4 3 2
|12; 47, 33| non-hyp. 10 2 5 4 4
|15; 58, 4, 2| non-hyp. 10 2 5 4 4
|7; 211| non-hyp. 11 2 5 4 3

|9; 37, 23, 1| non-hyp. 11 2 5 4 3
|7; 3, 28, 13| non-hyp. 12 2 5 4 2
|9; 38, 14| non-hyp. 12 2 5 4 2
|6; 26, 17| non-hyp. 13 2 5 4 1
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Statement (a) follows immediately by inspection of the classification given in Proposi-
tion 5.1.

We also note that if the system is hyperelliptic, then the parameters n and r determine
C2; hence the hyperelliptic systems of Proposition 5.1 are the only hyperelliptic systems
with C2 ⩽ 5. Moreover, reviewing the proof above, we conclude that every hyperelliptic
system with C2 ⩽ 5 is on that list; it is never the case that a non-hyperelliptic system has
a smaller self-intersection for a given n and r than the hyperelliptic system (if it exists).

Therefore we may restrict the analysis to the non-hyperelliptic cases, and thus also
assume g ⩾ 3.

Proof (of Theorem 5.2(b)): If |C| is non-hyperelliptic and not on the list, then it is not
minimal for its (n, r); hence the minimal system for its (n, r) must have C2 = 1, and
we conclude from the prior analysis of the minimal systems with C2 = 1, that (n, r) =
(10, 0), (11, 0) or (12, 0).

If (n, r) = (10, 0) then using Proposition 4.5 we have g′ = 4; using property (F) of the
Introduction we see that g = 3, so that r′ = 2, and (C ′)2 = 5. We claim that the system
|C ′| is not hyperelliptic. Indeed, by Theorem 4.4 a hyperelliptic system with genus 4 and
dimension 0 is Cremona equivalent to the 18-point system |6; 4, 117|, whereas |C ′| only
involves 10 points. Therefore we can apply Lemma 5.4 below to deduce that this adjoint
system must be either |12; 47, 33| or |15; 58, 4, 2|. Hence |C| = |15; 57, 43| or |18; 68, 5, 3|.

If (n, r) = (11, 0), then by Theorem 4.15(B), the system must be |9; 37, 24|.
If (n, r) = (12, 0), then by Proposition 4.5 we have n + 3r + g′ = 14, so that g′ = 2.

In this case one has g = 3 (by property (F)) and the adjoint system must have dimension
2. Using Proposition 4.1(2), those giving systems of dimension 2 are |C ′| = |4; 2, 19, 02|
and |6; 28, 1, 03|. These give the systems |C| = |7; 3, 29, 12| and |9; 38, 2, 13|. □

Proof (of Theorem 5.2(c)): We note that if C2 = 3 and is not on the list, then (n, r) must
appear on the list for C2 ⩽ 2, and since we are assuming r ⩾ 1, the only possibilities for
(n, r) are (10, 1) and (11, 1).

If (n, r) = (10, 1), we may invoke Theorem 4.15(B), and conclude that |C| is either
|10; 4, 39| or |12; 48, 3, 2|.

If (n, r) = (11, 1), then g = 3 and (using (4) with h = 6 and ϵ = 0) we have g′ = 2 and
r′ = 2 for the nef adjoint system |C ′|. Moreover (C ′)2 = 3. Now we can use Proposition
4.1(2) to conclude that |C ′| is either |4; 2, 19, 0| or |6; 28, 1, 02|, which then implies |C| is
either |7; 3, 29, 1| or |9; 38, 2, 12|.

□

Proof (of Theorem 5.2(d)): If |C| is non-hyperelliptic and not on the list, then it is not
minimal for its (n, r); hence the minimal system for its (n, r) must have C2 ⩽ 3 and
r ⩾ 2. We conclude from the list that the only possibility is (n, r) = (10, 2). Hence
g = C2 + 1− r = 3, and then using (4) we see that h = 6 and ϵ = 0, so that g′ = 2. We
then can apply Proposition 4.1(2); since r′ = g− 1 = 2, we see that |C ′| is either |4; 2, 19|
or |6; 28, 1, 0|. Hence |C| is either |7; 3, 29| or |9; 38, 2, 1|.

□

We will handle the C2 = 5 cases via a series of lemmas.

Lemma 5.3. If C2 = 5, r ⩾ 2, and n+r = 2h is even, then either |C| is on the Proposition
5.1 list, or |C| is equal to the system |7; 3, 28, 13|, |9; 38, 14|, or n = 10 and r = 2.
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Proof. Again we must have (n, r) on the list for lower self-intersection, and r ⩾ 2, which
implies that (n, r) = (10, 2) or (12, 2). If (n, r) = (12, 2), then g = 4 and (4) gives g′ = 2
and r′ = 3.

Since g′ = 2 we can apply Proposition 4.1(2), and deduce that |C ′| is either |4; 2, 18, 02|
or |6; 28, 04|; these lead to |C| being either |7; 3, 28, 13| or |9; 38, 14|. □

The case n = 10, r = 2 in the above Lemma requires some special treatment, to which
we now turn.

Lemma 5.4. Suppose that the system |C| is non-hyperelliptic with C2 = 5, n = 10, r = 2.
Then C is either Cremona equivalent to |12; 47, 33| or to |15; 58, 4, 2|.

Proof. Since C2 = 5 and r = 2, then g = C2 − r + 1 = 4 by observation (F). Moreover
we have C ·K10 = 1.

As we saw in the proof of Lemma 5.3, we have also g′ = 4, and the general curve
in |C ′| is irreducible by the assumption that |C| is non-hyperellyptic. One has (C ′)2 =
(C +K10)

2 = 6.
Consider the second adjoint system |C ′′| = |C + 2K10|, and its Zariski decomposition

C + 2Kn ∼ P +A

in which, as seen in Lemma 2.1, A = A1 + · · ·+ Ah where each Ai is a (−1)-curve with
C ·Ai = 1. One has dim(|P |) = g′ − 1 = 3.

Claim 5.5. The general curve in |P | is irreducible.

Proof of Claim 5.5. Suppose the claim is not true, i.e., |P | is composed with a pencil |F |
whose general curve is irreducible. Then since dim |P | = 3, we have P ∼ 3F and
C ′ · F = 2 and the general curve in |C ′| is hyperelliptic. Moreover, since (C ′)2 = 6, by
the index theorem one has F 2 = 0.

Consider the exact sequence

0 −→ OX10
(C ′ − F ) −→ OX10

(C ′) −→ OF (C
′) −→ 0.

We have h0(X10,OX10
(C ′)) = g = 4 and h0(F,OF (C

′)) ⩽ 3, because C ′·F = 2. Hence
h0(X10,OX10(C

′ − F )) > 0, i.e., C ′ − F is effective and therefore h2(X10,OX10(C
′ −

F )) = 0. Moreover h1(X10,OX10(C
′)) = 0. This implies that h1(F,OF (C

′)) = 0. On
the other hand h0(F,OF (C

′)) ⩾ 2, since otherwise |C ′| would have some fixed point on
the general curve of |F | and therefore |C ′| would have some fixed component, a contra-
diction. So, if f is the genus of the curves in |F |, by the Riermann–Roch theorem we have
2 ⩽ h0(F,OF (C

′)) = 3− f , i.e., f ⩽ 1.
If f = 0, then |F | is a pencil of rational curves, and therefore it is Cremona equivalent to

|1; 1|. Then C ′′ is Cremona equivalent to |3; 3, 09−h, (−1)h| and |C| is Cremona equivalent
to |9; 5, 29−h, 1h|, contradicting C2 = 5.

If f = 1, then |F | is Cremona equivalent to |3; 18|, C ′′ is Cremona equivalent to
|9; 38, 02−h, (−1)h| and |C| is Cremona equivalent to |15; 58, 22−h, 1h| again contradict-
ing C2 = 5. □

Claim 5.6. One has h = 0, i.e., |C ′′| has no fixed components and therefore its general
curve is irreducible.

Proof of Claim 5.6. Suppose by contradiction that h ⩾ 1. Then C ′ ·Ai = 0, for 1 ⩽ i ⩽ h.
We can then contract the (−1)–curves A1, . . . , Ah, so that we can work on X10−h, and we
denote by C̄ ′ the image of C ′ on X10−h. We have (C̄ ′)2 = (C ′)2 = 6 and the genus of
C̄ ′ is 4, so that C̄ ′ ·K10−h = 0. By the index theorem this implies that K2

10−h ⩽ 0 which
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implies h = 1 and therefore h0(X9,OX9
(−K9)) = 1, i.e., there is a unique anticanonical

curve D on X9. Now, it is well known that D is the only irreducible effective curve on X9

with D ·K9 = 0, so C̄ ′ = D, a contradiction with g(C̄ ′) = 4. □

Since C ′′ · (C ′′+K10) = (C+2K10) · (C+3K10) = 4, we see that the curves in |C ′′|
have (arithmetic) genus g′′ = 3.

Next we consider the third adjoint system |C ′′′| = |C + 3K10| which has dimension
g′′ − 1 = 2, and its Zariski decomposition

C ′′′ ≡ C + 3K10 ∼ P ′ +A′.

with A′ = A1 + · · ·+Ah where each Ai is a (−1)-curve with C ·Ai = −2.

Claim 5.7. The general curve in |P ′| is irreducible.

Proof of Claim 5.7. The proof is similar to the one of Claim 5.5, so we will be brief.
Suppose by contradiction that |P ′| is composed with a pencil |G| whose general curve is

irreducible. Then the general curve in C ′′ is hyperelliptic, so that P ′ ∼ 2G and G·C ′′ = 2.
Moreover, since (C ′′)2 = (C + 2K10)

2 = 5, by the index theorem one has G2 = 0.
Consider the exact sequence

0 −→ OX10
(C ′′ −G) −→ OX10

(C ′′) −→ OG(C
′′) −→ 0.

We have h0(X10,OX10(C
′′)) = 4 and h0(G,OG(C

′′)) ⩽ 3, because C ′′ · G = 2.
Hence h0(X10,OX10

(C ′′ − G)) > 0, thus h2(X10,OX10
(C ′′ − G)) = 0. Moreover

h1(X10,OX10
(C ′′)) = 0. This implies that h1(G,OG(C

′′)) = 0. On the other hand
h0(G,OG(C

′′)) ⩾ 2. So, if γ is the genus of the curves in |G|, by the Riemann–Roch
theorem we have 2 ⩽ h0(G,OG(C

′′)) = 3− f , i.e., γ ⩽ 1.
If γ = 0, then |G| is Cremona equivalent to |1; 1|. Then |C ′′′| is Cremona equiva-

lent to |2; 2, 09−h, (−1)h| and then |C| is Cremona equivalent to |11; 5, 39−h, 2h| which
contradicts C2 = 5.

If γ = 1, then |G| is Cremona equivalent to |3; 18|. Then |C ′′′| is Cremona equivalent
to |6; 28, 02−h, (−1)h| and then |C| is Cremona equivalent to |15; 58, 32−h, 2h| and again
this contradicts C2 = 5. □

Claim 5.8. If |C ′′′| has some fixed (−1)–curve, then it has only one such fixed curve.

Proof of Claim 5.8. Suppose that |C ′′′| has some fixed (−1)–curve, i.e., A = A1+· · ·+Ah

with h > 0. Then C ′′ · Ai = 0, for 1 ⩽ i ⩽ h. We can contract the (−1)–curves
A1, . . . , Ah, so that we can work on X10−h, and we denote by C̄ ′′ the image of C ′′ on
X10−h. We have (C̄ ′′)2 = (C ′′)2 = 5 and the genus of C̄ ′′ is 3, so that C̄ ′′ · K10−h =
−1. If h > 2, then dim(|−K10−h|) ⩾ 2 and |−K10−h| is base point free. Since C̄ ′′ ·
(−K10−h) = 1 and g′′ = 3, this is impossible. Hence h ⩽ 2.

If h = 2, one has dim(|−K8|) = 1 and |−K10−h| has a base point x. Then, by the
same argument as above, x has to be also a base point for |C̄ ′′|. If we blow–up x, we get
a surface X , with the strict transforms |C̃ ′′| of |C̄ ′′| and |D| of the pencil |−K8|. One has
(C̃ ′′)2 = 4, D2 = 0 and C̃ ′′ ·D = 0, which violates the index theorem. □

So we must have h ⩽ 1.
Since C ′′′ · (C ′′′ + K10) = (C + 3K10) · (C + 4K10) = 0, the curves in |C ′′′| have

arithmetic genus 1. But P ′ · Ai = 0 in the Zariski decomposition, so if h = 1 we have
1 = pa(A1) + pa(P

′)− 1 = pa(P
′)− 1, hence pa(P

′) = 2. So we can apply Proposition
4.1(2) to the linear system |P ′| of dimension 2, and we deduce that it is Cremona equivalent
to of one of the following: |4; 2, 19|, |6; 28, 1, 0|. However |4; 2, 19| is not possible because
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this system intersects positively any (−1)–curve. Indeed, if not, it would be Cremona
equivalent to a linear system on Xn with n ⩽ 9, which is not possible by [3, Prop. 10.10].
So we can assume that |P ′| is |6; 28, 1, 0| and |C ′′′| is |6; 28, 1,−1|. Accordingly |C| is
then Cremona equivalent to |15; 58, 4, 2|.

Finally, we can assume that h = 0. Then the general curve in |C ′′′| is irreducible of
arithmetic genus 1, so that |C ′′′| is Cremona equivalent to |3; 17, 03|, so that |C| is Cremona
equivalent to |12; 47, 33|.

This finishes the proof of Lemma 5.4. □

This completes the C2 = 5, n+ r even case; we now turn our attention to the n+ r odd
case.

Lemma 5.9. If C2 = 5, r ⩾ 2, and n + r = 2h + 1 is odd, then either |C| is on
the Proposition 5.1 list, or |C| is equal to one of the two-dimensional systems |6; 26, 17|,
|7; 211|, or |9; 37, 23, 1|.

Proof. Since we are assuming |C| is not on the list of Proposition 5.1, then the (n, r) values
must occur with the smaller C2 cases (⩽ 4); this means that (n, r) = (11, 2) or (13, 2)
since r ⩾ 2. If C2 = 5, by Proposition 4.5 we must have n+3r+ g′ = 20 so g = 14−n,
and the possible cases are (n, r, g′) = (11, 2, 3), (13, 2, 1).

If (n, r, g′) = (13, 2, 1), we apply Lemma 4.9. Case (a) of that lemma gives us the
linear system |6; 26, 17|. In case (b) one has no contribution.

In the case (n, r, g′) = (11, 2, 3), consider the system |C ′′| = |2K11 + C| to |C ′|, that
has dimension g′−1 = 2. If |C ′′| is nef, then |C ′′| has no fixed component (see Proposition
1.6). If |C ′′| is not nef, consider its Zariski decomposition

C ′′ ≡ C + 2K11 ∼ P +A

in which, as it follows by Lemma 2.1, A = A1 + · · ·+Ah where each Ai is a (−1)-curve
with C ·Ai = 1 and Ai ·Aj = 0 if 1 ⩽ i < j ⩽ h. So |C ′′| is non–special, and it may have
some (−1)–curve in its fixed part. By blowing down these (−1)–curves, we may assume
that |C ′′| has no fixed part and it lives on Xm, with m ⩽ 11 (see [6, Lemma 5.1]).

Suppose first the general curve in |C ′′| is reducible. Then, by Proposition 1.7, |C ′′| is
Cremona equivalent to |2; 2|, and therefore |C ′| is Cremona equivalent to |5; 3, 1s| and |C|
is Cremona equivalent to |8; 4, 2s, 1t|, with s + t = 10. Since C2 = 5, we must have
43 = 4s+ t which, together with s+ t = 10 gives s = 11, a contradiction. So the general
curve in |C ′′| is irreducible. Since C ′ · C ′′ = 4, from the exact sequence

0 −→ OXn
(−Kn) −→ OXn

(C ′) −→ OC′′(C ′) −→ 0

we deduce that |C ′| (that has dimension g − 1 = 3) cuts out a g34 on the general curve C ′′

of |C ′′|, and therefore C ′′ has either genus 0 or genus 1.
If C ′′ has genus 0, then |C ′′| is Cremona equivalent to the linear system |1|, so that |C ′|

is Cremona equivalent to |4; 1s| and |C| to |7; 2s, 1t| with s+ t = 11. Since 49− 4s− t =
C2 = 5, we find s = 11, b = 0, hence we get the linear system |7; 211|.

If C ′′ has genus 1, then |C ′′| is Cremona equivalent to |3; 17|, so that |C ′| is Cremona
equivalent to |6; 27, 1s| and |C| to |9; 37, 2s, 1t| with s+t = 4. Since 18−4s−t = C2 = 5,
we find s = 3, t = 1, hence we get the linear system |9; 37, 23, 1|. □

Proof (of Theorem 5.2(e)): Statement (e) now follows from Lemma 5.3, Lemma 5.4, and
Lemma 5.9. □

This completes the proof of Theorem 5.2.
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5.2. Minimal degree maps to the plane. In the previous subsection we classified systems
with low C2 (given (n, r)). We are also in a position to classify systems of minimal degree
with low r. Since we are mainly interested in dominant maps, we present the results below
for systems with r = 2.

Proposition 5.10. Suppose that the full set of hypotheses are true. Then the complete
linear systems with n ⩾ 10 and r = 2 of minimal self-intersection are the following.

(a) If the adjoint system |C ′| is composed with a pencil, then n ≡ 1 (mod. 3) and |C|
is Cremona equivalent to |(n+ 2)/3; (n− 4)/3, 1n−1|.

(b) If the adjoint system has irreducible general member and n is even, then n ⩾ 12
and the minimum self-intersection is n/2 − 2. Any such system achieving this
minimum is Cremona equivalent to either
(1) |5; 118| (here n = 18),
(2) |n/4 + 1;n/4− 2, 1n−1| (here 4|n, n ⩾ 12), or
(3) |(n+ 6)/4; (n− 6)/4, 2, 1n−2| (here n ≡ 2(mod 4), n ⩾ 10).

(c) If the adjoint system has an irreducible general member and n is odd, then the
system with minimum self-intersection is Cremona equivalent to either:
(1) |6; 2ℓ, 125−3ℓ| (here ℓ ∈ {0, . . . , 7}, n = 25− 2ℓ),
(2) |7; 32, 121| (here n = 23),
(3) |7; 2ℓ, 133−3ℓ| (here ℓ ∈ {0, . . . , 4}, n = 33− 2ℓ),
(4) |8; 3, 2ℓ, 136−3ℓ| (here ℓ ∈ {0, 1}, n = 37− 2ℓ), or
(5) |2b+ 4; 2b, 2ℓ, 110b−3ℓ+12| (here ℓ ∈ {0, . . . , 4}).

We note that the system |4; 2, 19| with r = 2 and n = 10 occurs as the smallest system
in (a), and the smallest system in (b)(3). It also occurs with b = 0 case in (c)(5), with
ℓ = 1.

Proof. Statement (a) are the systems of Theorem 4.4(ii), which are the only ones there that
have r = 2 and n ⩾ 10. Statement (b) are the systems of Lemma 4.6, with r = 2, coming
from (A) of Theorem 4.7. The list of statement (c) follows from (A) of Theorem 4.15. □

5.3. Gaps. In this section we consider the problem of classifying the linear systems |C|
on Xn, with r = dim(|C|) ⩾ 2 and with C2 one more than the minimum. In this case
the adjoint linear system |C ′| has irreducible general member, and we are in the non-
hyperelliptic case. As we will see, again there will here be a substantial difference between
the cases n+ r even or odd.

5.3.1. The n + r even case. First we examine the case n + r even. Recall that we are
assuming g ⩾ 2 (recall hypothesis (B)), so that the dimension of the adjoint system |C ′| is
g − 1 ⩾ 1.

Proposition 5.11. We assume that we have the full set of hypotheses. In addition, suppose
|C| is a non-hyperelliptic system, with r ⩾ 2, and n + r = 2h is even. If |C| has self-
intersection one more than the minimum, i.e., C2 = h + r − 4, then |C| is Cremona
equivalent to one of the following:

(a) |7; 3, 2k, 1ℓ| with r = 29− 3k − ℓ ⩾ 2, h = 15− k and C2 = 40− 4k − ℓ;
b) |9; 38, 2k, 1ell| with r = 6− 3k − ℓ ⩾ 2, h = 7− k and C2 = 9− 4k − ell.

Proof. From (4) we see that C2 is one more than the minimum if and only if g′ = 2. Then
we apply Proposition 4.1(2), and we deduce that |C ′| can be assumed to be of one of the
following types: |4; 2, 1k, 0n−k−1| with k ⩽ 10 (leading to case (a); or |6; 28, 1k, 0n−k−8|
with k ⩽ 2 (leading to case (b). □
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Remark 5.12. In all cases listed in Proposition 5.11, one has that n+ r is bounded above.
This shows that for n + r large enough (actually n + r ⩾ 32 is enough) there is no linear
system |C| of dimension r and genus g ⩾ 2 on Xn, such that the adjoint linear system |C ′|
has irreducible general member, with self-intersection one more than the minimum. This
indicates that, for fixed n, r, one may expect gaps in the possible values of C2. It would
be interesting to determine all such gaps, or at least the gaps for a given n and r ≫ 0.

5.3.2. The n + r odd case. We focus now on the case n + r odd. We keep the notation
introduced in the proof of Proposition 4.12 and in Remark 4.13.

Proposition 5.13. We assume that we have the full set of hypotheses. In addition, suppose
|C| is a non-hyperelliptic system, with r ⩾ 2, and n + r = 2h + 1 is odd. If |C| has
self-intersection one more than the minimum, i.e., C2 = h + b + r − 4, (so that we must
have g′ ⩾ 3), then |C| is Cremona equivalent to one of the following:

(i) |7; 2s, 1t|, with 5 ⩽ s ⩽ 9 and r = 35− 3s− t ⩾ 2;
(ii) |9; 3s, 2t, 1u|, with 0 ⩽ s ⩽ 7 odd, t ⩽ 1, and r = 54− 6s− 3t− u ⩾ 2;

(iii) |11; 52, 1t| with r = 47− t ⩾ 2, or |10; 42, 1s| with r = 45− s ⩾ 2;
(iv) |g′ + 5; g′ + 1, 2s, 1t|, with 5 ⩽ s ⩽ 9 and r = 5g′ + 19− 3s− t ⩾ 2;
(v) |b+6; b+1, 2s, 1t| with 1 ⩽ b ⩽ 4, 6−2b ⩽ s ⩽ 10−2b and r = 6b+26−3s−t ⩾

2.
All values of (n, r) with h ⩾ 8 as above occur on this list.

Proof. Taking into account Proposition 4.12 and Remark 4.13, we have that C2 is one
more than the minimum if and only if a = b+1, so that C2 = h+ b+ r− 4, g′ = 2b+1,
g = h+ b− 3. Then we have

4g′ + 4− (C ′)2 = 3g′ + 5− dim(|C ′|) = 5b+ 12− h = m+ 5.

Since 0 ⩽ m ⩽ 4, we have

4g′ − 5 ⩽ (C ′)2 ⩽ 4g′ − 1.

As we saw in the proof of Theorem 4.15, the map determined by the adjoint system |C +
Kn| is a birational morphism of Xn to its image. So we can apply [4, Thm. 1.2 and §3.1]
and the results in [5, §§9–10]; we conclude that |C ′| must be Cremona equivalent to one
of the following systems:

(i) |4; 1s|, with 5 ⩽ s ⩽ 9;
(ii) |6; 2s, 1t|, with s ⩽ 7 odd and t ⩽ 1;

(iii) |8; 42| or |7; 32| ;
(iv) |g′+2; g′, 1s|, with 5 ⩽ s ⩽ 9, or |g′+3; g′+1, 2, 1s|, with 5 ⩽ s ⩽ 9 and g′ odd

(although the degree g′ + 3 system leads to a system |C| which is not Cremona
minimal);

(v) |b+ 3; b, 1s| with 1 ⩽ b ⩽ 4 and 6− 2b ⩽ s ⩽ 10− 2b.
Accordingly, |C| must be Cremona equivalent to one of the systems listed in the state-

ment of the proposition.
Finally we have to prove the final statement that all (n, r) are possible. Given n and

r, we have n + r = 2h + 1 and assume h ⩾ 8. Set h − 7 = 5b − m, with b ⩾ 1 and
0 ⩽ m ⩽ 4. Fix s = m+ 5 ⩽ 9 and t = n− s− 1, so that h = 5b+ 12− s. Then

n+ r = 2h+ 1 = 10b+ 25− 2s, hence r = 10b+ 25− 2s− n.

Set now g′ = 2b+ 1 and consider the linear system |g′ + 5; g′ + 1, 2s, 1t| as in (iv). This
system lives on Xn with n = s+ t+ 1 and r = 5g′ + 19− 3s− t = 10b+ 25− 2s− n
as desired. □
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Remark 5.14. Proposition 5.13 does not apply to the cases h ⩽ 7, i.e., n+ r ⩽ 15, which
are the cases (10+ t, 3− t), with 0 ⩽ t ⩽ 1, and (10+s, 5−s), with 0 ⩽ s ⩽ 3. For these
pairs (n, r) one more than the minimum self-intersection is in fact a gap in the possible
self-intersections.

On the other hand Proposition 5.13 shows that if n+ r = 2h+ 1 with h ⩾ 8, contrary
to the case n + r even, the value of the self-intersectiom one more than the minimum is
never a gap.

5.4. Base point freeness, birationality, etc. In this section we will look at the linear
systems on Xn, with n ⩾ 10 of dimension r ⩾ 2, with minimal self-intersection, with
regard to base point freeness, birationality, etc. We again assume the full set of hypotheses.
This implies that C2 > 0. If E is a negative curve, we have C · E > 0 by property (C). If
E has E2 ⩾ 0 and C ·E = 0 we have a contradiction to the Index Theorem. Hence by the
Nakai–Moishezon Criterion all systems |C| are ample with our hypotheses.

To study base point freeness and birationality we need some preliminaries.
Let S ⊂ Pr, with r ⩾ 3, be an irreducible, projective, non–degenerate surface. If p ∈ S

is a general point, we can consider the projection π : S 99K S′ ⊂ Pr−1 with center the
point p, with S′ the image of this map. This is called a general internal projection of S.

If H is the linear system cut out on S by the hyperplanes of Pr, then the general internal
projection π : S 99K S′ ⊂ Pr−1 is the map determined by the linear system H̃ on the
blow–up S̃ of S at p, which is the strict transform on S̃ of the system H(−p) of the linear
system of hyperplanes sections of S containing p.

Lemma 5.15. In the above set–up, we have that H̃ is base point free and, if r ⩾ 4, the
general internal projection π : S 99K S′ ⊂ Pr−1 of S from p is birational onto its image.

Proof. The first assertion is trivial, since the scheme-theoretical intersection of all the hy-
perplanes in Pr containing p is p itself. As for the second assertion it follows from the
well known fact that, if r ⩾ 4, then the general secant line to S is not trisecant (this is the
so–called Trisecant Lemma, see [11]). □

Proposition 5.16. Assuming the full set of hypotheses, the linear systems on Xn, with
n ⩾ 10, of dimension r ⩾ 2, with minimal self-intersection in the hyperelliptic and in
the non–hyperelliptic case, are base point free and, if r ⩾ 3, they determine birational
morphisms onto their images.

Proof. The proof consists in a case by case analysis. Let us start with the hyperelliptic case
examined in Theorem 4.4; we need only consider case (ii) there, since n ⩾ 10 and r ⩾ 2.
Consider first the linear system |g + 2; g|, with g ⩾ 2, on X1. This is clearly very ample,
and the map determined by it embeds X1 in P3g+5 as a smooth surface of degree 4g+4. A
linear system of the form |g+2; g, 1n−1| corresponds to n− 1 general internal projections
of the above surface. Hence the assertion follows right away from Lemma 5.15.

Consider next the non–hyperelliptic case with n+ r even, examined in Theorem 4.7(A)
and Lemma 4.6. The linear system |5| is very ample on P2, and the map determined by
it embeds P2 in P20 as a smooth surface of degree 25. The linear systems |5; 1n| in (a)
of Lemma 4.6 correspond to n general internal projections of the above surface and again
the assertion follows from Lemma 5.15. The linear system |t+ 3; t|, t ⩾ 1, on X1 is very
ample, and the map determined by it embeds X1 in P3t+6 as a smooth surface of degree
6t+9. A linear system of the form |t+3; t, 1n−1|, as in (b) of Lemma 4.6, corresponds to
n− 1 general internal projections of the above surface and we get the same conclusion as
above. The linear system |t+3; t, 2|, t ⩾ 1, on X2 is easily seen to be very ample, and the
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map determined by it embeds X2 in P3t+3 as a smooth surface of degree 6t+ 5. A linear
system of the form |t+3; t, 2, 1n−2|, as in (c) of Lemma 4.6, corresponds to n− 2 general
internal projections of the above surface and we conclude as above.

Finally we focus on the non–hyperelliptic case with n + r odd considered in Theorem
4.15(A). The approach is similar to the above and therefore we will be brief. We simply
have to check that the following linear systems are very ample on the corresponding sur-
faces: |6; 2ℓ| with ℓ ∈ {0, . . . , 7}; |7; 32|; |7; 2ℓ| with 0 ⩽ ℓ ⩽ 4; |8; 3, 2ℓ| with 0 ⩽ ℓ ⩽ 1;
|2b+ 4; 2b, 2m| with 0 ⩽ m ⩽ 4. Each of these systems is clearly very ample. □

Example 5.17. To illustrate the ideas, let us consider the case n = 10 and look at the
system of minimal self-intersection for low values of r, i.e., 3 ⩽ r ⩽ 5.

If r = 3, we have the system |6; 27, 13| with g = 3 and self-intersection 5. It determines
a birational morphism of X10 to a degree 5 surface S in P3. It has been proved in [9, pp.
487–88] that the surface S has double curve consisting of three distinct lines intersecting
in one point that is triple for S. We can directly check this in the following way, which
provides a converse to the statement.

Consider a general quintic surface S in P3 with a double curve consisting of three dis-
tinct lines intersecting in one point that is triple for S. Let X −→ S be the normalization,
with X smooth. Let G be the total transform on X of the double curve. Let C be the
proper transform on X of a general plane section of S. Note that KX ∼ C − G, so that
pg(X) = 0 and clearly also P2(X) = 0. We claim that X is regular and therefore it is
rational by Castelnuovo Criterion of rationality. Indeed, let |C ′| be the adjoint system of
|C|. Look at the exact sequence

0 −→ OX(KX) −→ OX(C ′) −→ OC(C
′) ∼= ωC −→ 0.

Since C ′ ∼ 2C − G, then |C ′| is the pull–back on X of the linear system cut out on S
by the quadric cones that contain the double curve. Then it is immediate that the map
H0(X,OX(C ′)) −→ H0(C,ωC) is surjective, and that h1(X,OX(C ′)) = 0 by the
Kawamata–Viehweg theorem. This implies h1(X,OX(KX)) = 0, hence q(X) = 0.

The description of |C ′| makes it easy to check that the genus of the curves in |C ′| is 1,
as is indicated in the list of Proposition 5.1; and hence we get 0 = (2KX +C) · (KX +C).
Since KX · C = −1 and C2 = 5 we deduce that K2

X = −1, so that X = X10. Then the
normalization morphism X10 = X −→ S is determined by a linear system of dimension 3
of curves with self-intersection 5, which is the minimum self-intersection of such a linear
system; this implies that the linear system in question is exactly |6; 27, 13|.

Next we consider the case n = 10 and r = 4, so that h = 7; the minimum self-
intersection here is 6 and the system that achieves this bound is |4; 110| (see Theorem
4.7, and Lemma 4.6(b)). This system determines a morphism X10 −→ P4, whose image
is a surface S′ of degree 6. We claim that S′ is smooth except for 12 non–normal simple
double points (transverse intersections of two smooth branches of S′). This is an immediate
consequence of the double point formula (see [2]) and of the fact, proved in [9, pp. 483–
84], that the general internal projection of S′ to P3 is a quintic surface with a double curve
consisting of a rational normal cubic curve. This in turn is the image of X11 via the linear
system |4; 111| of dimension 3 that has also minimal self-intersection. It is not difficult to
directly check all this, but we will not dwell on this here.

Finally, let us look at the case n = 10 and r = 5. The minimum self-intersection here is
8 and the system that achieves this bound is |6; 26, 14| (see Theorem 4.15, (a)). We claim
that this system is very ample. To see this we argue as follows. First consider the system
|6; 26| on X6. This is very ample, being the double of |3; 16|, that is already very ample,



PLANAR LINEAR SYSTEMS ASSUMING SHGH 31

mapping X6 to a smooth cubic surface in P3. So |6; 26| maps X6 to the 2–Veronese image
of a smooth cubic surface in P3, which is a surface Σ of degree 12 in P9 with hyperplane
sections of genus 4. By Green’s theorem (see [10]), Σ is N3 so, in particular, it is cut out by
quadrics. This implies that its general internal projection Σ′ ⊂ P8 of degree 11 is smooth
and is N2, again by Green’s theorem, so it is also cut out by quadrics. So its general internal
projection Σ′′ ⊂ P7 of degree 10 is smooth and N1, again by Green’s theorem, so it is still
cut out by quadrics. Its general internal projection Σ′′′ ⊂ P6 of degree 9 is smooth. Now
we want to show that the general internal projection S ⊂ P5 is smooth, which will prove
our claim about the very ampleness of |6; 26, 14|.

Suppose this is not the case. Let p ∈ Σ′′′ be a general point. Then there is a trisecant
line to Σ′′′ passing through p, i.e., a line r containing p and cutting on Σ′′′ a curvilinear
scheme (containing p) of length at least 3. Let C ⊂ P5 be a general hyperplane section of
Σ′′′ containing r. By Bertini’s theorem, C is smooth. The hyperplanes in P5 containing
r cut out on C, which has genus 4, a linear series g3d, with d ⩽ 6. This implies that
d = 6, that the g3d is the canonical series on C, and that r is a proper trisecant, i.e., it
cuts out on Σ′′′ a scheme of length exactly 3. Then S would have a double point q (at
the projection of r from p) and the projection S′ of S from q to P4 would have canonical
hyperplane sections. This means that we would have a blow–up X of P2 at 12 points
(the first 10 points are general, the remaining two are not), and a linear system of the type
|6; 26, 16| mapping X to S′, whose characteristic system is the canonical system. On the
other hand the canonical system is also cut out on the curves of |6; 26, 16| by the system
|3; 16| and therefore this would imply that |3; 112| is effective. But then also |3; 110| would
be effective, a contradiction, because the first blown–up 10 points are general.

We expect that linear systems on Xn, with n ⩾ 10, of dimension r ⩾ 5, with minimal
self-intersection, are all very ample, as is the case for n = 10. Though we have explicit
descriptions of these linear systems, this is not trivial to check in general.
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